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Assembling Short Reads in High Performance Computing 
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Omaha, Nebraska 68182 

hali@unomaha.edu    

ABSTRACT—Current biomedical technologies are 

producing massive amounts of data on an unprecedented 

scale. The increasing complexity and growth rate of biological 

data has made bioinformatics data processing and analysis a 

key and computationally intensive task.   High performance 

computing (HPC) has been successfully applied to major 

bioinformatics applications to reduce computational burden. 

However, a naïve approach for developing parallel 

bioinformatics applications may achieve a high degree of 

parallelism while unnecessarily expending computational 

resources and consuming high levels of energy. As the wealth 

of biological data and associated computational burden 

continues to increase, there has become a need for the 

development of energy efficient computational approaches in 

the bioinformatics domain.  To address this issue, we have 

developed an energy-aware scheduling (EAS) model to run 

computationally intensive applications that takes both 

deadline requirements and energy factors into consideration. 

An example of a computationally demanding process that 

would benefit from our scheduling model is the assembly of 

short sequencing reads produced by next generation 

sequencing technologies. Next generation sequencing 

produces a very large number of short DNA reads from a 

biological sample. Multiple overlapping fragments must be 

aligned and merged into long stretches of contiguous sequence 

before any useful information can be gathered.  The assembly 

problem is extremely difficult due to the complex nature of 

underlying genome structure and inherent biological error 

present in current sequencing technologies. We apply our EAS 

model to a newly proposed assembly algorithm called Merge 

and Traverse, giving us the ability to generate speed up 

profiles. Our EAS model was also able to dynamically adjust 

the number of nodes needed to meet given deadlines for 

different sets of reads. 

 

KEYWORDS-Energy aware scheduling; high performance 

computing; next generation sequencing; genome assembly 

 

 

I.  INTRODUCTION  

Since its inception in the mid 2000's, next generation 

sequencing has produced massive amounts of genetic 

information, making a large impact on numerous research 

fields. As next generation sequencing systems and centers 

become more readily available, massively parallel sequencing 

has become the cornerstone of many diverse research 

endeavors, including those such as cancer transciptome and 

gene expression analysis studies [1] and microbiomics [2]. 

Next generation sequencing technologies are capable of 

producing millions to even billions of short reads per run. 

Individually each read represents only a fraction of the 

original genome and provides no information in itself.  

However, sequencing reads are produced at a high coverage of 

the original genome such that many of these reads overlap 

with one another. Relationships between overlapping sequence 

reads assist the identification of fragments that are consecutive 

within the genome, allowing the recursive merging of these 

overlapping sequences until long stretches of contiguous 

genetic data, known as contigs, are recovered.  

The assembly of next generation sequencing data still remains 

a challenging task due to the massive size of read datasets, 

short read lengths, and underlying target sequence 

composition such as repeat content. The assembly of short 

reads produced by these devices is a critical and 

computationally intensive process. Fortunately, many steps of 

this process are good candidates for parallel computing.  The 

parallel implementation of the read overlap detection phase of 

assembly is relatively straightforward. High performance 

computing has been successfully applied to help reduce the 

computational burden of detecting read overlaps in large 

datasets [3]. However, straightforward parallel applications 

developed for overlap detection could achieve an unnecessary 

high degree of parallelism at the expense of significant energy 

consumption.  

In this paper we introduce an energy-aware scheduling (EAS) 

model that takes both deadline and energy usage requirements 

into consideration. We use this EAS model to run the overlap 

detection algorithm of a newly developed assembly program, 



called Merge and Traverse. We conduct multiple experiments 

to evaluate the computational resources needed to complete 

the overlapping process while balancing task deadline 

requirements with energy minimization. These experiments 

demonstrate the viability of the proposed energy-aware 

scheduling model and characterize the impact of various 

parameters on program runtime.  

 

II. ENERGY AWARE SCHEDULING 

Scheduling is a classical field with several interesting 

problems and results. Due to its wide range of applications, the 

scheduling problem has been attracting many researchers from 

a number of different fields. A scheduling problem emerges 

whenever there is a choice. This choice could be the order in 

which a number of tasks can be performed and/or in the 

assignment of those tasks for processing. In general, the 

scheduling problem assumes a set of resources and a set of 

consumers serviced by these resources according to a certain 

policy. Given a set of customers, resources, and constraints, a 

solution to the scheduling problem attempts to find an efficient 

policy (schedule) for customer access to resources while 

optimizing some desired performance measure such as the 

total service time (schedule length).   

 

 

 

 

 

Over the years several methods have been used to address the 

sequencing problem including complete enumeration, heuristic 

rules, integer programming, and sampling methods. It is clear 

that complete enumeration is impractical because the problem 

is exponential; hence optimal solutions cannot be obtained in 

real time [4, 5].  However, many heuristic methods have been 

successfully applied to most general cases of the scheduling 

problem. Such methods include traditional priority-based 

algorithms [6], task merging techniques [7], critical path 

heuristics [6, 8]. In addition, distributed algorithms have been 

designed to address different versions of the scheduling 

problem [9]. 

Energy aware scheduling is a special case of the general 

scheduling problem in which our scheduling policy is the 

optimization of energy in HPC systems or battery power in 

mobile devices. Minimizing the power utilization which is 

directly proportional to costs becomes the most important 

consideration in a system that is energy aware. At the same 

time this system must still meet other specified parameters 

such as task deadlines. 

Simply put, an energy aware scheduling system is a 

scheduling problem that assumes a set of resources and a set 

of consumers serviced by these resources according to an 

energy aware policy. Given a set of customers, resources, and 

constraints, a solution to the energy aware scheduling problem 

attempts to find an efficient policy for customer access to 

resources while optimizing battery power utilization.  

Accordingly, an energy aware scheduling system can be 

considered to consist of a set of consumers, a set of resources, 

and an energy aware scheduling policy as shown in figure one. 

Clearly, there is a fundamental similarity to scheduling 

problems regardless of the difference in the nature of the tasks 

and the environment. 

 

III. ASSEMBLY ALGOITHM OVERVIEW 

The Merge and Traverse assembler follows the traditional 
overlap-layout-consensus paradigm that has been successfully 
employed by various assemblers [3] [10] [11]. Our algorithm 
assembles reads into contigs in three stages: 1) overlap 
detection and alignment, 2) graph construction and 
manipulation, and 3) consensus sequence generation by 
multiple alignment [12].   
 

A. Overlap Detection and Alignment 

The Merge and Traverse algorithm uses short k-mer words to 
seed overlaps between reads. These short seed matches are 
extended into full alignments using dynamic programing. The 
overlap relationships found during the overlapping phase are 
placed into two categories by the assembly algorithm. The first 
type of overlap that the assembly algorithm considers is the 
dovetail overlap.  The dovetail overlap occurs when the reads 

align such that they form a suffix-prefix relationship as shown 
in figure two.  

The second type of overlap that the assembly algorithm 
considers is the containment overlap. The containment overlap 
occurs when the sequence of one read is fully contained in 
another read. For the purpose of simplifying the overlap graph 
in subsequent assembly phases, our algorithm disregards 
containment overlap relationships. Each read that is contained 
in one or more other reads is mapped to a suitable 
representative read using a clustering approach detailed in 
section four. 

B. Graph Construction and Manipulation 

The second phase of the assembly process builds an overlap 

graph using high quality dovetail overlaps between the 

 

Figure 1. Energy Aware Scheduling System 

 

Figure 2. Read Overlaps 

 



remaining representative reads. In this graph theoretic model, 

each node represents a sequencing read.  An edge joins two 

nodes if their corresponding reads overlap. 

After graph construction is complete, the algorithm preforms 

transitive reduction of the graph [13] revealing non-branching 

paths that likely correspond to unique regions of the target 

sequence being assembled. The algorithm identifies and 

merges these non-branching paths into super-nodes in the 

overlap graph. Remaining graph structural features such as 

dead-end paths and bubbles, where two paths start and end at a 

common node, are in many cases caused by sequencing error 

present in the read data set. The algorithm identifies this noise 

using a Dijkstra shortest path method.  Each dead-end path 

that is shorter than a user-provided threshold is removed from 

the overlap graph. For each bubble whose component paths 

are shorter than the user-provided threshold, the least covered 

path in the bubble is removed. After graph trimming is 

complete, the algorithm extracts all maximal non-branching 

paths from the graph for use in the consensus phase of the 

assembly process to construct contigs.   

 

C. Consensus Sequence Generation 

In the final consensus phase, progressive multiple alignment 

guided by the read path layout is used to determine contig 

consensus sequence.  

 

IV. READ OVERLAP DETECTION 

In this section, we provide a description of our three-step 

approach for read overlap detection. The first step orders a 

read dataset S in descending read length and partitions it into 

subsets. The second step maps each read that forms a 

containment overlap with one or more other reads to a suitable 

representative read following a hierarchical clustering scheme 

introduced by CD-Hit [13]. After clustering is complete, the 

final step identifies dovetail overlap relationships among the 

remaining representative reads.   

A. Read Preprocessing 

The containment clustering step of the overlap detection phase 

requires that the reads are sorted by descending length. First 

the reverse complements of an input read dataset R are 

generated to form the read set S = (R, R ). It then sorts S into 

descending order of length by a merge sort algorithm, and 

partitions S into n subsets = {S0, S1, … Sn-1} of size m, where n 

is specified by the user.  Each read subset Sk is sorted in 

descending read length and the subsets are ordered such that 

readLengths(S0) ≥ readLengths(S1)  ≥ … ≥  readLengths(Sn-1). 

B. Containment Clustering 

The initial read clustering step follows the greedy hierarchical 

clustering scheme introduced by the CD-hit algorithm [14]. 

The longest read becomes the first representative. It is used to 

search for containment overlaps among the remaining reads 

using the exact matching and alignment methods described in 

the section three. If a read forms a containment overlap with 

the current representative and its alignment meets minimum 

length and alignment identity requirements, it is mapped to 

that representative read.  The algorithm considers each read in 

the order of descending length. If a read is not already mapped 

to an existing representative, it becomes a new representative 

read and is used to query the remaining reads in the dataset for 

containment overlaps. A read that has been mapped to a 

previous representative read but forms a containment overlap 

with the current representative is remapped to the current 

representative if its alignment identity with the current 

representative is greater than its alignment identity with the 

previous representative.  After this process has completed, all 

read to representative mappings are recorded for use in the 

consensus phase of the assembly process. 

 

C. Dovetail Overlaps 

After containment clustering is complete, the remaining 

representative reads are used to query the read dataset for 

dovetail overlaps with other representative reads.  The exact 

matching and alignment methods of section three are used to 

locate dovetail overlap relationships. If a dovetail overlap 

meets minimum alignment length and alignment identity 

requirements, it is recorded for use in the graph construction 

phase of the assembly algorithm. 

 

 

Figure 3. The overlap graph. Reads map to nodes. 

Overlaps map to edges. Each edge is assigned a weight 

representing the length of the overlap shared between the 

reads. 

 

 

 

 

 

 

Figure 4.  Containment clustering. Reads two and four 

cluster to read one, and read five clusters to read three. 



D. Implementation Details 

The containment clustering and dovetail overlapping steps 

accept two read subsets Si and Sj as input. The subset Si is the 

query dataset and the subset Sj is the reference dataset, where i 

≤ j.   

To facilitate the identification of exact matches between reads, 

a suffix array constructed by Larsson and Sadakane’s 

algorithm [15] is used to index the reference dataset. In 

succession, each read in the query dataset is broken into all of 

its possible subwords of size k (denoted as k-mers). These k-

mers are used to query the suffix array for exact matches. If 

one or more exact matches are found between the query read 

and a reference read indexed by the suffix array, then both 

reads are passed to an alignment algorithm for evaluation. The 

k-mers shared by the reads are chained [16] and the Needle-

Wunsh algorithm [17] is used to align the regions between k-

mers and to align the beginning and end regions of the reads.   

After the alignment of the two reads is complete, the 

computed overlap is evaluated by its alignment length and 

alignment percent identity. If the overlap does not meet the 

user-provided minimums for these measurements, it is not 

included in subsequent steps of the assembly process.  

Since the containment clustering step is dependent on the read 

ordering, each subset Sj must be ran against each Si as a 

reference dataset, where i < j, before it can be used as a query 

dataset against any other read subset. The dovetail-overlapping 

step is not dependent on read ordering and can accept read 

subsets in any order.  
 

V. PARALLEL IMPLEMENTATION AND EAS MODEL 

The input read dataset S is partitioned into n subsets = {S0, S1, 

… Sn-1} of size m during the initial read sorting and 

preprocessing step. A master thread sends each unique subset 

combination of size two as input to worker processors running 

serial versions of the containment clustering and dovetail 

overlapping algorithms.  The master thread manages the 

execution order constraints of the containment clustering step.    

 

A. Solution Overview 

The EAS engine runs the pre-processor on the input fasta file, 

the output of which is the n-split read subsets. Let us assume 

that the large file has m sequences, and then each of the 

smaller files will contain (m/n) sequences in sorted order.  

The files created in the pre-processing step become inputs to 

the EAS engine. The EAS engine runs the alignment program 

in a 2-step process. The first step finds the containment 

overlaps and the second step determines the dovetails overlaps 

among the remaining representative reads. The containment 

part of the execution is not naively parallel; the execution of 

certain pairs of subsets (tasks) has to be done in order, only 

then can dependent subsets be processed. The main process 

flow is shown in figure six below. 

 

B. Containment Execution – Step 1 

The execution dependencies are shown in figure seven for the 

following set of containment tasks T = {(0, 0), (0, 1), (0, 2), 

(0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 

3), (3, 4), (4, 4)}, where each integer represents a read subset. 

The tasks along the diagonal (0, 0), (1, 1) (2, 2), (3, 3) and (4, 

4) are considered to be higher priority tasks because they have 

a greater number of child/dependent tasks. All other tasks have 

a normal priority in terms of execution. After a task gets 

released, meaning that all of its predecessors have been 

executed, it is sent to the EAS execution queue. When the task 

has completed executing, the EAS engine checks to see if any 

dependent tasks can be released for execution.  

Now let us take a look at the example where we have five read 

subsets. When the task (0, 0) is complete, it releases all the 

tasks in that row which are tasks (0, 1), (0, 2), (0, 3) and (0, 4). 

It cannot release (1, 1) because task (1, 1) still has another 

dependency on (0, 1). When (0, 1) is completed, it will release 

task (1, 1). Completion of task (1, 1) will flag (1, 2), (1, 3), 

and (1, 4) but they will only be released when both (1, 1) and 

the tasks above them namely (0, 2), (0, 3), and (0, 4) have 

completed execution. This will continue until all tasks are 

executed. The last task to be executed will be task (4, 4) in our 

example. Note that the total number of tasks executed would 

be fifteen. This can be calculated easily using equation one. 

We would like to point out that the containment phase is 

Pre-processing
Large input 

fasta file

n_seq.dat

1_seq.dat

0_seq.dat

Split smaller 

.dat files

 

Figure 5. Pre-processing step 
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Figure 6. Process flow diagram 

 



bounded by the number of files (in this case five). We cannot 

use more than five nodes at any given time due to task 

dependencies even though we have a total of fifteen 

containment tasks. 

 

C. Dovetail Execution – Step 2 

The execution dependencies of the dovetail tasks are much 

more straightforward than those for the containment tasks. The 

dovetail tasks do not have any dependencies on each other and 

hence can be run in a naively parallel way, allowing us to use 

as many processors as possible. Continuing with our previous 

example with fifteen tasks, we could execute (0, 0), (0, 1), (0, 

2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), 

(3, 3), (3, 4), (4, 4) all at the same time during the dovetail 

phase. 

The total number of tasks that need to be executed in each of 

the above steps (containment and dovetail steps) is given by 

the equation below, where n is the number of read subsets and 

T is the total number of tasks. 

  
       

 
                                   

 

VI. RESULTS 

We downloaded Escherichia coli W reads produced by the 454 

Titanium technology from the NCBI [18] sequence read 

archive (accession no. SRR060736 and SRR060737, made 

public by JCVI). The sequences were trimmed to remove 

adaptors. The final result was 337,294 trimmed reads.  For our 

experiment in the pre-processing step we decided to split these 

into 16,866 sequence reads per file, i.e. read subset (except for 

the last file which contained 16,814 reads). This resulted in 40 

files and a total of 674,588 reads. (The preprocessing step 

generates the reverse complement of each read.) We then used 

the EAS engine to run the assembly algorithm using 1 to 31 

nodes. For our experiments we used the HPC environments 

available at UNO (University of Nebraska at Omaha). We 

initially start out with the Blackforest cluster (16 nodes) [19] 

and then move to a true commercial strength HPC named 

Firefly cluster (1100 nodes) at the Holland Computing Center 

[20]. 

Firefly Cluster: The firefly cluster is a large commercial 

strength cluster at the Holland Computing Center which 

comprises of 1,151-node supercomputer cluster of Dell 

SC1435 servers. Each node contains two sockets, and each 

socket holds a quad-core (four 64-bit AMD Opteron 2.2 GHz 

processors). The computational network utilizes an 800 

MB/sec Infiniband interconnect. Each node has its own 8 GB 

of memory, and 73 GB of disk space.  

Chart (a) in figure 8 shows the execution time of the algorithm 

in seconds versus the number of nodes used for each run. It 

shows that after 11 to 12 nodes we do not see any significant 

performance gain. Along with the total execution time, we 

captured the average execution time per worker node and the 

overhead. We find that as we increase the number of nodes the 

overhead curve follows the execution time curve. It is 

important to note that in a HPC a significant portion of the 

master process’s work is distributing the tasks and managing 

the task dependency among the worker processes along with 

handling of the communication between master and worker 

processes. This is clearly depicted by chart (b) in figure 8. 

It is important to note that given the nature of the task 

dependencies in the containment phase not all nodes are 

working all the time, and hence we see a smaller overall curve 

for the average worker time per node. This leads us to ask the 

question, “How parallelizable is the program?” For the 

purpose of answering this question we plotted the program 

speedup against the number of nodes and integrated this curve 

with a plot of Amdahl’s law in chart (c) in figure 8. Amdahl's 

law is defined by the formula:  
 

       
 
 

 

As N → ∞, the maximum speedup tends to         . In 

practice, performance/price falls rapidly as N is increased once 

there is even a small component of (  − P). A great part of the 

craft of parallel programming consists of attempting to reduce 

(1 – P) to the smallest possible value. 

We can conclude that the overlap detection algorithm of the 

Merge and Traverse assembler has a speedup between 20 - 25 

times (which is between 90% - 95% parallelizable). 

Next we set up experiments to see if the EAS engine would be 

able to dynamically adjust the number of nodes to meet a 

given deadline. We used four groups of read datasets 

generated from SRR060736 and SRR060737. Each group was 

partitioned into a different number of files as shown in table 

one. 

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

 

Figure 7. Execution dependencies of containment tasks 
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Each group of files was ran against five different deadlines 

(30, 60, 90, 120, and 150 minutes). Each of these jobs was 

assigned a starting number of nodes by the EAS engine based 

on the run profile/speedup curve. As the tasks were completed, 

variances between EET (Expected Execution Time) and AET 

(Actual Execution Time) resulted in the EAS engine adjusting 

the number of nodes up (+N) or down (–N), if there were 

equal number of (+N) and (–N) adjustments it resulted in a net 

(0) adjustment and finally the scenario of no adjustments 

being made (–). The experimental results showed that the EAS 

engine was able to dynamically adjust nodes to minimize 

energy utilized while meeting the deadlines. 

 

VII. CONCLUSIONS 

Based on the results we can clearly observe that given a 

deadline we can choose the appropriate number of nodes to 

run the overlap detection phase of the assembler on based on 

our new understanding of the run-profile we just produced. 

This will allow us to apportion just enough nodes to meet the 

deadline thus maximizing the objective of performance with 

minimum energy utilization. We also observed that with a 

smaller number of nodes we have larger gains in performance 

and above a certain number of nodes the performance gain is 

only modest at best. In fact as we add additional nodes our 

communication costs and related overhead is higher.  

Clearly different bioinformatics applications and algorithms 

will have different run profiles and understanding each one of 

them will allow us to best assign the appropriate number of 

nodes to meet a given deadline. It was also important to see 

how the number of read subsets impacted the 

performance/energy criterion. Our experiments suggest a bowl 

shaped curve when we varied the number of files for the same 

number of nodes. Clearly there must be some optimum value 

for the number of files for each set.  

This paper highlights the importance of understanding the 

degree of parallelism for the program, which is done by 

establishing the run profile/speedup curve. The EAS engine 

uses the knowledge from the run profile to make intelligent 

and dynamic decisions about number of nodes to use to 

minimize energy utilization and still provide necessary 

Table 1. Read subset groups used for analysis 

Group Number 

of Files 

Number of 

Sequences 

G1 5 84330 

G2 10 168660 

G3 15 337320 

G4 20 674588 

 

 

 

Figure 9. EAS engine - dynamic node adjustments 

 

 

 

 

 

Figure 8.  Chart (a): EAS - Execution time v/s Nodes. 

Chart (b): Execution time/Overhead v/s nodes. Chart (c): 

Speedup curve for the assembly program 

 



performance. Clearly it is no longer sufficient to simply run a 

program in a HPC environment. It is important and essential to 

understand the data, its characteristics, and the application 

domain to build a parallel program that is energy aware. 

In designing these experiments, we have several parameters 

we could study and the relationship between them. These 

parameters are (1) Number of files; (2) Number of sequences 

per file; (3) Number of nodes used and (4) Average sequence 

length. In this paper we have only looked at number of nodes 

used as a parameter for our experimental design. In the future 

we plan to investigate how adjusting the different tuning 

parameters such as number of files, number of sequences per 

file, number of nodes impacts the performance and energy 

efficiency. We also plan on including the pre-processing step 

and final assembly as part of the EAS processing. Our main 

motivation is to move this from a simple speedup to the realm 

of energy awareness. Our EAS model for the purposes of the 

experiments conducted calculated energy as a function of 

resources used in this case number of nodes. The energy 

function could be made more complex; we leave that for a 

future study. 
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