
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

11-2004

A Maximal Chain Approach for Scheduling Tasks
in a Multiprocessor Systems
Sachin Pawaskar
University of Nebraska at Omaha, spawaskar@unomaha.edu

Hesham Ali
University of Nebraska at Omaha, hali@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Pawaskar, Sachin and Ali, Hesham, "A Maximal Chain Approach for Scheduling Tasks in a Multiprocessor Systems" (2004). Computer
Science Faculty Proceedings & Presentations. 47.
https://digitalcommons.unomaha.edu/compsicfacproc/47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232759664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/47?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages

A MAXIMAL CHAIN APPROACH FOR SCHEDULING TASKS IN A

MULTIPROCESSOR SYSTEM

Sachin Pawaskar and Hesham H. Ali

Department of Computer Science

University of Nebraska at Omaha

Omaha, NE 68182

sachinpawaskar@msn.com | hesham@unomaha.edu

ABSTRACT

Scheduling dependent tasks is one of the most challenging

versions of the scheduling problem in parallel and

distributed systems. It is known to be computationally

intractable in its general form as well as several restricted

cases. As a result, researchers have studied restricted

forms of the problem by constraining either the task graph

representing the parallel tasks or the computer model.

Also, in an attempt to solve the problem in the general

case, a number of heuristics have been developed. In this

paper, we study the scheduling problem for a fixed

number of processors m. In the proposed work, we

approach the problem by recursively reducing the m-

processor scheduling to (m-1)-processor scheduling until

we apply the optimal two-processor scheduling algorithm

when m equals two. This is accomplished by identifying a

maximal chain C in the task graph G and merging the (m-

1) processor scheduling of (G-C) and the 1-processor

scheduling of C. A number of experiments were

conducted to compare the suggested approach with the

standard list-scheduling algorithm. Based on the outcome

of the conducted experiments, the proposed algorithms

outperformed or matched the performance of the list

heuristic almost all the time.

KEY WORDS

Task Scheduling, Heuristics, Parallel Processing, Optimal

algorithms.

1. Introduction

Scheduling is a classical field with several interesting

problems and results. Due to its wide range of

applications, the scheduling problem has been attracting

many researchers from a number of fields. A scheduling

problem emerges whenever there is a choice. The choice

could be the order in which a number of tasks can be

performed, and/or in the assignment of tasks to servers for

processing. A problem may involve jobs that need to be

processed in a manufacturing plant, bank customers

waiting to be served by tellers, aircrafts waiting for

landing clearances, or program tasks to be run on a

parallel or a distributed computer. Clearly, there is a

fundamental similarity to scheduling problems regardless

of the difference in the nature of the tasks and the

environment.

 The scheduling problem has been described in a

number of different ways in different fields. The classical

problem of job sequencing in production management has

influenced most of what has been written about this

problem. Most manufacturing processes involve several

operations to transform raw material into a finished

product. The problem is to determine some sequences of

these operations that are preferred according to certain

(e.g. economic) criteria. The problem of discovering these

preferred sequences is referred to as the sequencing

problem. Over the years, several methods have been used

to deal with the sequencing problem such as complete

enumeration, heuristic rules, integer programming, and

sampling methods. It is clear that complete enumeration is

impractical because the problem is exponential, which

means that it requires too much time, sometimes years of

computation time would be required even for a small

number of tasks. Hence optimal solutions cannot be

obtained in real time [1,2]. However, many heuristic

methods have been used to deal with most general case of

the problem. Such methods include traditional priority-

based algorithms [3], task merging techniques [4], critical

path heuristics [3,5]. In addition, distributed algorithms

have been designed to address different versions of the

scheduling problem [6].

In general, the scheduling problem assumes a set of

resources and a set of consumers serviced by these

resources according to a certain policy. Based on the

nature of and the constraints on the consumers and the

resources, the problem is to find an efficient policy

(schedule) for managing the access to and the use of the

resources by various consumers to optimize some desired

performance measure such as the total service time

(schedule length). Accordingly, a scheduling system can

be considered as consisting of a set of consumers, a set of

resources, and a scheduling policy as shown in Figure 1.

Figure 1: The Scheduling System

Examples of consumers are a task in a program, a job in a

factory, or a customer in a bank. Examples of resources

are a processing element in a computer system, a machine

mailto:sachinpawaskar@msn.com
mailto:hesham@unomaha.edu

in a factory, or a teller in a bank. First-come-first-served

is an example of a scheduling policy. Scheduling policy

performance varies with different circumstances. While

first-come-first-served may be appropriate in a bank

environment, it may not necessarily be the best policy to

be applied to jobs on a factory floor. Performance and

efficiency are two parameters used to evaluate a

scheduling system. It’s customary to evaluate a

scheduling system based on the goodness of the produced

schedule and the efficiency of the policy.

In this paper, we are concerned with scheduling

dependent program tasks on parallel and distributed

systems. The tasks are the consumers and will be

represented using directed graphs called task graphs. Task

graphs are used to represent precedence relationships

between tasks. The processing elements are the resources

and their interconnection networks will be represented

using undirected graphs. The “scheduler” generates a

schedule using a timing diagram called the Gantt chart.

The scheduler performs allocation, which means it will

tell which tasks go on which processor, but does not give

their order. Whereas “scheduling” will perform allocation

as well as provide an order for the tasks on the individual

processors. The Gantt chart illustrates the allocation of the

parallel program tasks onto the target machine processors

and their execution order. A Gantt chart consists of a list

of all processors in the target machine and, for each

processor, a list of all tasks allocated to that processor

ordered by their execution time. The term tasks, nodes

and jobs will be regarded as equivalent to the term

“consumers”. Also, resources may be referred to as

processors or processing elements.

There are four components in any scheduling system:

the target machine, the parallel tasks, the generated

schedule, and the performance criterion. In our task-

scheduling model we will ignore the communication

delays and consider all tasks to have the same unit

execution time. Also most of the time, we deal with the

same machine, i.e. multiple processors on the same

machine. Nowadays we have such similar environments

that it leads to almost same communication delay times.

We will discuss and define the scheduling problem in

more detail later in the paper.

2. Basic Terminology & Problem Definition
In this section we define a few terms that will be used in

the later sections of this paper. We will also define the

scheduling problem in its most general form and then we

will study some of the special cases of this problem and

some of the classical algorithms that have been published

to solve these special cases.

Task Graph: A task graph G=(T,A) is a directed acyclic

graph. For a pair of tasks ti,tj T, a directed edge (i, j) A

between the two tasks specifies that ti must be completed

before tj can begin. Figure 2 shows a task graph.

Density or Sparseness: The density or sparseness of a

graph G=(T,A) is computed as a ratio of the number of

edges |A| in the graph as a percentage to the maximum

number of edges that graph can have which is of order (|T|

* |T-1|) / 2. So a graph with density of 0.5 will have half

the number of maximum edges possible for that graph.

Task Level: Let the level of a node x in a task graph be

the maximum number of nodes (including x) on any path

from x to a terminal task. In a tree, there is exactly one

such path. A terminal task is at level 1. Given the task

graph in Figure 2, we can say that nodes 1,2 and 3 are at

level 1, 4 and 5 are at level 2, nodes 6,7,8,9 and 10 are at

level 3, and so on.

Maximal Chain: Given a task graph G = (T, A), let S be

a subset of tasks in G from the root node to a terminal

node in sequence; then we say that S is a maximal chain

in G if there does not exist another chain S’ in G such that

S is a subset of S’. A maximum chain is the maximal

chain with the higher number of tasks. Given the task

graph in Figure 2, a maximum chain consists of tasks 15,

14, 12, 11, 8, 4 and 1. Also, tasks 10, 5 and 3 form a

maximal chain.

Figure 2: A Task graph

Schedule Length or Schedule Time: Given a task graph

G = (T,A) and its schedule on m processors, f, the length

of schedule f of G is the maximum finishing time of any

task in G.

For the rest of the paper, we assume that the problem is

deterministic in the sense that all information governing

the scheduling decisions are assumed to be known in

advance. In particular, the task graph representing the

parallel program and the target machine is assumed to be

available before the program starts execution. As in the

standard scheduling system, our system has four

components: the target machine, the parallel tasks

(represented as a task graph), the generated schedule and

the performance criterion. The minimization of the

schedule length is the performance criterion considered in

our scheduling model.

In general, the time complexity of an algorithm refers

to its execution time as a function of its input. We specify

the complexity of a scheduling algorithm as a function of

the number of tasks and the number of processors. A

scheduling algorithm whose time complexity is bounded

by a polynomial is called a polynomial-time algorithm.

An optimal algorithm is considered to be efficient if it

runs in polynomial time. Inefficient algorithms are those,

which require a search of the whole enumerated space and

have an exponential time complexity. The problem of

scheduling parallel programs tasks on multiprocessor

systems is known to be NP-complete in its general form.

There are few known polynomial-time scheduling

algorithms even when severe restrictions are placed on the

task graph representing the program and the parallel

processor models. In general we can say classify the

known results as follows:

1) The NP-Completeness of several versions of the

scheduling problems [1,3].

2) Optimal “efficient” algorithms, for solving restricted

versions of the scheduling problems [2,3,8,9,10].

3) Heuristic algorithms for tackling more general cases

of the scheduling problems [3,4,5,7].

Table 1 summarizes the complexity of several versions of

the scheduling problem when the target machine is fully

connected. Note that n is the number of tasks and e is the

number of arcs in the task graph. Note also that the results

in Table 1 are obtained when communication costs are not

considered. Forest and interval-order are special classes of

task graphs. For more detailed definition and the formal

discussion of NP-completeness please refer [1,3].

Table 1: Complexity comparison of scheduling problem

As mentioned earlier a number of scheduling heuristic

have been developed to deal with many versions of the

scheduling problem. Among the developed heuristics, List

scheduling has been used often due to its simplicity and

over all good results. List scheduling is a class of

scheduling heuristics in which tasks are assigned

priorities and placed in a list ordered in decreasing

magnitude of priority. Whenever tasks contend for

processors, the selection of tasks to be immediately

processed is done on the basis of priority with the higher-

priority tasks being assigned processors first. If there is

more than one task of a given priority, ties are broken

randomly. In this paper, we will use the list scheduling

heuristic to access the goodness of the proposed

algorithm.

3. Proposed Solution

In this section, we will study the proposed maximal chain

scheduling heuristic. As mentioned previously, there are

many heuristic algorithms developed for dealing with the

scheduling problem. Most of these heuristics perform well

in some cases while performing poorly in others. The

proposed scheduling algorithm employs a theoretical

concept in dealing with the scheduling problem by using

one of the few known optimal algorithms namely the 2-

procesor scheduling algorithm. The algorithm selects a

special maximal chain from the input task graph. Using

the selected chain, the n-processor scheduling problem is

reduced to two scheduling problems: 1) An (n-1)-

processor scheduling problem, and 2) A simple1-

processor scheduling problem. The maximal chain tasks

are scheduled on 1-processor (P1) and the remaining tasks

from the task graph are scheduled using the same

algorithm to the remaining (n-1) processors. The two

assignments, resulting from solving the two scheduling

problems, are then merged together to satisfy the

precedence relations and perform any needed

reassignments of tasks for optimization purposes. The

partitioning process is repeated recursively until we reach

the base case of 2-processor scheduling for which we

have well know optimal algorithm that we can apply as

we discussed in the previous section.

Figure 3: The Proposed Approach

The motivation for this approach stemmed from the

fact that well-known polynomial (and optimal) algorithms

are known for special cases of the scheduling problem.

The algorithm uses a maximal clique since it does

provides a lower bound on the schedule. The process of

merging the (n-1) processor scheduling with the maximal

chain is rather non-trivial since it needs to resolve any

potential violations of the precedence relations. After

merging the two schedules and resolving any violations,

an optimizer/compacting routine is called to reduce the

length of the obtained feasible schedule by moving tasks

to appropriate slots without violating the task

dependencies. To assess the performance of the proposed

algorithm, we also implemented a basic standard well-

known scheduling heuristic. We have selected the List

scheduling heuristic for this purpose.

Task Graph Task

Execution

Time

Number of

Processors

Complexity

Tree Identical Arbitrary O(n)

Interval order Identical Arbitrary O(n)

Arbitrary Identical 2 O(e + n(n))

Arbitrary Identical Arbitrary NP-complete

Arbitrary 1 or 2 time

units
 2 NP-complete

Opposing

forest

Identical Arbitrary NP-complete

Interval order Arbitrary  2 NP-complete

Arbitrary Arbitrary Arbitrary NP-complete

Our model of the problem is deterministic in the

sense that all information governing the scheduling

decisions are assumed to be known in advance. In

particular, the task graph representing the parallel

program and the target machine is assumed to be

available before the program starts execution. The target

machine is composed of m identical fully connected

processors. The input tasks are assumed to require the

same amount of computation time and communication

overhead among tasks assigned to different processors is

ignored. The main objective function is to minimize the

time of completion of the tasks to be scheduled; in other

words the shortest schedule.

 The details of the algorithm are given below. The basic

algorithm consists of 3 different steps, the maximal chain

algorithm, the 2-processor algorithm and the Merge

routine which not only merges the maximal chain and the

(n-1) processor schedule, but also maintains the feasibility

of the schedule based on the task graph precedence of the

tasks and optimizes the schedule wherever possible.

The Algorithm

Given a Task Graph G (T, A) where T is the number of

tasks and A is the number of directed edges between the

nodes. Also N is the number of processors.

Step 1:
If N = 2 go to step 2.

a) Given the Graph G = (T, A), assign a priority (label)

to each task in t  T (Perform Algorithm

Assign_Labels)

b) Find the Maximal Chain C for this task graph G

(Perform Algorithm Generate_Maximal_Chain)

c) Generate the sub-graph Gs = G – C

d) Repeat Step 1, with G = Gs and N = N – 1;

e) Merge the Maximal chain C and the schedule S for

graph Gs for N processors. (Perform Algorithm

Merge_Schedules)

Step 2:

Given task graph G’ and N’ = 2. Apply any optimal 2-

processor scheduling algorithm (such as Coffman and

Graham algorithm), which is as follows:

a) Assign lexicographical labels to all the tasks.

(Perform Algorithm Assign_Labels)

b) Use the list (tn, tn-1 … t1) where for all i, 1  i  n,

L(ti) = i to schedule the tasks.

As mentioned earlier, the maximal chain scheduling

heuristic that we propose consists of three main sub-

algorithms, which are as follows:

1) The generation of the maximal chain

2) The optimal 2-processor algorithm

3) The Merge routine, which not only merges the

maximal chain and the (n-1) processor schedule, but also

maintains the feasibility of the schedule based on the task

graph precedence of the tasks and optimizes the schedule

wherever possible.

 The approach to the maximal chain scheduling

heuristic algorithm is to assign labels giving priority to

tasks, and then a list for scheduling the task graph is

constructed from the labels. Labels from the set

{1,2,…,n} are assigned to each task in the task graph by

the function L(*) as explained below.

Algorithm (Assign_Labels)
1) Assign the number 1 to one of the terminal tasks.

2) Let labels 1, 2… j – 1 be assigned. Let S be the set of

unassigned tasks with no unlabelled successors.

a. We next select an element of S to be

assigned label j.

b. For each node x in S, define L(x) as follows:

Let y1, y2…yk be the immediate successors

of x. Then L(x) is the decreasing sequence

of integers formed by ordering the set

{L(y1), L(y2)…L(yk)}.

c. Let x be an element of S such that  x’ in S,

L(x)  L(x’) (lexicographically).

d. Define L(x) to be j.

Once we have assigned a priority to all the tasks, generate

the maximal chain for the task graph. This is done as

explained below.

Algorithm (Generate_Maximal_Chain)
1) Let Maximal chain be C = {null},

2) Pick the task ti with the highest label. (This will be a

task, which will have no predecessors.). The maximal

chain C = C {ti}.

3) From the list of successors tasks S’ of this task ti find

the task with the next highest label. Let this be task tj.

With this task tj repeat from step 2 until we have a

task, which has no successors.

Once we break down the problem into 1 + (n-1)

processors, eventually we will reach 2-processors, for

which we use the optimal Coffman and Graham algorithm

presented in the previous chapter. Now given the maximal

chain and the (n-1) processor schedule, all that needs to

be done is to merge them maintaining the feasibility of the

schedule based on the precedence of the tasks in the task

graph and optimizes the schedule wherever possible. We

present the Merge routine below.

Algorithm (Merge_Schedules)

1) Let C be the maximal chain and S be the (n-1)

processor schedule.

2) Assign the tasks in the maximal chain to processor P1

and the tasks of the (n-1) processor schedule to

processors P2 to Pn.

3) We examine every task from the beginning of the

schedule. If a task violates any of the precedence

relations of the task graph G then move that task ti

and the tasks below it on that processor Px down the

below the task that it violates tj. Note that the tasks i

and j will be on different processors, because within

the processor they will already be satisfying the

precedence rules.

4) After all the violations are removed, we examine

each idle time slot on each of the processors P1 to Pn

from the beginning in sequence. If we find an idle

slot, we try to find a task below it which can be

moved to the idle time slot without violating any of

the precedence relations.

Example

To understand the maximal chain scheduling heuristic

algorithm, let us examine the task graph as shown in

Figure 4. We first assign labels to each of the tasks in the

task graph, which becomes the priority of that task. Based

on the priority of the tasks we first find the maximal chain

for that graph.

Figure 4: A task graph

For the maximal chain (such as [14, 12, 7, 3, 1] in Figure

5) we take the remaining tasks (13, 11, 10, 9, 8, 6, 5, 4, 2,

1) and create a sub-graph G’.

Figure 5: Maximal chain for task graph in Figure 4

We perform the optimal 2-processor scheduling algorithm

on it. We then assign the tasks on the maximal chain to

the third processor and then save the schedule length as

shown in Figure 6. This is the first part of our Merge

process. We now need to formally check this schedule

for violations to make sure that the schedule is feasible.

P1 P2 P3

14 13 11

12 10 9

7 8 5

3 4 6

1 2

Figure 6: Simple Merge of maximal chain and 2-

processor schedule

As we run this schedule through the feasibility check,

from the top of the schedule to the bottom of the schedule,

we find that task 3 cannot be run in parallel with task 6,

because task 3 is a successor to task 6 or in other words

task 6 precedes task 3, hence there is an obvious violation.

We move all the tasks from 3 onwards one time slot down

to fix this violation, which gives us the schedule as shown

in Figure 7, which is an optimal feasible schedule.

P1 P2 P3

14 13 11

12 10 9

7 8 5

 4 6

3 2

1

Figure 7: Schedule after Merge and Check

Violations/Feasibility.

In this example based on our algorithm, we will now have

a feasible schedule. We will run this through our optimize

routine, which will find the first idle time slot 4 for

processor P1. We will find that we can put task 2 which is

below it in time slot 5 on processor P2 in this time slot

without violating the precedence relationships of the task

graph, hence our final schedule will be as shown in Figure

8. This does not improve the schedule length in this case,

but will in certain other cases.

P1 P2 P3
14 13 11

12 10 9

7 8 5

2 4 6

3

1

Figure 8: Schedule after Merge and Check

Violation/Feasibility and Optimization.

The Optimal maximal chains Conjecture

The underlying principle behind the optimal 2-processor

scheduling algorithm can be viewed as identifying the

maximal chain (clique) of tasks whose removal

guarantees the minimum 1-processor scheduling of the

remaining tasks. Then, an optimal 2-processor schedule

can be obtained by merging the chain with the minimum

1-processor schedule of the remaining tasks. In this case,

identifying such a chain is easy since it has to be a

maximum chain or a chain with the maximum number of

tasks. If we take this principle one step further, it can

conjectured that for a set of tasks T, if we identify a

maximal chain C in an n-processor scheduling problem

whose removal results in a minimum (n-1)-processor

scheduling of the remaining tasks T-C, then an optimal n-

processor schedule can be obtained by merging C with the

optimal (n-1)-processor schedule of the remaining tasks.

This approach would require a) finding such a clique; and

b) design an optimal merge algorithm. We have tested this

concept by generating all maximal chains and trying

several merge algorithms. We used the “All maximal

chains” routine for testing purposes on graphs with small

number of nodes. Applying this approach on many

random task graphs produced the optimal schedule almost

all the times. Clearly, generating all maximal chains will

strip the approach its desired polynomial complexity. We

are currently working on developing a polynomial

algorithm to find such a clique and on developing a

refined merge algorithm [11]. The above conjecture

provided the basic foundation for the developed heuristic

whose results are reported in the next section.

4. Implementation and Results

Various experiments were run on the maximal scheduling

heuristics and the list scheduling heuristic using different

graphs. The two most important properties of the graphs

that the algorithms were tested against were:

a) Number of nodes in the graph, and

b) The Density/Sparseness of the graph

The density of the graph varies from 0.1 to 0.9, it implies

that the graphs having 0.1 densities would have fewer

edges and hence less density and as the density increases

the number of edges increase and so the density of the

graph increases. It also implies that the graph with the

lower density will most likely take less scheduling time as

compared with a graph of higher density. We tried all

densities, but it is important to note that in most real

situations we will encounter graphs with lower densities,

in which case our algorithm produces better results. Also

note that the same task graphs were used for comparing

our algorithm with the list-scheduling algorithm.

We ran different experiments as explained below:

1) Experiment-1 was run on graphs with 25, 35, 40, 50,

60, 70, 80, 90, 100, 200, 300 and 400 nodes with densities

varying from 0.1 to 0.8. Also it was noted that for graphs

with about 35 nodes and a medium density of 0.4, 0.5 the

optimal algorithm took too long to run (more that 2

hours). Hence the optimal algorithm could not be run on

all the graphs especially those with higher number of

nodes having medium to high density.

The naming convention used for the various graphs in this

experiments is as follows Gaaa_b, where aaa denotes the

number of nodes in the graph and b denotes the density of

the graph. So graph G200_4 would have 200 nodes and a

density of 0.4.

2) Experiment-2 was run on graphs with 25, 100, 200,

300, 400 nodes with densities varying from 0.1 to 0.8. We

generated 80 graphs for each of the above-mentioned

number of nodes. 10 graphs were generated for each

density/sparseness between 0.1 and 0.8, hence the 80

graphs. This experiment was conducted on a total of 400

graphs having high number of nodes. We divide the tasks

graphs in this experiment into small graphs (25 nodes),

medium graphs (100 – 200 nodes) and large graphs (300 –

400 nodes).

The naming convention used for the various graphs in this

experiments-2 is as follows Gaaa_b_c, where aaa denotes

the number of nodes in the graph and b denotes the

density of the graph and c denotes the graph sequence. So

graph G200_4_1 would have 200 nodes and a density of

0.4 and would be the first graph in that series.

All the graphs used in these experiments were randomly

generated by a random graph generator program, which

was specifically written for this purpose.

It must be noted that the graphs generated had transitive

precedence edges, which implies if A  B and B  C,

then even though by transitivity it implies that A  C, the

random graph generator, does not take this into account

and may possibly create such transitive edges. The reason

this is important is that this increases the density of the

graphs generated.

The graphs used in the experiments are not

transitively reduced graphs. We would also like to define

the density of the graphs used in the experiments as the

ratio of the number of edges |E| in the graph as a

percentage to the maximum number of edges that the

graph can have in our case (n*(n-1)) / 2 (because we do

not consider nodes having edges on to themselves), where

n is the number of nodes in the graph. The graphs that we

generated have more density because these graphs are not

transitively reduced.

G100 - 3 processors

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Density

S
c
h

e
d

u
le

 t
im

e
Maximal List

 Figure 9. Graphs with 100 nodes on 3 processors

From the above experiments and results we can draw the

following:

1) The maximal chain scheduling heuristic performs

slightly better that the List scheduling when the

density/sparseness of the graphs is between 0.1 and

0.4 for most of the cases.

2) The maximal chain scheduling heuristic performs and

the List scheduling heuristic has the same

performance when the density/sparseness of the

graphs is greater that 0.4 for most of the cases.

G100 - 4 processor

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Density

S
c
h

e
d

u
le

 T
im

e
Maximal List

Figure 10. Graphs with 100 nodes on 4 processors

From the above experiments and results we can draw the

following:

1) The maximal chain scheduling heuristic performs

slightly better that the List scheduling when the

density/sparseness of the graphs is between 0.1 and

0.3 for most of the cases.

2) The maximal chain scheduling heuristic performs and

the List scheduling heuristic has the same

performance when the density/sparseness of the

graphs is greater that 0.3 for most of the cases.

G100 - 5 processors

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Density

S
c
h

e
d

u
le

 T
im

e

Maximal List

Figure 11. Graphs with 100 nodes on 5 processors

From the above experiments and results we can draw the

following:

1) The maximal chain scheduling heuristic performs

slightly better that the List scheduling when the

density/sparseness of the graphs is between 0.1 and

0.2 for most of the cases.

2) The maximal chain scheduling heuristic performs and

the List scheduling heuristic has the same

performance when the density/sparseness of the

graphs is greater that 0.2 for most of the cases.

From the above experiments and results we can draw the

following:

G400 - 3 processors

0

50

100

150

200

250

300

350

400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Density

S
c
h

e
d

u
le

 T
im

e

Maximal List

Figure 12. Graphs with 400 nodes on 3 processors

1) The maximal chain scheduling heuristic performs

slightly better that the List scheduling when the

density/sparseness of the graphs is between 0.1 and

0.4 for most of the cases.

2) The maximal chain scheduling heuristic performs and

the List scheduling heuristic has the same

performance when the density/sparseness of the

graphs is greater that 0.4 for most of the cases.

G400 - 4 processors

0

50

100

150

200

250

300

350

400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Density

S
c
h

e
d

u
le

 T
im

e

Maximal List

Figure 13. Graphs with 400 nodes on 4 processors

From the above experiments and results we can draw the

following:

1) The maximal chain scheduling heuristic performs

slightly better that the List scheduling when the

density/sparseness of the graphs is between 0.1 and

0.3 for most of the cases.

2) The maximal chain scheduling heuristic performs and

the List scheduling heuristic has the same

performance when the density/sparseness of the

graphs is greater that 0.3 for most of the cases.

Overall, from the above experiments, we can conclude the

following:

a) It can be concluded that as the number of processors

increases for graphs between density of 0.1 and 0.4, the

schedule length reduces slightly. The percentage of

reduction in schedule length decreases as the number of

processors increases from 3 to 5.

b) It can also be concluded that as the number of

processors increases for graphs with density greater than

0.4, the schedule length does not reduce at all for most

graphs. This implies that as the density of the graphs

increases, adding more processors will not help to reduce

the schedule length.

G25 - 3 processors

0

5

10

15

20

25

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Density

S
c
h

e
d

u
le

 T
im

e

Maximal List Optimal

Figure 14. Graphs with 25 nodes on 3 processors (with

optimal algorithm)

From the above experiments and results we can draw the

following:

1) The optimal all chain scheduling heuristic performs

better or equal to than the List scheduling and the

Maximal chain scheduling heuristic in most cases.

2) The optimal all chains algorithm, Maximal chain

scheduling heuristic performs and the List scheduling

heuristic has the same performance when the

density/sparseness of the graphs is greater that 0.4 for

most of the cases.

5. Conclusions
In this paper we present a novel approach for addressing

the n-processor scheduling problem by recursively

reducing the problem to the polynomial problem of

finding a 2-procesor schedule. We compare the

performance of the proposed algorithm, Maximal-Chain

scheduling, with the performance of the standard List

scheduling algorithm. The introduced approach

outperforms the List scheduling algorithm when the

density of the graphs is between 0.1 and 0.4 for most of

the cases. But for density of the graphs greater that 0.5

both of them have the same performance.

For graphs with small number of nodes (less than 35

nodes), both the maximal chain scheduling heuristic and

the List scheduling heuristic gave solutions, which were

close to the optimal solution and differed only by 1 or 2

time units. The All maximal chain scheduling algorithm

performed slightly better or the same as the List

scheduling

It can be concluded that when the density of the

graph increases and the number of processors is

increased, the scheduling time is not affected

significantly. In fact when the density is 0.4 or greater

most of the times they produce the same scheduling time

as the 3-processor schedule. Also the List scheduling

heuristic and the Maximal chain heuristic have the same

performance for graphs with higher density and number

of processors greater than 3.

Future research efforts could further investigate

enhancements to the Merge routine for merging the

maximal chain and the (n-1) processor schedule. One

could investigate new approaches for the Merge routine to

always obtain an optimal solution. One could also

investigate the effect of execution time and

communication costs for the proposed maximal chain

scheduling heuristic, which is based on a recursive

approach.

6. References:

[1] J. Ullman, NP-complete scheduling problems, Journal

of Computer and System Sciences, 10, 384-393, 1975.

[2] E. G. Coffman, R. L. Graham, J. L. Bruno, W. H.

Kohler, R. Sethi, K. Steiglitz, and J. D. Ullman: Computer

and Job-Shop Scheduling Theory, John Wiley & Sons, A

Wiley-Inter-Science publication, 1976.

[3] Hesham El-Rewini, Theodore G. Lewis, Hesham H.

Ali: Task Scheduling in Parallel and Distributed Systems,

PTR Prentice Hall, Inc. Englewood Cliffs, New Jersey

07632. 1994.

[4] Peter Aronsson and Peter Fritzson: Task Merging and

Replication using Graph Rewriting, Tenth International

Workshop on Compilers for Parallel Computers,

Amsterdam, the Netherlands, Jan 8-10, 2003

[5] A. A. Khan, C. L. McCreary and M. S. Jones, A

Comparison of Multiprocessor Scheduling Heuristics,

International Conference on Parallel Processing, 1994.

[6] Rong Xie, Daniela Rus and Cliff Stein: Scheduling

Multi-Task Agents. In Proceedings of the Fifth IEEE

International Conference on Mobile Agents, pages 260-

276, Atlanta, Georgia, December, 2001.

 [7] H. Ali and H. El-Rewini, Task allocation in

distributed systems: A split-graph model, Journal of

Combinatorial Mathematics and Combinatorial

Computing, 14, 15-32, 1993.

[8] C. Papadimitriou, and M. Yannakakis, Scheduling

interval-ordered tasks, SIAM Journal of Computing, 8,

405-409, 1979.

[9] S. Bokhari, A shortest tree algorithm for optimal

assignments across space and time in distributed

processor systems, IEEE Transactions on Software

Engineering, SE-7, no. 6, 1981.

[10] H. Stone, Multiprocessor scheduling with the aid of

network flow algorithms, IEEE Trans. Software Eng., 85-

93, 1977.

[11] Hesham Ali, On finding an optimal maximal chain in

n-processor scheduling, in preparation.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	11-2004

	A Maximal Chain Approach for Scheduling Tasks in a Multiprocessor Systems
	Sachin Pawaskar
	Hesham Ali
	Recommended Citation

	A MAXIMAL CHAIN APPROACH FOR SCHEDULING TASKS IN A MULTIPROCESSOR SYSTEM

