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ABSTRACT 

Scheduling dependent tasks is one of the most challenging 

versions of the scheduling problem in parallel and 

distributed systems. It is known to be computationally 

intractable in its general form as well as several restricted 

cases. As a result, researchers have studied restricted 

forms of the problem by constraining either the task graph 

representing the parallel tasks or the computer model. 

Also, in an attempt to solve the problem in the general 

case, a number of heuristics have been developed. In this 

paper, we study the scheduling problem for a fixed 

number of processors m. In the proposed work, we 

approach the problem by recursively reducing the m-

processor scheduling to (m-1)-processor scheduling until 

we apply the optimal two-processor scheduling algorithm 

when m equals two. This is accomplished by identifying a 

maximal chain C in the task graph G and merging the (m-

1) processor scheduling of (G-C) and the 1-processor 

scheduling of C. A number of experiments were 

conducted to compare the suggested approach with the 

standard list-scheduling algorithm. Based on the outcome 

of the conducted experiments, the proposed algorithms 

outperformed or matched the performance of the list 

heuristic almost all the time. 
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Task Scheduling, Heuristics, Parallel Processing, Optimal 
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1.  Introduction 

Scheduling is a classical field with several interesting 

problems and results. Due to its wide range of 

applications, the scheduling problem has been attracting 

many researchers from a number of fields. A scheduling 

problem emerges whenever there is a choice. The choice 

could be the order in which a number of tasks can be 

performed, and/or in the assignment of tasks to servers for 

processing. A problem may involve jobs that need to be 

processed in a manufacturing plant, bank customers 

waiting to be served by tellers, aircrafts waiting for 

landing clearances, or program tasks to be run on a 

parallel or a distributed computer. Clearly, there is a 

fundamental similarity to scheduling problems regardless 

of the difference in the nature of the tasks and the 

environment.  

     The scheduling problem has been described in a 

number of different ways in different fields. The classical 

problem of job sequencing in production management has 

influenced most of what has been written about this 

problem. Most manufacturing processes involve several 

operations to transform raw material into a finished 

product. The problem is to determine some sequences of 

these operations that are preferred according to certain 

(e.g. economic) criteria. The problem of discovering these 

preferred sequences is referred to as the sequencing 

problem. Over the years, several methods have been used 

to deal with the sequencing problem such as complete 

enumeration, heuristic rules, integer programming, and 

sampling methods. It is clear that complete enumeration is 

impractical because the problem is exponential, which 

means that it requires too much time, sometimes years of 

computation time would be required even for a small 

number of tasks. Hence optimal solutions cannot be 

obtained in real time [1,2]. However, many heuristic 

methods have been used to deal with most general case of 

the problem. Such methods include traditional priority-

based algorithms [3], task merging techniques [4], critical 

path heuristics [3,5]. In addition, distributed algorithms 

have been designed to address different versions of the 

scheduling problem [6]. 

In general, the scheduling problem assumes a set of 

resources and a set of consumers serviced by these 

resources according to a certain policy. Based on the 

nature of and the constraints on the consumers and the 

resources, the problem is to find an efficient policy 

(schedule) for managing the access to and the use of the 

resources by various consumers to optimize some desired 

performance measure such as the total service time 

(schedule length). Accordingly, a scheduling system can 

be considered as consisting of a set of consumers, a set of 

resources, and a scheduling policy as shown in Figure 1. 

 

 
Figure 1: The Scheduling System 

 

Examples of consumers are a task in a program, a job in a 

factory, or a customer in a bank. Examples of resources 

are a processing element in a computer system, a machine 
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in a factory, or a teller in a bank. First-come-first-served 

is an example of a scheduling policy. Scheduling policy 

performance varies with different circumstances. While 

first-come-first-served may be appropriate in a bank 

environment, it may not necessarily be the best policy to 

be applied to jobs on a factory floor. Performance and 

efficiency are two parameters used to evaluate a 

scheduling system. It’s customary to evaluate a 

scheduling system based on the goodness of the produced 

schedule and the efficiency of the policy. 

In this paper, we are concerned with scheduling 

dependent program tasks on parallel and distributed 

systems. The tasks are the consumers and will be 

represented using directed graphs called task graphs. Task 

graphs are used to represent precedence relationships 

between tasks. The processing elements are the resources 

and their interconnection networks will be represented 

using undirected graphs. The “scheduler” generates a 

schedule using a timing diagram called the Gantt chart. 

The scheduler performs allocation, which means it will 

tell which tasks go on which processor, but does not give 

their order. Whereas “scheduling” will perform allocation 

as well as provide an order for the tasks on the individual 

processors. The Gantt chart illustrates the allocation of the 

parallel program tasks onto the target machine processors 

and their execution order. A Gantt chart consists of a list 

of all processors in the target machine and, for each 

processor, a list of all tasks allocated to that processor 

ordered by their execution time. The term tasks, nodes 

and jobs will be regarded as equivalent to the term 

“consumers”. Also, resources may be referred to as 

processors or processing elements. 

There are four components in any scheduling system: 

the target machine, the parallel tasks, the generated 

schedule, and the performance criterion. In our task-

scheduling model we will ignore the communication 

delays and consider all tasks to have the same unit 

execution time. Also most of the time, we deal with the 

same machine, i.e. multiple processors on the same 

machine. Nowadays we have such similar environments 

that it leads to almost same communication delay times. 

We will discuss and define the scheduling problem in 

more detail later in the paper.  
 

2.  Basic Terminology & Problem Definition 
In this section we define a few terms that will be used in 

the later sections of this paper. We will also define the 

scheduling problem in its most general form and then we 

will study some of the special cases of this problem and 

some of the classical algorithms that have been published 

to solve these special cases. 

Task Graph: A task graph G=(T,A) is a directed acyclic 

graph. For a pair of tasks ti,tj T, a directed edge (i, j) A 

between the two tasks specifies that ti must be completed 

before tj can begin. Figure 2 shows a task graph. 

Density or Sparseness: The density or sparseness of a 

graph G=(T,A) is computed as a ratio of the number of 

edges |A| in the graph as a percentage to the maximum 

number of edges that graph can have which is of order (|T| 

* |T-1|) / 2. So a graph with density of 0.5 will have half 

the number of maximum edges possible for that graph.  

Task Level: Let the level of a node x in a task graph be 

the maximum number of nodes (including x) on any path 

from x to a terminal task. In a tree, there is exactly one 

such path. A terminal task is at level 1. Given the task 

graph in Figure 2, we can say that nodes 1,2 and 3 are at 

level 1, 4 and 5 are at level 2, nodes 6,7,8,9 and 10 are at 

level 3, and so on. 

Maximal Chain: Given a task graph G = (T, A), let S be 

a subset of tasks in G from the root node to a terminal 

node in sequence; then we say that S is a maximal chain 

in G if there does not exist another chain S’ in G such that 

S is a subset of S’. A maximum chain is the maximal 

chain with the higher number of tasks. Given the task 

graph in Figure 2, a maximum chain consists of tasks 15, 

14, 12, 11, 8, 4 and 1. Also, tasks 10, 5 and 3 form a 

maximal chain. 

 
Figure 2: A Task graph 

Schedule Length or Schedule Time: Given a task graph 

G = (T,A) and its schedule on m processors, f,  the length 

of schedule f of G is the maximum finishing time of any 

task in G. 

 

For the rest of the paper, we assume that the problem is 

deterministic in the sense that all information governing 

the scheduling decisions are assumed to be known in 

advance. In particular, the task graph representing the 

parallel program and the target machine is assumed to be 

available before the program starts execution. As in the 

standard scheduling system, our system has four 

components: the target machine, the parallel tasks 

(represented as a task graph), the generated schedule and 

the performance criterion. The minimization of the 

schedule length is the performance criterion considered in 

our scheduling model.  

In general, the time complexity of an algorithm refers 

to its execution time as a function of its input. We specify 

the complexity of a scheduling algorithm as a function of 

the number of tasks and the number of processors. A 

scheduling algorithm whose time complexity is bounded 

by a polynomial is called a polynomial-time algorithm. 

An optimal algorithm is considered to be efficient if it 

runs in polynomial time. Inefficient algorithms are those, 



which require a search of the whole enumerated space and 

have an exponential time complexity. The problem of 

scheduling parallel programs tasks on multiprocessor 

systems is known to be NP-complete in its general form. 

There are few known polynomial-time scheduling 

algorithms even when severe restrictions are placed on the 

task graph representing the program and the parallel 

processor models. In general we can say classify the 

known results as follows: 

1) The NP-Completeness of several versions of the 

scheduling problems [1,3]. 

2) Optimal “efficient” algorithms, for solving restricted 

versions of the scheduling problems [2,3,8,9,10]. 

3) Heuristic algorithms for tackling more general cases 

of the scheduling problems [3,4,5,7]. 

Table 1 summarizes the complexity of several versions of 

the scheduling problem when the target machine is fully 

connected. Note that n is the number of tasks and e is the 

number of arcs in the task graph. Note also that the results 

in Table 1 are obtained when communication costs are not 

considered. Forest and interval-order are special classes of 

task graphs. For more detailed definition and the formal 

discussion of NP-completeness please refer [1,3]. 

Table 1: Complexity comparison of scheduling problem 

 

As mentioned earlier a number of scheduling heuristic 

have been developed to deal with many versions of the 

scheduling problem. Among the developed heuristics, List 

scheduling has been used often due to its simplicity and 

over all good results. List scheduling is a class of 

scheduling heuristics in which tasks are assigned 

priorities and placed in a list ordered in decreasing 

magnitude of priority. Whenever tasks contend for 

processors, the selection of tasks to be immediately 

processed is done on the basis of priority with the higher-

priority tasks being assigned processors first. If there is 

more than one task of a given priority, ties are broken 

randomly. In this paper, we will use the list scheduling 

heuristic to access the goodness of the proposed 

algorithm. 

 

3.  Proposed Solution 

In this section, we will study the proposed maximal chain 

scheduling heuristic. As mentioned previously, there are 

many heuristic algorithms developed for dealing with the 

scheduling problem. Most of these heuristics perform well 

in some cases while performing poorly in others. The 

proposed scheduling algorithm employs a theoretical 

concept in dealing with the scheduling problem by using 

one of the few known optimal algorithms namely the 2-

procesor scheduling algorithm. The algorithm selects a 

special maximal chain from the input task graph. Using 

the selected chain, the n-processor scheduling problem is 

reduced to two scheduling problems: 1) An (n-1)-

processor scheduling problem, and 2) A simple1-

processor scheduling problem. The maximal chain tasks 

are scheduled on 1-processor (P1) and the remaining tasks 

from the task graph are scheduled using the same 

algorithm to the remaining (n-1) processors. The two 

assignments, resulting from solving the two scheduling 

problems, are then merged together to satisfy the 

precedence relations and perform any needed 

reassignments of tasks for optimization purposes. The 

partitioning process is repeated recursively until we reach 

the base case of 2-processor scheduling for which we 

have well know optimal algorithm that we can apply as 

we discussed in the previous section. 

 

 
Figure 3: The Proposed Approach 

 

The motivation for this approach stemmed from the 

fact that well-known polynomial (and optimal) algorithms 

are known for special cases of the scheduling problem. 

The algorithm uses a maximal clique since it does 

provides a lower bound on the schedule. The process of 

merging the (n-1) processor scheduling with the maximal 

chain is rather non-trivial since it needs to resolve any 

potential violations of the precedence relations. After 

merging the two schedules and resolving any violations, 

an optimizer/compacting routine is called to reduce the 

length of the obtained feasible schedule by moving tasks 

to appropriate slots without violating the task 

dependencies. To assess the performance of the proposed 

algorithm, we also implemented a basic standard well-

known scheduling heuristic. We have selected the List 

scheduling heuristic for this purpose.   

Task Graph Task 

Execution 

Time 

Number of 

Processors 

Complexity 

Tree Identical Arbitrary O(n) 

Interval order Identical Arbitrary O(n) 

Arbitrary Identical 2 O(e + n(n)) 

Arbitrary Identical Arbitrary NP-complete 

Arbitrary 1 or 2 time 

units 
 2 NP-complete 

Opposing 

forest 

Identical Arbitrary NP-complete 

Interval order Arbitrary  2 NP-complete 

Arbitrary Arbitrary Arbitrary NP-complete 



Our model of the problem is deterministic in the 

sense that all information governing the scheduling 

decisions are assumed to be known in advance. In 

particular, the task graph representing the parallel 

program and the target machine is assumed to be 

available before the program starts execution. The target 

machine is composed of m identical fully connected 

processors. The input tasks are assumed to require the 

same amount of computation time and communication 

overhead among tasks assigned to different processors is 

ignored. The main objective function is to minimize the 

time of completion of the tasks to be scheduled; in other 

words the shortest schedule. 

     The details of the algorithm are given below. The basic 

algorithm consists of 3 different steps, the maximal chain 

algorithm, the 2-processor algorithm and the Merge 

routine which not only merges the maximal chain and the 

(n-1) processor schedule, but also maintains the feasibility 

of the schedule based on the task graph precedence of the 

tasks and optimizes the schedule wherever possible. 

 

The Algorithm 

Given a Task Graph G (T, A) where T is the number of 

tasks and A is the number of directed edges between the 

nodes. Also N is the number of processors. 

Step 1:  
If N = 2 go to step 2. 

a) Given the Graph G = (T, A), assign a priority (label) 

to each task in t  T (Perform Algorithm 

Assign_Labels) 

b) Find the Maximal Chain C for this task graph G 

(Perform Algorithm Generate_Maximal_Chain) 

c) Generate the sub-graph Gs = G – C 

d) Repeat Step 1, with G = Gs and N = N – 1; 

e) Merge the Maximal chain C and the schedule S for 

graph Gs for N processors. (Perform Algorithm 

Merge_Schedules)  

Step 2:  

Given task graph G’ and N’ = 2. Apply any optimal 2-

processor scheduling algorithm (such as Coffman and 

Graham algorithm), which is as follows: 

a) Assign lexicographical labels to all the tasks. 

(Perform Algorithm Assign_Labels) 

b) Use the list (tn, tn-1 … t1) where for all i, 1  i  n, 

L(ti) = i to schedule the tasks. 

  

As mentioned earlier, the maximal chain scheduling 

heuristic that we propose consists of three main sub-

algorithms, which are as follows: 

1) The generation of the maximal chain  

2) The optimal 2-processor algorithm 

3) The Merge routine, which not only merges the 

maximal chain and the (n-1) processor schedule, but also 

maintains the feasibility of the schedule based on the task 

graph precedence of the tasks and optimizes the schedule 

wherever possible. 

     The approach to the maximal chain scheduling 

heuristic algorithm is to assign labels giving priority to 

tasks, and then a list for scheduling the task graph is 

constructed from the labels. Labels from the set 

{1,2,…,n} are assigned to each task in the task graph by 

the function L(*) as explained below. 

 

Algorithm (Assign_Labels) 
1) Assign the number 1 to one of the terminal tasks. 

2) Let labels 1, 2… j – 1 be assigned. Let S be the set of 

unassigned tasks with no unlabelled successors. 

a. We next select an element of S to be 

assigned label j.  

b. For each node x in S, define L(x) as follows: 

Let y1, y2…yk be the immediate successors 

of x. Then L(x) is the decreasing sequence 

of integers formed by ordering the set 

{L(y1), L(y2)…L(yk)}.  

c. Let x be an element of S such that  x’ in S, 

L(x)  L(x’) (lexicographically).  

d. Define L(x) to be j. 

Once we have assigned a priority to all the tasks, generate 

the maximal chain for the task graph. This is done as 

explained below. 

 

Algorithm (Generate_Maximal_Chain) 
1) Let Maximal chain be C = {null},  

2) Pick the task ti with the highest label. (This will be a 

task, which will have no predecessors.). The maximal 

chain C = C {ti}. 

3) From the list of successors tasks S’ of this task ti find 

the task with the next highest label. Let this be task tj. 

With this task tj repeat from step 2 until we have a 

task, which has no successors. 

Once we break down the problem into 1 + (n-1) 

processors, eventually we will reach 2-processors, for 

which we use the optimal Coffman and Graham algorithm 

presented in the previous chapter. Now given the maximal 

chain and the (n-1) processor schedule, all that needs to 

be done is to merge them maintaining the feasibility of the 

schedule based on the precedence of the tasks in the task 

graph and optimizes the schedule wherever possible. We 

present the Merge routine below. 

 

Algorithm (Merge_Schedules) 

1) Let C be the maximal chain and S be the (n-1) 

processor schedule. 

2) Assign the tasks in the maximal chain to processor P1 

and the tasks of the (n-1) processor schedule to 

processors P2 to Pn. 

3) We examine every task from the beginning of the 

schedule. If a task violates any of the precedence 

relations of the task graph G then move that task ti 

and the tasks below it on that processor Px down the 

below the task that it violates tj. Note that the tasks i 

and j will be on different processors, because within 

the processor they will already be satisfying the 

precedence rules. 

4) After all the violations are removed, we examine 

each idle time slot on each of the processors P1 to Pn 

from the beginning in sequence. If we find an idle 

slot, we try to find a task below it which can be 



moved to the idle time slot without violating any of 

the precedence relations.  

Example 

To understand the maximal chain scheduling heuristic 

algorithm, let us examine the task graph as shown in 

Figure 4. We first assign labels to each of the tasks in the 

task graph, which becomes the priority of that task. Based 

on the priority of the tasks we first find the maximal chain 

for that graph.  

 
Figure 4: A task graph 

 

For the maximal chain (such as [14, 12, 7, 3, 1] in Figure 

5) we take the remaining tasks (13, 11, 10, 9, 8, 6, 5, 4, 2, 

1) and create a sub-graph G’. 

 
Figure 5: Maximal chain for task graph in Figure 4 

 

We perform the optimal 2-processor scheduling algorithm 

on it. We then assign the tasks on the maximal chain to 

the third processor and then save the schedule length as 

shown in Figure 6. This is the first part of our Merge 

process.  We now need to formally check this schedule 

for violations to make sure that the schedule is feasible.  

 

P1 P2 P3 

14 13 11 

12 10 9 

7 8 5 

3 4 6 

1 2  

Figure 6: Simple Merge of maximal chain and 2-

processor schedule 

 

As we run this schedule through the feasibility check, 

from the top of the schedule to the bottom of the schedule, 

we find that task 3 cannot be run in parallel with task 6, 

because task 3 is a successor to task 6 or in other words 

task 6 precedes task 3, hence there is an obvious violation. 

We move all the tasks from 3 onwards one time slot down 

to fix this violation, which gives us the schedule as shown 

in Figure 7, which is an optimal feasible schedule.  

 

P1 P2 P3 

14 13 11 

12 10 9 

7 8 5 

 4 6 

3 2  

1   

Figure 7: Schedule after Merge and Check 

Violations/Feasibility. 

 

In this example based on our algorithm, we will now have 

a feasible schedule. We will run this through our optimize 

routine, which will find the first idle time slot 4 for 

processor P1. We will find that we can put task 2 which is 

below it in time slot 5 on processor P2 in this time slot 

without violating the precedence relationships of the task 

graph, hence our final schedule will be as shown in Figure 

8. This does not improve the schedule length in this case, 

but will in certain other cases. 

 

P1 P2 P3 
14 13 11 

12 10 9 

7 8 5 

2 4 6 

3   

1   

Figure 8: Schedule after Merge and Check 

Violation/Feasibility and Optimization. 

 

The Optimal maximal chains Conjecture 

The underlying principle behind the optimal 2-processor 

scheduling algorithm can be viewed as identifying the 

maximal chain (clique) of tasks whose removal 

guarantees the minimum 1-processor scheduling of the 

remaining tasks. Then, an optimal 2-processor schedule 

can be obtained by merging the chain with the minimum 

1-processor schedule of the remaining tasks. In this case, 

identifying such a chain is easy since it has to be a 

maximum chain or a chain with the maximum number of 

tasks. If we take this principle one step further, it can 

conjectured that for a set of tasks T, if we identify a 

maximal chain C in an n-processor scheduling problem 

whose removal results in a minimum (n-1)-processor 

scheduling of the remaining tasks T-C, then an optimal n-

processor schedule can be obtained by merging C with the 

optimal (n-1)-processor schedule of the remaining tasks. 

This approach would require a) finding such a clique; and 

b) design an optimal merge algorithm. We have tested this 

concept by generating all maximal chains and trying 



several merge algorithms. We used the “All maximal 

chains” routine for testing purposes on graphs with small 

number of nodes. Applying this approach on many 

random task graphs produced the optimal schedule almost 

all the times. Clearly, generating all maximal chains will 

strip the approach its desired polynomial complexity. We 

are currently working on developing a polynomial 

algorithm to find such a clique and on developing a 

refined merge algorithm [11]. The above conjecture 

provided the basic foundation for the developed heuristic 

whose results are reported in the next section. 

4.  Implementation and Results 

Various experiments were run on the maximal scheduling 

heuristics and the list scheduling heuristic using different 

graphs. The two most important properties of the graphs 

that the algorithms were tested against were: 

a) Number of nodes in the graph, and  

b) The Density/Sparseness of the graph 

The density of the graph varies from 0.1 to 0.9, it implies 

that the graphs having 0.1 densities would have fewer 

edges and hence less density and as the density increases 

the number of edges increase and so the density of the 

graph increases. It also implies that the graph with the 

lower density will most likely take less scheduling time as 

compared with a graph of higher density. We tried all 

densities, but it is important to note that in most real 

situations we will encounter graphs with lower densities, 

in which case our algorithm produces better results. Also 

note that the same task graphs were used for comparing 

our algorithm with the list-scheduling algorithm. 

We ran different experiments as explained below: 

1) Experiment-1 was run on graphs with 25, 35, 40, 50, 

60, 70, 80, 90, 100, 200, 300 and 400 nodes with densities 

varying from 0.1 to 0.8. Also it was noted that for graphs 

with about 35 nodes and a medium density of 0.4, 0.5 the 

optimal algorithm took too long to run (more that 2 

hours). Hence the optimal algorithm could not be run on 

all the graphs especially those with higher number of 

nodes having medium to high density. 

The naming convention used for the various graphs in this 

experiments is as follows Gaaa_b, where aaa denotes the 

number of nodes in the graph and b denotes the density of 

the graph. So graph G200_4 would have 200 nodes and a 

density of 0.4. 

2) Experiment-2 was run on graphs with 25, 100, 200, 

300, 400 nodes with densities varying from 0.1 to 0.8. We 

generated 80 graphs for each of the above-mentioned 

number of nodes. 10 graphs were generated for each 

density/sparseness between 0.1 and 0.8, hence the 80 

graphs. This experiment was conducted on a total of 400 

graphs having high number of nodes. We divide the tasks 

graphs in this experiment into small graphs (25 nodes), 

medium graphs (100 – 200 nodes) and large graphs (300 – 

400 nodes). 

The naming convention used for the various graphs in this 

experiments-2 is as follows Gaaa_b_c, where aaa denotes 

the number of nodes in the graph and b denotes the 

density of the graph and c denotes the graph sequence. So 

graph G200_4_1 would have 200 nodes and a density of 

0.4 and would be the first graph in that series. 

All the graphs used in these experiments were randomly 

generated by a random graph generator program, which 

was specifically written for this purpose. 

It must be noted that the graphs generated had transitive 

precedence edges, which implies if A  B and B  C, 

then even though by transitivity it implies that A  C, the 

random graph generator, does not take this into account 

and may possibly create such transitive edges. The reason 

this is important is that this increases the density of the 

graphs generated. 

The graphs used in the experiments are not 

transitively reduced graphs. We would also like to define 

the density of the graphs used in the experiments as the 

ratio of the number of edges |E| in the graph as a 

percentage to the maximum number of edges that the 

graph can have in our case (n*(n-1)) / 2 (because we do 

not consider nodes having edges on to themselves), where 

n is the number of nodes in the graph. The graphs that we 

generated have more density because these graphs are not 

transitively reduced. 
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 Figure 9. Graphs with 100 nodes on 3 processors 

From the above experiments and results we can draw the 

following: 

1) The maximal chain scheduling heuristic performs 

slightly better that the List scheduling when the 

density/sparseness of the graphs is between 0.1 and 

0.4 for most of the cases. 

2) The maximal chain scheduling heuristic performs and 

the List scheduling heuristic has the same 

performance when the density/sparseness of the 

graphs is greater that 0.4 for most of the cases. 



G100 - 4 processor

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Density

S
c
h

e
d

u
le

 T
im

e
Maximal List

Figure 10. Graphs with 100 nodes on 4 processors 

From the above experiments and results we can draw the 

following: 

1) The maximal chain scheduling heuristic performs 

slightly better that the List scheduling when the 

density/sparseness of the graphs is between 0.1 and 

0.3 for most of the cases. 

2) The maximal chain scheduling heuristic performs and 

the List scheduling heuristic has the same 

performance when the density/sparseness of the 

graphs is greater that 0.3 for most of the cases. 
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Figure 11. Graphs with 100 nodes on 5 processors 

From the above experiments and results we can draw the 

following: 

1) The maximal chain scheduling heuristic performs 

slightly better that the List scheduling when the 

density/sparseness of the graphs is between 0.1 and 

0.2 for most of the cases. 

2) The maximal chain scheduling heuristic performs and 

the List scheduling heuristic has the same 

performance when the density/sparseness of the 

graphs is greater that 0.2 for most of the cases. 

From the above experiments and results we can draw the 

following: 
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Figure 12. Graphs with 400 nodes on 3 processors 

1) The maximal chain scheduling heuristic performs 

slightly better that the List scheduling when the 

density/sparseness of the graphs is between 0.1 and 

0.4 for most of the cases. 

2) The maximal chain scheduling heuristic performs and 

the List scheduling heuristic has the same 

performance when the density/sparseness of the 

graphs is greater that 0.4 for most of the cases. 
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Figure 13. Graphs with 400 nodes on 4 processors 

From the above experiments and results we can draw the 

following: 

1) The maximal chain scheduling heuristic performs 

slightly better that the List scheduling when the 

density/sparseness of the graphs is between 0.1 and 

0.3 for most of the cases. 

2) The maximal chain scheduling heuristic performs and 

the List scheduling heuristic has the same 

performance when the density/sparseness of the 

graphs is greater that 0.3 for most of the cases. 

Overall, from the above experiments, we can conclude the 

following: 

a) It can be concluded that as the number of processors 

increases for graphs between density of 0.1 and 0.4, the 



schedule length reduces slightly. The percentage of 

reduction in schedule length decreases as the number of 

processors increases from 3 to 5.  

b) It can also be concluded that as the number of 

processors increases for graphs with density greater than 

0.4, the schedule length does not reduce at all for most 

graphs. This implies that as the density of the graphs 

increases, adding more processors will not help to reduce 

the schedule length. 
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Figure 14. Graphs with 25 nodes on 3 processors (with 

optimal algorithm) 

From the above experiments and results we can draw the 

following: 

1) The optimal all chain scheduling heuristic performs 

better or equal to than the List scheduling and the 

Maximal chain scheduling heuristic in most cases. 

2) The optimal all chains algorithm, Maximal chain 

scheduling heuristic performs and the List scheduling 

heuristic has the same performance when the 

density/sparseness of the graphs is greater that 0.4 for 

most of the cases. 
 

5.  Conclusions 
In this paper we present a novel approach for addressing 

the n-processor scheduling problem by recursively 

reducing the problem to the polynomial problem of 

finding a 2-procesor schedule. We compare the 

performance of the proposed algorithm, Maximal-Chain 

scheduling, with the performance of the standard List 

scheduling algorithm. The introduced approach 

outperforms the List scheduling algorithm when the 

density of the graphs is between 0.1 and 0.4 for most of 

the cases. But for density of the graphs greater that 0.5 

both of them have the same performance. 

For graphs with small number of nodes (less than 35 

nodes), both the maximal chain scheduling heuristic and 

the List scheduling heuristic gave solutions, which were 

close to the optimal solution and differed only by 1 or 2 

time units. The All maximal chain scheduling algorithm 

performed slightly better or the same as the List 

scheduling  

It can be concluded that when the density of the 

graph increases and the number of processors is 

increased, the scheduling time is not affected 

significantly. In fact when the density is 0.4 or greater 

most of the times they produce the same scheduling time 

as the 3-processor schedule. Also the List scheduling 

heuristic and the Maximal chain heuristic have the same 

performance for graphs with higher density and number 

of processors greater than 3. 

Future research efforts could further investigate 

enhancements to the Merge routine for merging the 

maximal chain and the (n-1) processor schedule. One 

could investigate new approaches for the Merge routine to 

always obtain an optimal solution. One could also 

investigate the effect of execution time and 

communication costs for the proposed maximal chain 

scheduling heuristic, which is based on a recursive 

approach. 
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