
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

7-2012

An Energy-Aware Bioinformatics Application for
Assembling Short Reads in High Performance
Computing Systems
Julia Warnke
University of Nebraska at Omaha

Sachin Pawaskar
University of Nebraska at Omaha, spawaskar@unomaha.edu

Hesham Ali
University of Nebraska at Omaha, hali@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Warnke, Julia; Pawaskar, Sachin; and Ali, Hesham, "An Energy-Aware Bioinformatics Application for Assembling Short Reads in High
Performance Computing Systems" (2012). Computer Science Faculty Proceedings & Presentations. 50.
https://digitalcommons.unomaha.edu/compsicfacproc/50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232759675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/50?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages

An Energy-Aware Bioinformatics Application for

Assembling Short Reads in High Performance Computing

Systems
Julia Warnke, Sachin Pawaskar and Hesham Ali

College of Information Science and Technology

University of Nebraska at Omaha

Omaha, Nebraska 68182

hali@unomaha.edu

ABSTRACT—Current biomedical technologies are

producing massive amounts of data on an unprecedented

scale. The increasing complexity and growth rate of biological

data has made bioinformatics data processing and analysis a

key and computationally intensive task. High performance

computing (HPC) has been successfully applied to major

bioinformatics applications to reduce computational burden.

However, a naïve approach for developing parallel

bioinformatics applications may achieve a high degree of

parallelism while unnecessarily expending computational

resources and consuming high levels of energy. As the wealth

of biological data and associated computational burden

continues to increase, there has become a need for the

development of energy efficient computational approaches in

the bioinformatics domain. To address this issue, we have

developed an energy-aware scheduling (EAS) model to run

computationally intensive applications that takes both

deadline requirements and energy factors into consideration.

An example of a computationally demanding process that

would benefit from our scheduling model is the assembly of

short sequencing reads produced by next generation

sequencing technologies. Next generation sequencing

produces a very large number of short DNA reads from a

biological sample. Multiple overlapping fragments must be

aligned and merged into long stretches of contiguous sequence

before any useful information can be gathered. The assembly

problem is extremely difficult due to the complex nature of

underlying genome structure and inherent biological error

present in current sequencing technologies. We apply our EAS

model to a newly proposed assembly algorithm called Merge

and Traverse, giving us the ability to generate speed up

profiles. Our EAS model was also able to dynamically adjust

the number of nodes needed to meet given deadlines for

different sets of reads.

KEYWORDS-Energy aware scheduling; high performance

computing; next generation sequencing; genome assembly

I. INTRODUCTION

Since its inception in the mid 2000's, next generation

sequencing has produced massive amounts of genetic

information, making a large impact on numerous research

fields. As next generation sequencing systems and centers

become more readily available, massively parallel sequencing

has become the cornerstone of many diverse research

endeavors, including those such as cancer transciptome and

gene expression analysis studies [1] and microbiomics [2].

Next generation sequencing technologies are capable of

producing millions to even billions of short reads per run.

Individually each read represents only a fraction of the

original genome and provides no information in itself.

However, sequencing reads are produced at a high coverage of

the original genome such that many of these reads overlap

with one another. Relationships between overlapping sequence

reads assist the identification of fragments that are consecutive

within the genome, allowing the recursive merging of these

overlapping sequences until long stretches of contiguous

genetic data, known as contigs, are recovered.

The assembly of next generation sequencing data still remains

a challenging task due to the massive size of read datasets,

short read lengths, and underlying target sequence

composition such as repeat content. The assembly of short

reads produced by these devices is a critical and

computationally intensive process. Fortunately, many steps of

this process are good candidates for parallel computing. The

parallel implementation of the read overlap detection phase of

assembly is relatively straightforward. High performance

computing has been successfully applied to help reduce the

computational burden of detecting read overlaps in large

datasets [3]. However, straightforward parallel applications

developed for overlap detection could achieve an unnecessary

high degree of parallelism at the expense of significant energy

consumption.

In this paper we introduce an energy-aware scheduling (EAS)

model that takes both deadline and energy usage requirements

into consideration. We use this EAS model to run the overlap

detection algorithm of a newly developed assembly program,

called Merge and Traverse. We conduct multiple experiments

to evaluate the computational resources needed to complete

the overlapping process while balancing task deadline

requirements with energy minimization. These experiments

demonstrate the viability of the proposed energy-aware

scheduling model and characterize the impact of various

parameters on program runtime.

II. ENERGY AWARE SCHEDULING

Scheduling is a classical field with several interesting

problems and results. Due to its wide range of applications, the

scheduling problem has been attracting many researchers from

a number of different fields. A scheduling problem emerges

whenever there is a choice. This choice could be the order in

which a number of tasks can be performed and/or in the

assignment of those tasks for processing. In general, the

scheduling problem assumes a set of resources and a set of

consumers serviced by these resources according to a certain

policy. Given a set of customers, resources, and constraints, a

solution to the scheduling problem attempts to find an efficient

policy (schedule) for customer access to resources while

optimizing some desired performance measure such as the

total service time (schedule length).

Over the years several methods have been used to address the

sequencing problem including complete enumeration, heuristic

rules, integer programming, and sampling methods. It is clear

that complete enumeration is impractical because the problem

is exponential; hence optimal solutions cannot be obtained in

real time [4, 5]. However, many heuristic methods have been

successfully applied to most general cases of the scheduling

problem. Such methods include traditional priority-based

algorithms [6], task merging techniques [7], critical path

heuristics [6, 8]. In addition, distributed algorithms have been

designed to address different versions of the scheduling

problem [9].

Energy aware scheduling is a special case of the general

scheduling problem in which our scheduling policy is the

optimization of energy in HPC systems or battery power in

mobile devices. Minimizing the power utilization which is

directly proportional to costs becomes the most important

consideration in a system that is energy aware. At the same

time this system must still meet other specified parameters

such as task deadlines.

Simply put, an energy aware scheduling system is a

scheduling problem that assumes a set of resources and a set

of consumers serviced by these resources according to an

energy aware policy. Given a set of customers, resources, and

constraints, a solution to the energy aware scheduling problem

attempts to find an efficient policy for customer access to

resources while optimizing battery power utilization.

Accordingly, an energy aware scheduling system can be

considered to consist of a set of consumers, a set of resources,

and an energy aware scheduling policy as shown in figure one.

Clearly, there is a fundamental similarity to scheduling

problems regardless of the difference in the nature of the tasks

and the environment.

III. ASSEMBLY ALGOITHM OVERVIEW

The Merge and Traverse assembler follows the traditional
overlap-layout-consensus paradigm that has been successfully
employed by various assemblers [3] [10] [11]. Our algorithm
assembles reads into contigs in three stages: 1) overlap
detection and alignment, 2) graph construction and
manipulation, and 3) consensus sequence generation by
multiple alignment [12].

A. Overlap Detection and Alignment

The Merge and Traverse algorithm uses short k-mer words to
seed overlaps between reads. These short seed matches are
extended into full alignments using dynamic programing. The
overlap relationships found during the overlapping phase are
placed into two categories by the assembly algorithm. The first
type of overlap that the assembly algorithm considers is the
dovetail overlap. The dovetail overlap occurs when the reads

align such that they form a suffix-prefix relationship as shown
in figure two.

The second type of overlap that the assembly algorithm
considers is the containment overlap. The containment overlap
occurs when the sequence of one read is fully contained in
another read. For the purpose of simplifying the overlap graph
in subsequent assembly phases, our algorithm disregards
containment overlap relationships. Each read that is contained
in one or more other reads is mapped to a suitable
representative read using a clustering approach detailed in
section four.

B. Graph Construction and Manipulation

The second phase of the assembly process builds an overlap

graph using high quality dovetail overlaps between the

Figure 1. Energy Aware Scheduling System

Figure 2. Read Overlaps

remaining representative reads. In this graph theoretic model,

each node represents a sequencing read. An edge joins two

nodes if their corresponding reads overlap.

After graph construction is complete, the algorithm preforms

transitive reduction of the graph [13] revealing non-branching

paths that likely correspond to unique regions of the target

sequence being assembled. The algorithm identifies and

merges these non-branching paths into super-nodes in the

overlap graph. Remaining graph structural features such as

dead-end paths and bubbles, where two paths start and end at a

common node, are in many cases caused by sequencing error

present in the read data set. The algorithm identifies this noise

using a Dijkstra shortest path method. Each dead-end path

that is shorter than a user-provided threshold is removed from

the overlap graph. For each bubble whose component paths

are shorter than the user-provided threshold, the least covered

path in the bubble is removed. After graph trimming is

complete, the algorithm extracts all maximal non-branching

paths from the graph for use in the consensus phase of the

assembly process to construct contigs.

C. Consensus Sequence Generation

In the final consensus phase, progressive multiple alignment

guided by the read path layout is used to determine contig

consensus sequence.

IV. READ OVERLAP DETECTION

In this section, we provide a description of our three-step

approach for read overlap detection. The first step orders a

read dataset S in descending read length and partitions it into

subsets. The second step maps each read that forms a

containment overlap with one or more other reads to a suitable

representative read following a hierarchical clustering scheme

introduced by CD-Hit [13]. After clustering is complete, the

final step identifies dovetail overlap relationships among the

remaining representative reads.

A. Read Preprocessing

The containment clustering step of the overlap detection phase

requires that the reads are sorted by descending length. First

the reverse complements of an input read dataset R are

generated to form the read set S = (R, R). It then sorts S into

descending order of length by a merge sort algorithm, and

partitions S into n subsets = {S0, S1, … Sn-1} of size m, where n

is specified by the user. Each read subset Sk is sorted in

descending read length and the subsets are ordered such that

readLengths(S0) ≥ readLengths(S1) ≥ … ≥ readLengths(Sn-1).

B. Containment Clustering

The initial read clustering step follows the greedy hierarchical

clustering scheme introduced by the CD-hit algorithm [14].

The longest read becomes the first representative. It is used to

search for containment overlaps among the remaining reads

using the exact matching and alignment methods described in

the section three. If a read forms a containment overlap with

the current representative and its alignment meets minimum

length and alignment identity requirements, it is mapped to

that representative read. The algorithm considers each read in

the order of descending length. If a read is not already mapped

to an existing representative, it becomes a new representative

read and is used to query the remaining reads in the dataset for

containment overlaps. A read that has been mapped to a

previous representative read but forms a containment overlap

with the current representative is remapped to the current

representative if its alignment identity with the current

representative is greater than its alignment identity with the

previous representative. After this process has completed, all

read to representative mappings are recorded for use in the

consensus phase of the assembly process.

C. Dovetail Overlaps

After containment clustering is complete, the remaining

representative reads are used to query the read dataset for

dovetail overlaps with other representative reads. The exact

matching and alignment methods of section three are used to

locate dovetail overlap relationships. If a dovetail overlap

meets minimum alignment length and alignment identity

requirements, it is recorded for use in the graph construction

phase of the assembly algorithm.

Figure 3. The overlap graph. Reads map to nodes.

Overlaps map to edges. Each edge is assigned a weight

representing the length of the overlap shared between the

reads.

Figure 4. Containment clustering. Reads two and four

cluster to read one, and read five clusters to read three.

D. Implementation Details

The containment clustering and dovetail overlapping steps

accept two read subsets Si and Sj as input. The subset Si is the

query dataset and the subset Sj is the reference dataset, where i

≤ j.

To facilitate the identification of exact matches between reads,

a suffix array constructed by Larsson and Sadakane’s

algorithm [15] is used to index the reference dataset. In

succession, each read in the query dataset is broken into all of

its possible subwords of size k (denoted as k-mers). These k-

mers are used to query the suffix array for exact matches. If

one or more exact matches are found between the query read

and a reference read indexed by the suffix array, then both

reads are passed to an alignment algorithm for evaluation. The

k-mers shared by the reads are chained [16] and the Needle-

Wunsh algorithm [17] is used to align the regions between k-

mers and to align the beginning and end regions of the reads.

After the alignment of the two reads is complete, the

computed overlap is evaluated by its alignment length and

alignment percent identity. If the overlap does not meet the

user-provided minimums for these measurements, it is not

included in subsequent steps of the assembly process.

Since the containment clustering step is dependent on the read

ordering, each subset Sj must be ran against each Si as a

reference dataset, where i < j, before it can be used as a query

dataset against any other read subset. The dovetail-overlapping

step is not dependent on read ordering and can accept read

subsets in any order.

V. PARALLEL IMPLEMENTATION AND EAS MODEL

The input read dataset S is partitioned into n subsets = {S0, S1,

… Sn-1} of size m during the initial read sorting and

preprocessing step. A master thread sends each unique subset

combination of size two as input to worker processors running

serial versions of the containment clustering and dovetail

overlapping algorithms. The master thread manages the

execution order constraints of the containment clustering step.

A. Solution Overview

The EAS engine runs the pre-processor on the input fasta file,

the output of which is the n-split read subsets. Let us assume

that the large file has m sequences, and then each of the

smaller files will contain (m/n) sequences in sorted order.

The files created in the pre-processing step become inputs to

the EAS engine. The EAS engine runs the alignment program

in a 2-step process. The first step finds the containment

overlaps and the second step determines the dovetails overlaps

among the remaining representative reads. The containment

part of the execution is not naively parallel; the execution of

certain pairs of subsets (tasks) has to be done in order, only

then can dependent subsets be processed. The main process

flow is shown in figure six below.

B. Containment Execution – Step 1

The execution dependencies are shown in figure seven for the

following set of containment tasks T = {(0, 0), (0, 1), (0, 2),

(0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3,

3), (3, 4), (4, 4)}, where each integer represents a read subset.

The tasks along the diagonal (0, 0), (1, 1) (2, 2), (3, 3) and (4,

4) are considered to be higher priority tasks because they have

a greater number of child/dependent tasks. All other tasks have

a normal priority in terms of execution. After a task gets

released, meaning that all of its predecessors have been

executed, it is sent to the EAS execution queue. When the task

has completed executing, the EAS engine checks to see if any

dependent tasks can be released for execution.

Now let us take a look at the example where we have five read

subsets. When the task (0, 0) is complete, it releases all the

tasks in that row which are tasks (0, 1), (0, 2), (0, 3) and (0, 4).

It cannot release (1, 1) because task (1, 1) still has another

dependency on (0, 1). When (0, 1) is completed, it will release

task (1, 1). Completion of task (1, 1) will flag (1, 2), (1, 3),

and (1, 4) but they will only be released when both (1, 1) and

the tasks above them namely (0, 2), (0, 3), and (0, 4) have

completed execution. This will continue until all tasks are

executed. The last task to be executed will be task (4, 4) in our

example. Note that the total number of tasks executed would

be fifteen. This can be calculated easily using equation one.

We would like to point out that the containment phase is

Pre-processing
Large input

fasta file

n_seq.dat

1_seq.dat

0_seq.dat

Split smaller

.dat files

Figure 5. Pre-processing step

Pre-processing

EAS Engine

Containment

Execution

Dovetail

Execution

OUTPUT

INPUT

OUTPUT

INPUT

INPUT

Assembly

Execution

OUTPUT

INPUT

OUTPUT

Figure 6. Process flow diagram

bounded by the number of files (in this case five). We cannot

use more than five nodes at any given time due to task

dependencies even though we have a total of fifteen

containment tasks.

C. Dovetail Execution – Step 2

The execution dependencies of the dovetail tasks are much

more straightforward than those for the containment tasks. The

dovetail tasks do not have any dependencies on each other and

hence can be run in a naively parallel way, allowing us to use

as many processors as possible. Continuing with our previous

example with fifteen tasks, we could execute (0, 0), (0, 1), (0,

2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4),

(3, 3), (3, 4), (4, 4) all at the same time during the dovetail

phase.

The total number of tasks that need to be executed in each of

the above steps (containment and dovetail steps) is given by

the equation below, where n is the number of read subsets and

T is the total number of tasks.

VI. RESULTS

We downloaded Escherichia coli W reads produced by the 454

Titanium technology from the NCBI [18] sequence read

archive (accession no. SRR060736 and SRR060737, made

public by JCVI). The sequences were trimmed to remove

adaptors. The final result was 337,294 trimmed reads. For our

experiment in the pre-processing step we decided to split these

into 16,866 sequence reads per file, i.e. read subset (except for

the last file which contained 16,814 reads). This resulted in 40

files and a total of 674,588 reads. (The preprocessing step

generates the reverse complement of each read.) We then used

the EAS engine to run the assembly algorithm using 1 to 31

nodes. For our experiments we used the HPC environments

available at UNO (University of Nebraska at Omaha). We

initially start out with the Blackforest cluster (16 nodes) [19]

and then move to a true commercial strength HPC named

Firefly cluster (1100 nodes) at the Holland Computing Center

[20].

Firefly Cluster: The firefly cluster is a large commercial

strength cluster at the Holland Computing Center which

comprises of 1,151-node supercomputer cluster of Dell

SC1435 servers. Each node contains two sockets, and each

socket holds a quad-core (four 64-bit AMD Opteron 2.2 GHz

processors). The computational network utilizes an 800

MB/sec Infiniband interconnect. Each node has its own 8 GB

of memory, and 73 GB of disk space.

Chart (a) in figure 8 shows the execution time of the algorithm

in seconds versus the number of nodes used for each run. It

shows that after 11 to 12 nodes we do not see any significant

performance gain. Along with the total execution time, we

captured the average execution time per worker node and the

overhead. We find that as we increase the number of nodes the

overhead curve follows the execution time curve. It is

important to note that in a HPC a significant portion of the

master process’s work is distributing the tasks and managing

the task dependency among the worker processes along with

handling of the communication between master and worker

processes. This is clearly depicted by chart (b) in figure 8.

It is important to note that given the nature of the task

dependencies in the containment phase not all nodes are

working all the time, and hence we see a smaller overall curve

for the average worker time per node. This leads us to ask the

question, “How parallelizable is the program?” For the

purpose of answering this question we plotted the program

speedup against the number of nodes and integrated this curve

with a plot of Amdahl’s law in chart (c) in figure 8. Amdahl's

law is defined by the formula:

As N → ∞, the maximum speedup tends to . In

practice, performance/price falls rapidly as N is increased once

there is even a small component of (− P). A great part of the

craft of parallel programming consists of attempting to reduce

(1 – P) to the smallest possible value.

We can conclude that the overlap detection algorithm of the

Merge and Traverse assembler has a speedup between 20 - 25

times (which is between 90% - 95% parallelizable).

Next we set up experiments to see if the EAS engine would be

able to dynamically adjust the number of nodes to meet a

given deadline. We used four groups of read datasets

generated from SRR060736 and SRR060737. Each group was

partitioned into a different number of files as shown in table

one.

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

Figure 7. Execution dependencies of containment tasks

http://en.wikipedia.org/wiki/Parallel_programming

Each group of files was ran against five different deadlines

(30, 60, 90, 120, and 150 minutes). Each of these jobs was

assigned a starting number of nodes by the EAS engine based

on the run profile/speedup curve. As the tasks were completed,

variances between EET (Expected Execution Time) and AET

(Actual Execution Time) resulted in the EAS engine adjusting

the number of nodes up (+N) or down (–N), if there were

equal number of (+N) and (–N) adjustments it resulted in a net

(0) adjustment and finally the scenario of no adjustments

being made (–). The experimental results showed that the EAS

engine was able to dynamically adjust nodes to minimize

energy utilized while meeting the deadlines.

VII. CONCLUSIONS

Based on the results we can clearly observe that given a

deadline we can choose the appropriate number of nodes to

run the overlap detection phase of the assembler on based on

our new understanding of the run-profile we just produced.

This will allow us to apportion just enough nodes to meet the

deadline thus maximizing the objective of performance with

minimum energy utilization. We also observed that with a

smaller number of nodes we have larger gains in performance

and above a certain number of nodes the performance gain is

only modest at best. In fact as we add additional nodes our

communication costs and related overhead is higher.

Clearly different bioinformatics applications and algorithms

will have different run profiles and understanding each one of

them will allow us to best assign the appropriate number of

nodes to meet a given deadline. It was also important to see

how the number of read subsets impacted the

performance/energy criterion. Our experiments suggest a bowl

shaped curve when we varied the number of files for the same

number of nodes. Clearly there must be some optimum value

for the number of files for each set.

This paper highlights the importance of understanding the

degree of parallelism for the program, which is done by

establishing the run profile/speedup curve. The EAS engine

uses the knowledge from the run profile to make intelligent

and dynamic decisions about number of nodes to use to

minimize energy utilization and still provide necessary

Table 1. Read subset groups used for analysis

Group Number

of Files

Number of

Sequences

G1 5 84330

G2 10 168660

G3 15 337320

G4 20 674588

Figure 9. EAS engine - dynamic node adjustments

Figure 8. Chart (a): EAS - Execution time v/s Nodes.

Chart (b): Execution time/Overhead v/s nodes. Chart (c):

Speedup curve for the assembly program

performance. Clearly it is no longer sufficient to simply run a

program in a HPC environment. It is important and essential to

understand the data, its characteristics, and the application

domain to build a parallel program that is energy aware.

In designing these experiments, we have several parameters

we could study and the relationship between them. These

parameters are (1) Number of files; (2) Number of sequences

per file; (3) Number of nodes used and (4) Average sequence

length. In this paper we have only looked at number of nodes

used as a parameter for our experimental design. In the future

we plan to investigate how adjusting the different tuning

parameters such as number of files, number of sequences per

file, number of nodes impacts the performance and energy

efficiency. We also plan on including the pre-processing step

and final assembly as part of the EAS processing. Our main

motivation is to move this from a simple speedup to the realm

of energy awareness. Our EAS model for the purposes of the

experiments conducted calculated energy as a function of

resources used in this case number of nodes. The energy

function could be made more complex; we leave that for a

future study.

ACKNOWLEDGMENT

This project was supported by the NIH grant number P20

RR016469 from the INBRE Program of the National Center

for Research Resources (NCRR).

REFERENCES

[1] M. Meyerson et al, "Advances in Understanding Cancer

Genomes through Second-generation Sequencing," Nat. Rev. Genet.,

vol. 11, no. 10, pp. 685-696, Oct. 2010.

[2] J Qin et al, "A Human Gut Microbial Gene Catalogue

Established by Metagenomic Sequencing," Nature, vol. 464 no. 7285

pp. 59-65, Mar. 2010.

[3] X. Huang et al, "PCAP: A Whole-Genome Assembly

Program," Genome Res., vol. 13, no. 9, pp. 2164-2170, Sept. 2003.

[4] J. Ullman, "NP-complete Scheduling Problems," J. of Comput.

and Syst. Sci. vol. 10 no. 3 pp. 384-393. June 1975.

[5] E. G. Coffman et al, Computer and Job-Shop Scheduling

Theory, NY: John Wiley & Sons Inc., 1976.

[6] H. El-Rewini et al, Task Scheduling in Parallel and Distributed

Systems, Upper Saddle River, NJ: Prentice Hall, 1994.

[7] P. Aronsson and P. Fritzson, “Task Merging and Replication

using Graph Rewriting,” in the Tenth International Workshop on

Compilers for Parallel Computers, Amsterdam, The Netherlands,

2003, doi: 10.1.1.7.9285.

[8] A. A. Khan et al, “A Comparison of Multiprocessor Scheduling

Heuristics,” in the International Conference on Parallel Processing,

North Carolina State Univeristy, NC. 1994, pp. 243-250.

[9] R. Xie et al, “Scheduling Multi-Task Agents,” in the Fifth IEEE

International Conference on Mobile Agents, Atlanta, GA., 2001, pp

260-276.

[10] D.D. Sommer et al, “A Fast, Lightweight Genome

Assembler," BMC Bioinformatics vol. 8, no. 1, Feb. 2007.

[11] E.W. Myers et al, “A whole-genome assembly of

Drosophila,” Science.2000, vol. 287 , no. 5461, pp. 2196–204, Mar.

2000.

[12] J.R Miller et al, “Assembly Algorithms for next-generation

sequencing data,” Genomics, vol. 95, no. 6, pp. 315-327, June 2010.

[13] E.W. Myers, "The Fragment Assembly String

Graph," Bioinformatics, vol. 21, no. 2, pp. 79-85, Sept. 2005.

[14] W. Li, and A. Godzik. "Cd-hit: A Fast Program for Clustering

and Comparing Large Sets of Protein or Nucleotide

Sequences," Bioinformatics, vol. 22, no.13, pp. 1658-659, July 2006.

[15] N. J. Larsson and K. Sadakane. “Faster suffix sorting,” Lund

University, Lund, Sweden, Tech. Rep. LU-CS-TR:99-214, 1999.

[16] E. Ohlebusch and M. I. Abouelhoda. “Chaining Algorithms and

Applications in Comparative Genomics,” in the Handbook of

Computational Molecular Biology, Boca Raton, FL: Chapman and

Hall/CRC Computer and Information Science Series, 2006, ch. 15

[17] S.B. Needleman, and C.D. Wunsch, “A general method

applicable to the search for similarities in the amino acid sequences

of two proteins,” J. Mol. Biol., vol. 48, no. 3, pp. 443–453, 1970

[18] NCBI Database. Retrieved Nov 2010 from

http://www.ncbi.nlm.nih.gov/sra

[19] Blackforest Computing Cluster. Retrieved Dec 2010 from

http://blackforest.gds.unomaha.edu/about.php

[20] Holland Computing Center. Retrieved Dec 2010 from

http://www.hollandhpc.com/index.shtml.

http://www.ncbi.nlm.nih.gov/sra
http://blackforest.gds.unomaha.edu/about.php
http://www.hollandhpc.com/index.shtml

	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-2012

	An Energy-Aware Bioinformatics Application for Assembling Short Reads in High Performance Computing Systems
	Julia Warnke
	Sachin Pawaskar
	Hesham Ali
	Recommended Citation

	Paper Title (use style: paper title)

