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We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction
of the associated structure functions on the proton in the kinematic range Q2 from 2 to 4.5 GeV2 and W from
1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and
S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to

the generalized form factors G
π0p
1 (Q2) and G

π0p
2 (Q2). The data are compared to these generalized form factors

and the results for G
π0p
1 (Q2) are found to be in good agreement with the LCSR predictions, but the level of

agreement with G
π0p
2 (Q2) is poor.

DOI: 10.1103/PhysRevC.87.045205 PACS number(s): 25.30.Rw, 13.40.Gp, 14.20.Dh

I. INTRODUCTION

Pion photo- and electroproduction on the nucleon γN →
πN , γ ∗N → πN close to threshold has been studied exten-
sively since the 1950s both experimentally and theoretically.
Exact predictions for the threshold cross sections and the axial
form factor were pioneered by Kroll and Ruderman in 1954
for photoproduction and are known as the low-energy theorem
(LET) [1]. This LET provided model-independent predictions
of cross sections for pion photoproduction in the threshold
region by applying gauge and Lorentz invariance [2]. This
was the first of the LET predictions to appear but was not
without limitations. This LET predictions were restricted only
to charged pions and the π0 contribution was shown to vanish
in the “soft pion” limit, i.e., mπ ∼ pπ . Here, mπ and pπ are
the mass and momentum of the pion. Additionally, these cross
section predictions were limited to diagrams with first-order
contributions in the pion-nucleon mass ratio. In later years,
using vanishing pion mass chiral symmetry (mπ → 0), these
predictions were extended to pion electroproduction for both
charged and neutral pions [3,4].

Of course, a vanishing pion mass does not relate to the
observed mass of the pion (the pion to nucleon mass ratio
mπ/mN ∼ 1/7), so higher order finite mass corrections to the
LET were formulated in the late 1960s and early 1970s before
the appearance of QCD. These also included contributions to
the nonvanishing neutral pion amplitudes for the cross section.

In the late 1980s and early 1990s, experiments at
Mainz [5] obtained threshold pion photoproduction data on

*Current address: Christopher Newport University, Newport News,
Virginia 23606, USA.
†Current address: Skobeltsyn Nuclear Physics Institute, 119899

Moscow, Russia.
‡Current address: Institut de Physique Nucléaire ORSAY, Orsay,

France.
§Current address: INFN, Sezione di Genova, 16146 Genova, Italy.
‖Current address: Università di Roma Tor Vergata, 00133 Rome,

Italy.

γp → π0p. The theoretical predictions of LETs at the time
were inconsistent with the data at low photon energies.
With the emergence of chiral perturbation theory (χPT), the
scattering amplitudes and some physical observables were
systematically expanded in the low-energy limit in powers
of pion mass and momentum. Using this framework, the LET
was rederived to include contributions to the amplitudes from
certain loop diagrams, which were lost when the expansion
was performed in terms of the pion mass, as was done in the
earlier works [6,7]. Further electroproduction experiments at
NIKHEF [8] on γ ∗p → π0p with photon virtuality Q2 ∼
0.05–0.1 GeV2 [9] provided good agreement with χPT
predictions.

These LETs [1,3,4,6,7] are not applicable for Q2 �
�3

QCD/mπ , where �QCD ∼ 200–300 MeV is the QCD scale
parameter. In the case of asymptotically large momentum
transfers (Q2 → ∞) perturbative QCD (pQCD) factorization
techniques [10–12] have been used to obtain predictions for
cross-section amplitudes and axial form factors near threshold.
In these factorization techniques, “hard” (Q2 � �2

QCD) and
“soft” (k ∼ �QCD) momentum contributions to the scattering
amplitude can be separated cleanly and each contribution can
be theoretically calculated using pQCD and LETs, respec-
tively. Here, k is the momentum of the virtual photon.

Recently, Braun et al. [13,14] suggested a method to extract
the generalized form factors, GπN

1 (Q2) and GπN
2 (Q2), for

1 < Q2 < 10 GeV2 using light- cone sum rules (LCSRs).
The transition matrix elements of the electromagnetic inter-
action, Jμ, can be written in terms of these form factors at
threshold:

〈N (P ′)π (k)|Jμ|p(P )〉 = − i

fπ

N̄γ5

[
(γμq2 − qμ/q)

GπN
1 (Q2)

m2
N

− iσμνq
ν

2mN

GπN
2 (Q2)

]
p. (1)

Here, N (P ′) and p(P ) are spinors for the final and initial
nucleons with momenta P ′ and P , respectively, mN is the
mass of the nucleon, fπ is the pion decay constant, and q
is the 4-momentum of the virtual photon. Because the pion
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is a negative-parity particle and the electromagnetic current
is parity conserving, the γ5 matrix is present to conserve the
overall parity of the reaction.

These form factors are directly related to the pion-nucleon
s-wave multipoles E0+ and L0+ [13,14]:

E0+ =
√

4πα

8πfπ

√
(2mN + mπ )2 + Q2

m3
N (mN + mπ )3

×
(

Q2GπN
1 − mNmπ

2
GπN

2

)
, (2)

L0+ =
√

4πα

8πfπ

mN

∣∣ωth
γ

∣∣
2

√
(2mN + mπ )2 + Q2

m3
N (mN + mπ )3

×
(

GπN
2 + 2mπ

mN

GπN
1

)
. (3)

Here, α is the electromagnetic coupling constant and ωth
γ is

the virtual photon energy at threshold in the c.m. frame and is
given by the following relation:

ωth
γ = mπ (2mN + mπ ) − Q2

2(mN + mπ )
. (4)

In general, El±, Ml±, and Ll± describe the electric, magnetic,
and longitudinal multipoles, respectively. Here, l describes
the total orbital angular momentum of the pion relative to
the nucleon and ± is short for ± 1

2 so that the total angular
momentum of the πN system is l ± 1

2 .
Additionally, the sum rules can be extended to the Q2 ∼

1 GeV2 regime and the LETs are recovered to O(mπ ) accu-
racy by including contributions from semidisconnected pion-
nucleon diagrams [14]. This approach provides a connection
between the low and high Q2 regimes. Predictions for the axial
form factor and the generalized form factors are also obtained
in this approach.

In the low Q2 < 1 GeV2 regime and the chiral limit mπ →
0, the LET s-wave multipoles at threshold can be written as [7]

E0+ =
√

4πα

8π

Q2
√

Q2 + 4m2
N

m3
Nfπ

GπN
1 , (5)

L0+ =
√

4πα

32π

Q2
√

Q2 + 4m2
N

m3
Nfπ

GπN
2 . (6)

GπN
1 and GπN

2 can be written in terms of the electromagnetic
form factors for the neutral pion-proton π0p channel in this
approximation:

Q2

m2
N

G
π0p
1 = gA

2

Q2(
Q2 + 2m2

N

)G
p
M, (7)

G
π0p
2 = 2gAm2

N

Q2 + 2m2
N

G
p
E. (8)

In the above equations, G
p
M and G

p
E are the Sachs elec-

tromagnetic form factors of the proton and gA is the axial
coupling constant obtained from weak interactions. Also, for

the charged pion-neutron π+n channel, the generalized form
factors can be written as

Q2

m2
N

Gπ+n
1 = gA√

2

Q2(
Q2 + 2m2

N

)Gn
M + 1√

2
GA, (9)

Gπ+n
2 = 2

√
2gAm2

N

Q2 + 2m2
N

Gn
E. (10)

Here, Gn
M and Gn

E are the electromagnetic form factors of
the neutron. Additionally, GA is the axial form factor that is
induced by the charged current and its contribution comes from
the Kroll-Ruderman term [1].

These generalized form factors, GπN
1 and GπN

2 , can be
described as overlap integrals of the nucleon and the pion-
nucleon wave functions. The wave function of the pion-
nucleon system at threshold is related to the nucleon wave
function without the pion by a chiral rotation in the spin-isospin
space [10,13]. The measurement of these form factors for
pion electroproduction is, in essence, the measurement of the
overlap integrals of the rotated and nonrotated nucleon wave
functions, which are not accessible in elastic form factor mea-
surements. This information complements our understanding
of the various components of the nucleon wave function
(quarks and gluons) and the theory of strong interactions.
Additionally, it provides insight into chiral symmetry and its
violation in reactions at increasing Q2.

The generalized form factor for the charged pion-neutron
Gπ+n

1 (Q2) and the axial form factor GA(Q2) had been mea-
sured near threshold for Q2 ∼ 2–4.2 GeV2 [15]. In this paper,
we describe the measurement of the differential cross sections
and the extraction of the s-wave amplitudes for the neutral pion
electroproduction process, ep → epπ0, for Q2 ∼ 2–4.5 GeV2

near threshold, i.e., W ∼ 1.08–1.16 GeV. From these cross
sections, the generalized form factors G

π0p
1 (Q2) and G

π0p
2 (Q2)

were extracted and compared with the theoretical calculations
of Refs. [7,14].

II. KINEMATIC DEFINITIONS AND NOTATIONS

The neutral pion reaction

e(l) + p(P ) → e(l′) + p(P ′) + π0(k) (11)

is shown schematically in the virtual photon-proton c.m. frame
in Fig. 1. Here, l = (Ee, pe), l′ = (E′

e, p′
e), P = (mp, 0), and

P ′ = (E′
p, p′

p) are the initial and final electron and proton
4-momenta in the laboratory frame and k = (Eπ, pπ ) is the

γ∗(q∗) φ∗
πθ∗π

π(k∗)

N(P )
p(P ∗)

FIG. 1. Neutral pion electroproduction in the c.m. frame.
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4-momentum of the emitted pion. Also, mp refers to the mass
of the proton. It is assumed that the incident electron interacts
with the target proton via exchange of a single virtual photon
with 4-momentum q = l − l′ = (ω, q). In this approximation,
it is also assumed that the electron mass is negligible (me ≈ 0).
The two important kinematic invariants of interest are

Q2 ≡ −q2 = −ω2 + |q|2 = 4EeE
′
e sin2(θ ′

e/2),
(12)

s = W 2 = (q + P )2 = m2
p + 2ωmp − Q2.

Here, θ ′
e is the polar angle of the scattered electron in the

laboratory frame.
The fivefold differential cross section for the reaction can

be written in terms of the cross section for the subprocess
γ ∗p → pπ0 [16], which depends only on the matrix elements
of the hadronic interaction:

d5σ

dE′
ed�′

ed�∗
π

= �
d2σγ ∗p

d�∗
π

. (13)

Here, d�′
e = d cos θ ′

edφ′
e is the differential solid angle for

the scattered electron in the laboratory frame and d�∗
π =

d cos θ∗
πdφ∗

π is the differential solid angle for the pion
in the virtual photon-proton (γ ∗p) c.m. frame. The azimuthal
angle φ∗

π is determined with respect to the plane defined by
the incident and scattered lepton [2]. The factor � represents
the virtual photon flux. In the Hand convention [16] it is

� = α

2π2

E′
e

Ee

W 2 − m2
p

2mpQ2

1

1 − ε
, (14)

which depends entirely on the matrix elements of the leptonic
interaction and contains the transverse polarization of the
virtual photon,

ε =
(

1 + 2
|q|2
Q2

tan2 θ ′
e

2

)−1

. (15)

For unpolarized beam and target the reduced cross section
from Eq. (13) can be expanded in terms of the hadronic
structure functions:

dσγ ∗p

d�∗
π

= |p∗
π |

K

[
dσT

d�∗
π

+ ε
dσL

d�∗
π

+ ε
dσTT

d�∗
π

cos 2φ∗
π

+
√

2ε(ε + 1)
dσLT

d�∗
π

cos φ∗
π

]
. (16)

Here, p∗
π is the pion momentum and K = (W 2 − m2

p)/2W
is the photon equivalent energy in the c.m. frame of the
subprocess γ ∗p → pπ0. Additionally, σT + εσL, σLT, and
σTT are, respectively, the structure functions that describe the
transverse, longitudinal, longitudinal-transverse interference,
and transverse-transverse interference components of the
differential cross section.

Each of these structure functions contains the cos θ∗
π

dependence and can be parametrized in terms of the multipole
amplitudes El±, Ml±, and Sl± that describe the electric,
magnetic, and scalar multipoles, respectively. The scalar
multipoles Sl± can be written in terms of the longitudinal
multipoles Ll± = ω∗

|q∗|Sl±, where ω∗ and q∗ are the energy
and 3-momentum of the virtual photon in the c.m. frame,
respectively [2].

FIG. 2. (a) A three-dimensional view of CLAS showing the
superconducting coils of the torus, the three regions of drift chambers
(R1–R3), the Čerenkov counters, the time-of-flight system, and the
electromagnetic calorimeters. The positive Ẑ axis is out of the
page along the symmetry axis. (b) A schematic view of a typical
near-threshold event showing the reconstructed electron and proton
tracks with the corresponding detector hits in two opposite CLAS
sectors. The π 0 is reconstructed using the missing mass technique as
discussed in the text.

III. EXPERIMENT

The near-threshold reaction ep → epπ0 was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) in
Jefferson Lab’s Hall-B [17]. Figure 2(a) shows the detector
components that comprise CLAS. Six superconducting coils
of the torus divide CLAS into six identical sectors and
produce a toroidal magnetic field in the azimuthal direction
around the beam axis. Each of the six sectors contain three
regions of drift chambers (R1, R2, and R3) to track charged
particles and to reconstruct their momentum [18], scintillator
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counters for identifying particles based on time-of-flight (TOF)
information [19], Čerenkov counters (CC) to identify electrons
[20], and electromagnetic counters (EC) to identify electrons
and neutral particles [21]. The CC and EC are used for
triggering on electrons and provide a mechanism to separate
charged pions and electrons. With these six sectors, CLAS
provides a large solid angle coverage with typical momentum
resolutions of about 0.5%–1.0% depending on the kinematics
[17].

A 5.754-GeV electron beam with an average intensity of
7 nA was incident on a 5-cm-long liquid hydrogen target,
which was placed 4 cm upstream of the CLAS center.
Figure 2(a) shows the electron beam entering CLAS from the
top left and exiting from the bottom right through the symmetry
axis. A small nonsuperconducting magnet (minitorus)
surrounded the target and generated a toroidal field to shield
the R1 drift chambers from low energy electrons of high
intensity. These electrons originated primarily from the Møller
scattering process. The data used in this experiment were col-
lected from October 2001 to January 2002 and the integrated
luminosity was about 0.28 fb−1. The electron beam energy
of 5.754 GeV as determined in this experiment agrees within
6 MeV with an independent measurement in Hall A [22].

IV. ANALYSIS

At the start of this analysis, a cut of W < 1.3 GeV is applied
to focus our events only in the kinematic region of interest. In
this analysis the scattered electrons and protons are detected
using CLAS and the π0 is reconstructed using 4-momentum
conservation. A typical event for this experiment is shown in
Fig. 2(b).

A. Particle identification: Electron

The scattered electrons in the final state of the reaction are
detected by requiring geometrical coincidence between the
Čerenkov counters and the electromagnetic calorimeter in the
same sector. The momentum of the electrons is reconstructed
using the drift chambers. Using the energy deposited in the EC
and the momentum, the electrons are isolated from most of the
minimum ionizing particles (MIPs), e.g., pions, contaminating
the electron spectra.

As electrons pass through the EC, they shower with a total
energy deposition Etot that is proportional to their momenta p.
The sampling fraction energy Etot/p is plotted as a function of
momentum for each sector after applying all the other electron
identification cuts. Figure 3 shows this distribution for one of
the CLAS sectors for experimental and Monte Carlo simulated
events. In the figure, one can note the MIPs contamination
near the smaller values of Etot/p. This contamination is
significantly larger in data than in simulated events. The
electrons are concentrated near Etot/p ≈ 0.3. Ideally, they
should not show any dependence on momentum, albeit a slight
momentum dependence is visible in the data. This dependence
is parametrized and a cut of 3σ is applied as shown in the figure.
The MIP events are well separated from the electrons below
the 3σ cut.
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FIG. 3. (Color online) EC sampling fraction as a function of
electron momentum for one of the CLAS sectors for (a) data
and (b) Monte Carlo (MC) simulation. The dashed lines show the
parametrized mean and the solid line indicates the 3σ cut.

B. Particle identification: Proton

The recoiled protons are identified using the measured
momentum and the timing information obtained from the TOF
counters. A track is selected as a proton whose measured time
is closest to that expected of a real proton, i.e.,

�t = tmeas − tcalc = (tTOF − ttr) − l

βcalcc
. (17)

In the above equation, tTOF is the time measured from the
TOF counters, l is the distance from the target center to the
TOF paddle, and ttr is the event start time calculated from
the electron hit time from the TOF traced back to the target
position. Also, in Eq. (17) βcalc = p/

√
M2

pdg + p2, where βcalc

is computed using the PDG [23] value of the mass of the proton
Mpdg and the momentum of the track p.

Figures 4(a) and 4(b) show the experimental and simulated
event distributions, respectively, of �t as a function of p for
one of the CLAS sectors. The protons are centered around
�t = 0 ns and have a slight momentum dependence for p <
1 GeV. The dashed lines indicate the parametrized mean of the
distributions and the solid lines indicate the ±3.5σ cut applied
to select the protons.

C. Fiducial cuts and kinematic corrections

For perfect beam alignment, the incident electron beam is
expected to be centered at (Xbeam, Ybeam) = (0, 0) cm at the
target. However, owing to misalignments, the electron beam
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FIG. 4. (Color online) �t as a function of p. The curves show the
±3.5σ cut (solid lines) from the mean fit (dashed line) for one of the
CLAS sectors for (a) experimental and (b) Monte Carlo simulated
events.

was actually at (Xbeam, Ybeam) = (0.090,−0.345) cm. This
misalignment of the beam axis is corrected for each sector,
which also subsequently changes the reconstructed z-vertex
positions of the electron and proton tracks. The details of this
correction are described in previous works [24,25]. A cut of
z ∈ (−8.0,−0.8) cm is placed on the z-vertex to isolate events
from within the target cell.

The measured angles and momenta of the electrons and
protons are corrected using the same method as used in
previous analyses [24,25].

The electrons start to lose energy as they enter the
electromagnetic calorimeter. When the electrons shower near
the edge of the calorimeter, their shower is not fully contained
and so their energies cannot be properly reconstructed. As
such, a fiducial cut is applied to remove these events.

Electrons give off Čerenkov light in the CC, which is
collected in the PMTs on either side of the counters in each
sector. Inefficient regions in the CC are isolated by removing
those regions where the average number of photoelectrons
〈Nphe〉 < 5. This cut results in keeping all events that lie in
regions where the CC efficiency is about 99% [20].

To deal with edges and holes in the drift chambers, and
to remove dead or inefficient wires, a fiducial cut for both
electrons and protons is applied. Regions of nonuniform
acceptance in the azimuthal angle φ resulting from these
attributes are isolated on a sector-by-sector basis as a function
of the electron’s momentum pe and polar angle θe. For the
electron, at fixed pe and θe, one expects the angular distribution
to be symmetric in φe and relatively flat. Empirical cuts are
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FIG. 5. Electron φe distribution for CLAS Sector 4 for
pe = 4.1 ± 0.1 GeV shown for different θe slices. The unshaded
curves show φe distribution after electron selection and the shaded
curves show the φe distribution after applying electron drift chambers
fiducial cuts.

applied to select these regions of relatively flat φe as shown
in Fig. 5 for electrons with p = 4.1 ± 0.1 GeV for different
slices of θe and one of the CLAS sectors. The same cuts are
applied to both experimental and simulated events.

As for electrons, a fiducial cut on the proton’s azimuthal
angle φp as a function of its momentum pp and polar angle
θp is applied. However, the edges of the φp distributions are
asymmetric for different slices of θp. The upper and lower
bounds on φp are extracted and parametrized as a function of
θp and pp. The result of this cut for one of the CLAS sectors
is shown in Fig. 6.

D. Background subtraction and π 0 identification

The neutral pion in the final state is reconstructed using
energy and momentum conservation constraint. To do so, we
use the conservation of 4-momentum and look at the missing
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FIG. 6. (Color online) Proton φp vs θp distribution for CLAS Sec-
tor 4 for pp = 2.85 ± 0.15 GeV. Rejected tracks are shown in black.
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FIG. 7. The Bethe-Heitler process ep → epγ diagrams for (a) a
photon emitted from an incident electron (preradiation) and for (b) a
photon emitted from a scattered electron (postradiation).

mass squared distribution of the detected particles (i.e., the
electron and the proton):

M2
X(ep) = (l + P − l′ − P ′)2. (18)

Here, l, P , l′, and P ′ are 4-momenta of the incident and
scattered particles as described in Sec. II.

There are several difficulties in the analysis in the near-
threshold region. In this region, the pion electroproduction
cross section goes to zero; so, the statistics are very low.
Also, a major source of contamination to the neutral pion
signal near threshold is the elastic Bethe-Heitler process
ep → epγ . The two dominating Feynman diagrams for this
process are shown in Fig. 7. Figure 7(a) shows the diagram
with a preradiated photon (emission from an incident electron)
and Fig. 7(b) shows the diagram with a postradiated photon
(emission from a scattered electron). These photons are
emitted approximately in the direction of the incident and
scattered electron, respectively [26,27]. When these photons
are emitted, the incident and scattered electrons lose energy.
This feature of the Bethe-Heitler process can be exploited to
our benefit.

For the elastic process ep → ep, the proton angle can be
computed independently of the incident or scattered electron
energies:

tan θ
p
1 = 1(

1 + E′
mp−E′ cos θ ′

e

)
tan θ ′

e

2

, (19)

tan θ
p
2 = 1(

1 + E
mp

)
tan θ ′

e

2

. (20)

Here, θp
1 and θ

p
2 are the proton angles computed independently

of the incident or scattered electron energies, respectively.
Also, θ ′

e is the angle of the scattered electron in the laboratory
frame, and E and E′ are the energies of the incident and
scattered electron, respectively. We can calculate these angles
for each event and look at its deviation (�θ

p
1,2) from the

measured value (θp
meas):

�θ
p
1,2 ≡ θ

p
1,2 − θp

meas. (21)

Figure 8(a) shows the M2
X plotted as a function of this

deviation �θ
p
1 for one of the near-threshold regions, W =

1.09 ± 0.01 GeV. In the plot, we see two red spots along
M2

X = 0 GeV2. The one on the left is centered along �θ
p
1 =

0◦, corresponding to the preradiated photon events. The other
corresponds to the postradiated photon events. Additionally,
these radiative events are also present in the positive M2

X.
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FIG. 8. (Color online) (a) M2
X vs �θ

p
1 for W = 1.09 ± 0.01 GeV.

The red dashed line indicates the expected pion peak position. The
left red spot centered around zero degrees corresponds to the elastic
scattering events in which the incident electrons have undergone
Bethe-Heitler radiation (preradiative) and the one on the right to the
elastic postradiative events. The events below the linear polynomial
and outside the ellipse are selected as pions. (b) M2

X for events with
W = 1.09 ± 0.01 GeV. The black solid curve shows events prior to
any Bethe-Heitler subtraction cuts, the blue dash-dotted curve shows
events rejected from the cuts, and the red dashed curve shows those
events that survive the Bethe-Heitler subtraction cuts.

These are the radiative events that we need to isolate from the
pion signal as indicated by the red dashed line in the plot. An
ellipse and a linear polynomial are used to reject these events.
These cuts are parametrized as a function of W . The result of
these cuts is seen in Fig. 8(b) with the accepted events after the
cut shown in red (dashed curve) as our pions and the rejected
events in blue (dash-dotted curve).

After the Bethe-Heitler subtraction cuts are applied, the
pions are selected by making a ±3σ cut on M2

X from the mean
position of the distribution. An example of the distributions and
fit are shown in Fig. 9. The M2

X distributions (black circles)
are fit with two Gaussians. The blue (dash-dotted) curve is an
estimate of the remaining Bethe-Heitler background in the M2

X

distribution, which was not eliminated by the elliptical cuts of
Fig. 8(a). This was subtracted to yield the green (triangle)
points. A systematic uncertainty of ±8% is associated with
this background subtraction procedure, which is detailed in
Sec. VII.

V. SIMULATIONS

To determine the cross section, a Monte Carlo simula-
tion study is required, including a physics event generator
and the detector geometry. Events are generated using the
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FIG. 9. (Color online) An example of the M2
X(ep) distribution

with a double Gaussian fit after applying the elliptical cuts (black
circles) of Fig. 8(a) and after residual Bethe-Heitler and other contam-
ination subtractions (green triangles) for Q2 = 2.75 ± 0.25 GeV2 and
W = 1.09 ± 0.01 GeV (top) and W = 1.11 ± 0.01 GeV (bottom)
integrated over all φ∗

π and cos θ∗
π . The black dashed lines indicate the

±3σ cuts applied to select the pions. The χ 2 is the goodness of fit
per degree of freedom. See Sec. IV D for details.

MAID2007 unitary isobar model (UIM) [28], which uses a
phenomenological fit to previous photo- and electroproduction
data. Nucleon resonances are described using Breit-Wigner
forms and the nonresonant backgrounds are modeled from
Born terms and t-channel vector-meson exchange. To describe
the threshold behavior, Born terms were included with mixed
pseudovector-pseudoscalar πNN coupling [28]. While the
pion electroproduction world data in the resonance region
goes up to Q2 ∼ 7 GeV2 [29] for W > 1.11 GeV, there are
no data near threshold for Q2 > 2 GeV2 and W < 1.11 GeV
(the kinematics of this work). Thus, cross sections for the
kinematics of this work are described by extrapolations of the
fits to the existing data in the MAID2007 model.

Events are generated to cover the entire kinematic range
described in Table I. About 73 × 106 events are generated
for the 2400 kinematic bins and 6.7 × 106 events were
reconstructed after all analysis cuts. The average resolutions of

TABLE I. Kinematic bin selection.

Variable Range No. of bins Width

W (GeV) 1.08 : 1.16 4 0.02
Q2 (GeV2) 2.0 : 4.5 4 Variable
cos θ∗

π −1 : 1 5 0.4
φ∗

π (deg) 0 : 360 6 60

the kinematic quantities, W , Q2, cos θ∗
π , and φ∗

π are 0.014 GeV,
0.008 GeV2, 0.05, and 8◦, respectively. These resolutions are
obtained by comparing the generated kinematic quantities with
those after reconstruction.

After the physics events are generated, their passage
through the detector is simulated using the GEANT3-based
Monte Carlo (GSIM) program. This program simulates the
geometry of the CLAS detector during the experiment and the
interaction of the particles with the detector material. GSIM
models the effects of multiple scattering of particles in the
CLAS detector and geometric misalignments. The information
for all interactions with the detectors is recorded in raw banks,
which is used for reconstruction of the tracks.

The events from GSIM are fed through a program called the
GSIM Post Processor (GPP) to incorporate effects of tracking
resolution and dead wires in the drift chambers and timing
resolutions of the TOF.

These events are then processed using the same codes as
those events from the experiment to reconstruct tracks and
higher level information such as 4-momentum, timing, and
so on. The simulated events are analyzed the same way as
the experimental data and are used to obtain acceptance
corrections and radiative corrections for the cross-sections
calculations.

VI. CORRECTIONS

A. Acceptance corrections

Acceptance corrections are applied to the experimental
data to obtain the cross section for each kinematic bin.
These corrections describe the geometrical coverage of the
CLAS detector, inefficiencies in hardware and software, and
resolution effects from track reconstruction.

By comparing the number of events in each kinematic bin
from the physics generator and the reconstruction process, the
acceptance can be obtained as

Ai = Ni
rec

Ni
gen

, (22)

where Ni
rec corresponds to those events that have gone through

the entire analysis process including track reconstruction and
all analysis cuts. Ni

gen are those events that were generated.
Figure 10 shows the acceptances for a few of the near-threshold
bins as a function of φ∗

π .

B. Radiative corrections

The radiative correction is obtained using the software
package EXCLURAD [30] that takes theoretical models as input
to compute the corrections. For this experiment the MAID2007
model, the same model used to generate Monte Carlo events,
is used to determine the radiative corrections. The radiative
corrections are closely related to the acceptance corrections.
For each kinematic bin the differential cross section can be
written as

σ = Nmeas

LA

1

δ
, (23)
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FIG. 10. Acceptance corrections for W = 1.09 GeV and Q2 =
2.75 GeV2 as a function of φ∗

π . Each subplot shows the correction for
a different cos θ∗

π bin.

where Nmeas/L is the number of events from the experiment
normalized by the integrated luminosity (with appropriate
factors) before acceptance and radiative corrections. Also,
A = NRAD

rec /NRAD
gen is the acceptance correction for the bin and

δ is the radiative correction. It should be noted that the events
for the acceptance correction were generated with a radiated
photon in the final state using the MAID2007 model.

EXCLURAD uses the same model to obtain the correction δ =
NRAD′

gen /NNORAD′
gen , where NNORAD′

gen are events generated without
a radiated photon in the final state. Thus,

σ = Nmeas

L

(
NRAD

gen

NRAD
rec

)
×

(
NNORAD′

gen

NRAD′
gen

)
. (24)

The details of the radiative correction procedure are described
in Ref. [25].

Figure 11 shows the radiative corrections calculated for
one of the kinematic bins as a function of the pion angles in
the c.m. system. One can observe that the corrections have a
φ∗

π dependence. This is because the bremsstrahlung process
occurs only near the leptonic plane, i.e., at angles near 0◦
or 180◦ with respect to the hadronic plane. Also, one can
notice that the correction increases with cos θ∗

π → −1. This
is because the cross section is expected to approach zero at

FIG. 11. The radiative corrections for W = 1.11 GeV and Q2 =
3.25 GeV2 as a function of cos θ∗

π and φ∗
π obtained from EXCLURAD

using the MAID2007 model.

backwards angles and that is the region where the Bethe-
Heitler events dominate. The average radiative correction over
all kinematic bins is ∼25%.

C. Other corrections

Two other corrections were applied to the cross section.
One of them involves estimating the fraction of the events
originating from the target cell walls and the other is an
empirical overall normalization factor.

To estimate the level of contamination from the target cell
walls, events collected during the empty-target run period of
the experiment are analyzed using the same process as those
for the production run period. Only those events that fall within
the target wall region for the empty target should be considered
for the source of contamination. This is because even though
there was no liquid hydrogen in the target, it was still filled with
cold hydrogen gas. So, for this estimation only events within
±0.5 cm of the target wall region are selected. The correction
is then calculated by taking the ratio of events within this target
region from the empty target runs to those from the production
run normalized to the total charge, ρ, collected during the run
periods,

R = Nempty target

Nproduction

ρproduction

ρempty target
. (25)

The average contamination is approximately 1%–1.9%, de-
pending on the W kinematic bin. This ratio is then applied
as a correction factor to the measured cross section σ =
σmeas(1 − R). Here, σ is the corrected cross section and σmeas

is the measured cross section for a particular bin in W .
The second correction (the empirical overall normaliza-

tion factor) comes from comparing the measured ep → ep
elastic and the ep → epπ0 cross sections in the �(1232)
resonance region (W = 1.23 GeV) to previously measured
values [24,28,31,32]. The measured elastic scattering cross
section from this experimental data was compared to the
known cross-section values [31], where both the electron and
the proton were detected in the final state. A deviation of ∼11%
from the known cross section values is observed.

This deviation of ∼11% from the known elastic electron-
proton scattering cross section includes the inefficiencies
associated with the proton detection in CLAS [17,33].

To account for this discrepancy, an overall normalization
factor of Relastic = 0.89 is applied to the ep → epπ0 differ-
ential cross section for every kinematic bin. An associated
systematic uncertainty of ±5% is applied. After this correction
is applied, the measured ep → epπ0 cross sections for the
�(1232) resonance region, W = 1.23 ± 0.01 GeV, are in
agreement with previous measurements [24,28,32] to within
5% on average. Figure 12 shows the result of this correction
for a few kinematic bins in the �(1232) resonance region.

Because the threshold region of interest for this experiment
is sandwiched between the elastic and the �(1232) resonance
region and the results in these two regions are consistent
with previous measurements after applying this overall nor-
malization factor, we believe this procedure is justified. This
correction to the cross section also includes any detector
inefficiencies and, as such, these inefficiencies will not be
accounted for separately.
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FIG. 12. The differential cross section ep → epπ0 for the
�(1232) resonance region, W = 1.23 ± 0.01 GeV, for typical kine-
matic bins. The squares are the measured cross sections after applying
the normalization correction factor (see text for details). The dashed
curves are from Ref. [32] and the dash-dotted curves are from the
MAID2007 model. The corrected values agree with the two curves
to within 5% on average.

VII. SYSTEMATIC STUDIES

To determine the systematic uncertainties in the analysis,
the parameters of the likely sources of those uncertainties are
varied within reasonable bounds and the sensitivity of the final
result is checked against this variation. A summary of the
systematic uncertainties averaged over the kinematic bins of
interest is shown in Table II.

The electron and proton identification cuts, the electron
fiducial cuts, the vertex cuts and the target cell correction
cuts provide small contributions to the overall systematic
uncertainties.

The electron EC sampling fraction cuts were varied from 3σ
to 3.5σ and the extracted structure functions changed by about
0.4% on average. The parameters for the electron fiducial cuts
were similarly varied by about 10% and the structure functions
changed by about 1% on average. As such, a systematic
uncertainty of 0.4% and 1% was assigned to these sources.

TABLE II. The average systematic uncertainties for the differ-
ential cross sections from various sources and the corresponding
criteria. The final quoted systematic uncertainty, obtained by adding
the different systematic uncertainties from each source in quadrature,
is about 10.8%.

Source Estimate (%)

e− EC sampling fraction cuts 0.4
e− fiducial cuts 1
p �t cuts 1.1
Vertex cuts 0.1
Background subtraction cuts 8
π 0 M2

X cut 3
Target cell correction 1
Elastic normalization correction 5
Acceptance and radiative correction 4
Total 10.8

The �t cuts to select the protons were varied from 3.5σ
to 4σ and a variation of about 1.1% on average was observed
on the extracted structure functions, which was assigned as
the systematic uncertainty associated with this source. The
variations in the fiducial cuts for the proton had a negligible
effect on the structure functions.

The vertex cuts were reduced by 5% and a variation of
about 0.1% on average was observed on the extracted structure
functions. So, a systematic uncertainty of 0.1% was assigned
to this source. The structure functions are compared before
and after applying the target cell corrections. A variation of
about 1% is observed and this value was assigned as a source
of systematic uncertainty.

The major sources of systematic uncertainty are the Bethe-
Heitler background subtraction, the missing mass squared cut
to select the neutral pions, the elastic normalization corrections
and the model dependence of the acceptance and radiative
corrections.

There are residual Bethe-Heitler events that escape the
elliptical Bethe-Heitler cuts. These events peak at M2

X = 0,
which have to be included in the overall fit. A Gaussian
distribution was assumed for both the π0 and the remaining
Bethe-Heitler events. The pions are modeled by a Gaussian
distribution near the expected pion mass and the Bethe-Heitler
events are modeled by a Gaussian whose peak is at M2

X = 0.
This accounts for much of the tail in Figs. 8(b) and 9.
The resolution for M2

X for the Bethe-Heitler and the pion
distributions is expected to be similar because of the same
kinematics of the detected electron and the proton. The
Gaussian fit for the Bethe-Heitler is obtained, which is then
subtracted to yield the pions.

To see the effect of the background subtraction, the structure
functions were compared with and without the application of
the Bethe-Heitler background subtraction cuts. The structure
functions changed by about 8% on average and this was used
as a systematic uncertainty for this procedure.

The missing mass squared cut was varied from 3σ to 4σ
and this resulted in a change of about 3% on average in the
extracted structure functions.

The systematic uncertainty on the elastic normalization
correction of ±5% was obtained by looking at the difference
between the extracted structure functions before and after
applying the correction factor to the data. The structure
functions varied by about 5% on average.

Additionally, a ±4% systematic uncertainty is assigned
on the model dependence of the acceptance and radiative
corrections based on previous analyses [15,24,25].

The total average systematic uncertainty, obtained by
adding the individual contributions in quadrature is 10.8%.

VIII. DIFFERENTIAL CROSS SECTIONS AND
STRUCTURE FUNCTIONS

The kinematic coverage of the experiment spans over W
from 1.08 to 1.16 GeV and Q2 from 2 to 4.5 GeV2. The
reduced differential cross section for the reaction is computed
for each kinematic bin. The cross sections are reported at the
center of each kinematic bin. Figure 13 shows the differential
cross section for some of the kinematic bins near threshold as a
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FIG. 13. The differential cross sections in μb/sr for a few kinematic bins near threshold as a function of φ∗
π . Experimental points (squares)

are shown with statistical uncertainties only. The sizes of the estimated systematic uncertainties are shown in gray boxes below. The predictions
from LCSR, MAID2007, and SAID are shown as dashed, dash-dotted, and dash-double-dotted curves, respectively. The horizontal line at zero
serves as a visual aid. The fit to the distributions is shown as a solid curve. See Sec. VIII for details.

function of φ∗
π . The predictions from LCSR [14], MAID2007

[28], and SAID [34] are shown for comparison.
Using Eq. (16), the differential cross section is fitted to

extract the structure functions σT + εσL, σTT, and σLT. The
result of the fit is shown as the solid curve in Fig. 13. The
reduced χ2 for the fit is calculated using χ2 = χ2

0 /ν, where ν
is the number of degrees of freedom calculated for each W , Q2,
and cos θ∗

π bin (i.e., ν = 6 data points −3 fit parameters = 3),
and χ2

0 is the un-normalized goodness of fit. The averaged χ2

of the fits is 0.9.
The extracted structure functions σT + εσL, σTT, and σLT

are shown in Figs. 14–16, respectively, as a function of cos θ∗
π

for W = 1.08–1.16 GeV and Q2 = 2.0–4.5 GeV2. The data
points are shown with statistical error bars only and the size of
the systematic errors is shown as the gray boxes. Predictions
from LCSR, MAID2007, and SAID are also included for σT +
εσL and σLT. Because the LCSR does not include any σTT

contributions in the calculations, they are not shown.
The structure function σT + εσL (Fig. 14) is generally in

good agreement with the MAID2007 predictions but there
is some discrepancy for W = 1.09 GeV at high cos θ∗

π . This
discrepancy is reduced for higher W bins. The results disagree
with the LCSR predictions, especially for those bins away from
threshold (W > 1.09 GeV). This disagreement is also apparent
for low Q2 bins. As one moves closer to threshold and at
high Q2, the agreement is quite good, especially at backward

angles cos θ∗
π → −1. The LCSRs have been calculated and

tuned especially for the threshold region at high Q2 and, thus,
there exists a strong disagreement at higher W and low Q2

bins. The predictions from SAID strongly disagree for the first
W bin and low Q2 bins, but converge toward the MAID2007
predictions for higher W and Q2.

The structure function σTT (Fig. 15) results are in good
agreement with the SAID and MAID2007 predictions for low
W and high Q2 but disagree at high W and low Q2 bins. Most
of the values are close to zero for all W . The LCSR predictions
assume only s-wave contributions to the cross section from
this structure function. The d-wave contribution to the total
cross sections in SAID range from 0 to 0.001μb for the near-
threshold bins [34].

The structure function σLT (Fig. 16) also shows good
agreement with the MAID2007 and LCSR predictions for
high Q2 and low W , but there is some discrepancy at other
kinematics. The SAID prediction has a large disagreement at
low W and Q2, but the level of agreement at other kinematics
is similar to the MAID2007 model.

IX. S-WAVE MULTIPOLES AND
GENERALIZED FORM FACTORS

To compare with the calculated generalized form fac-
tors of Ref. [14], one must extract the s-wave multipole
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FIG. 14. The structure function σT + εσL as a function of cos θ∗
π in

μb/sr for W = 1.08–1.16 GeV and Q2 = 2.0–4.5 GeV2. Predictions
from LCSR that include only s-wave contribution (dashed line),
MAID2007 (dash-dotted line), and SAID (dash-double-dotted line)
are shown. The error bars represent statistical uncertainties only and
the estimated systematic uncertainties are shown as gray boxes. The
solid curve corresponds to the results obtained from the fit to the
cross sections (see Sec. IX for details). The values of Q2 (on top of
the panels) and W (on the right side of the panels) are the central
values of the bins.

amplitudes from the measured cross sections. First, the
structure functions are written in terms of the helicity
amplitudes Hi . The helicity amplitudes are functions de-
fined by transitions between eigenstates of the helicities
of the nucleon and the virtual photon [16]. The helicity
amplitudes are then expanded in terms of the multipole
amplitudes.

The structure functions are related to the helicity amplitudes
H1,2,...,6(W,Q2, cos θ∗

π ) by

σT = 1
2 (|H1|2 + |H2|2 + |H3|2 + |H4|2), (26)

σL = |H5|2 + |H6|2, (27)
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FIG. 15. The structure function σTT as a function of cos θ∗
π

in μb/sr for W = 1.08 − 1.16 GeV and Q2 = 2.0 − 4.5 GeV2.
Predictions from MAID2007 (dash-dotted line) and SAID (dash-
double-dotted line) are shown. The LCSR predictions do not include
any σTT contributions, so they are not shown. The error bars
represent statistical uncertainties only and the estimated systematic
uncertainties are shown as gray boxes. The solid curve corresponds to
the results obtained from the fit to the cross sections (see Sec. IX for
details). The values of Q2 (on top of the panels) and W (on the right
side of the panels) are the central values of the bins. The horizontal
line at zero serves as a visual aid.

σTT = Re(H3H
∗
2 − H4H

∗
1 ), (28)

σLT = − 1√
2

Re[(H1 − H4)H ∗
5 + (H2 + H3)H ∗

6 ]. (29)

The analysis of the data is based on the following expansion
of the helicity amplitudes over multipole amplitudes (see, for
example, [35]):

H1 = 1√
2

sin θ∗
π cos

θ∗
π

2

∑
(Bl+ − B(l+1)−)

× [P ′′
l (cos θ∗

π ) − P ′′
l+1(cos θ∗

π )], (30)
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FIG. 16. The structure function σLT as a function of cos θ∗
π in

μb/sr for W = 1.08–1.16 GeV and Q2 = 2.0–4.5 GeV2. Predictions
from LCSR that include only s-wave contribution (dashed line),
MAID2007 (dash-dotted line), and SAID (dash-double-dotted line)
are shown. The error bars represent statistical uncertainties only and
the estimated systematic uncertainties are shown as gray boxes. The
solid curve corresponds to the results obtained from the fit to the
cross sections (see Sec. IX for details). The values of Q2 (on top of
the panels) and W (on the right side of the panels) are the central
values of the bins. The horizontal line at zero serves as a visual aid.

H2 =
√

2 cos
θ∗
π

2

∑
(Al+ − A(l+1)−)

× [P ′
l (cos θ∗

π ) − P ′
l+1(cos θ∗

π )], (31)

H3 = 1√
2

sin θ∗
π sin

θ∗
π

2

∑
(Bl+ + B(l+1)−)

× [P ′′
l (cos θ∗

π ) + P ′′
l+1(cos θ∗

π )], (32)

H4 =
√

2 sin
θ∗
π

2

∑
(Al+ + A(l+1)−)

×[P ′
l (cos θ∗

π ) + P ′
l+1(cos θ∗

π )], (33)

H5 = Q

|q∗| cos
θ∗
π

2

∑
(l + 1)(Sl+ + S(l+1)−)

× [P ′
l (cos θ∗

π ) − P ′
l+1(cos θ∗

π )], (34)

H6 = Q

|q∗| sin
θ∗
π

2

∑
(l + 1)(Sl+ − S(l+1)−)

× [P ′
l (cos θ∗

π ) + P ′
l+1(cos θ∗

π )]. (35)

Here, P ′
l,l+1(cos θ∗

π ) and P ′′
l,l+1(cos θ∗

π ) are the first and
second derivatives of the Legendre polynomials, respectively,
and q∗ is the virtual photon 3-momentum in the c.m. system.
Also,

Al+ = 1
2 [(l + 2)El+ + lMl+] , (36)

Bl+ = El+ − Ml+, (37)

A(l+1)− = 1
2 [(l + 2)M(l+1)− − lE(l+1)−], (38)

B(l+1)− = E(l+1)− + M(l+1)−. (39)

The strong cos θ∗
π dependence of the structure function

σT + εσL and the nonzero values of σLT found in the ex-
periment (see Figs. 14 and 16) show that higher multipole
amplitudes should be taken into account in addition to the
s-wave amplitudes E0+ and S0+ at all W . Our understanding
of the high-wave multipoles, which should be included in this
analysis, was based on the results of the analysis of CLAS data
[24,25] performed in Ref. [32] using the UIM and dispersion
relations (DRs). These data are on the γ ∗p → π+n [25] and
γ ∗p → π0p [24] cross sections in a similar range of Q2 but
in a significantly wider energy range, which start from W =
1.15 and 1.11 GeV, respectively. The precision in the present
experimental results near threshold is much better than the
precision in Refs. [24,25]. However, the results of their analysis
are useful to study the p- and d-wave contributions, which
are determined mainly by the �(1232)P33, N (1440)P11, and
N (1520)D13 resonances.

According to the results of the analysis [32] at W = 1.09 to
1.15 GeV, there are large p-wave contributions related to the
�(1232)P33 and N (1440)P11. The d-wave contributions are
negligibly small for the following reasons: (i) near threshold,
the d-wave multipole amplitudes are suppressed compared to
the p-wave amplitudes by the additional kinematical factor
p∗

π ; (ii) at the values of Q2 investigated in this experiment, the
contribution of the N (1520)D13 to the corresponding multipole
amplitudes is significantly smaller than the contributions of the
�(1232)P33 and N (1440)P11 to the p-wave multipole ampli-
tudes; (iii) in contrast with the �(1232)P33 and N (1440)P11,
the width of the N (1520)D13 is significantly smaller than the
difference between the mass of the resonance and total energy
at the threshold. Therefore, in our analysis only multipole
amplitudes E0+, S0+, M1±, S1±, and E1+ were included.

The data were fitted simultaneously at W = 1.09, 1.11, 1.13,
and 1.15 GeV with statistical and systematic uncertainties
added in quadrature for each point. The amplitudes were
parametrized according to their threshold behavior and the
results of the analysis in Ref. [32].

Owing to the Watson theorem [36], the imaginary parts of
the multipole amplitudes below the 2π production threshold
are related to their real parts as ImM = ReM tan(δI

πN ), where
M denotes EI

l±, MI
l±, or SI

l± amplitudes, and I is the total
isotopic spin of the πN system. Near threshold δI

πN ∼ p∗2l+1
π ,

and the imaginary parts of the multipole amplitudes are
suppressed compared to their real parts. Therefore, in the
analysis, only the real parts of the amplitudes were kept. These
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FIG. 17. The s-wave multipoles (a) E0+ and (b) S0+ normalized to
the dipole formula GD are plotted as a function of Q2. The error bars
include statistical and systematic uncertainties added in quadrature.
The size of the estimated systematic uncertainties are shown at the
bottom. The LCSR-based model predictions and the LET predictions
are also shown as curves. The horizontal line at zero serves as a visual
aid.

amplitudes were parametrized as follows: E0+, S0+ ∼ const,
M1±, S1±, and E1+ ∼ p∗

π .
In the fitting procedure, the amplitudes E0+, S0+, and

M1± were fitted without any restrictions. The relatively small
amplitudes S1± and E1+ were fitted within ranges found from
the results of the analysis of the data [24,25] using the UIM and
DR in Ref. [32]. It should be mentioned that the results for the
M1± contributions obtained in our fit of the γ ∗p → π0p cross
sections near threshold are consistent with those of Ref. [32]
obtained in the analysis of significantly larger range over W .
The overall average χ2 per degree of freedom for the fit is
approximately one.

The obtained results for the structure functions are plotted
in Figs. 14–16 as solid curves. It can be seen that the multipole
amplitudes E0+, S0+, M1±, S1±, and E1+ parametrized in the
way discussed above represent the data very well at all W .
The obtained results for E0+ and S0+ are presented in Fig. 17.
These multipoles have been normalized to the dipole formula
GD(Q2) = (1 + Q2

0.71 )−2.
Figure 18 shows the extracted generalized form factors,

G1 and G2, as a function of Q2. The error bars on the
points include statistical and systematic uncertainties added in
quadrature. The size of the estimated systematic uncertainties
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FIG. 18. The generalized form factors (a) G
π0p
1 and (b) G

π0p
2

normalized to the dipole formula GD are plotted as a function of Q2.
The error bars include statistical and systematic uncertainties added
in quadrature. The size of the estimated systematic uncertainties are
shown in the bottom. The LCSR-based model predictions and the
LET predictions are also shown as curves. The horizontal line at zero
serves as a visual aid.

is shown separately at the bottom of the plots, which assumes
all systematic errors for all the data points to be entirely
uncorrelated (10.8%). The LET [7] predictions are shown as
dash-dotted curves.

The plots also show LCSR predictions [14] as solid and
dashed curves. Braun et al. have tried to minimize the
uncertainties in their LCSR-based model calculations by
including electromagnetic form factor values known from
experiment. These calculations are shown as solid curves in
the figure. The “pure” LCSR-based models are calculations
where all the form factors are obtained entirely from theoretical
calculations and the uncertainties have not been minimized.
These are shown as dashed curves in the figure. The difference
between these two curves can essentially be treated as the
overall uncertainty in their predictions.

X. DISCUSSION

The results for the E0+ multipole and G
π0p
1 are in good

agreement with the LCSR predictions. The extracted E0+
values deviate significantly from the LET predictions over

the entire Q2 range even though the extracted G
π0p
1 values

are not too far off from the LET predictions. This is because
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the LET calculations for E0+ only depend on G
π0p
1 [Eq. (5)],

whereas the LCSR calculations include contributions from
both G

π0p
1 and G

π0p
2 [Eq. (2)]. The overall trends of increasing

E0+ and decreasing G
π0p
1 are similar to these two predictions,

but the deviation of the extracted values for G
π0p
1 from the LET

predictions becomes much more apparent at Q2 > 3 GeV2.
One can observe a discrepancy of our results for the S0+

multipole and G
π0p
2 from the LCSR predictions. The results

are closer to the LET predictions but are not entirely consistent
for all Q2.

The uncertainty in the LCSR predictions for the S0+
multipole and G

π0p
2 is much bigger than for E0+ and G

π0p
1 . In

the chiral limit approximation, mπ → 0, the Pauli form factor
F2(Q2), which is the primary contributor to the calculations

of S0+ and G
π0p
2 , is not reproduced very well. Also, the LCSR

calculations exist in leading order only and do not include
next-to-leading order (NLO) corrections. The NLO corrections
are expected to be large. Additionally, the LCSR predictions
contain approximations and were not expected to have an
accuracy of better than 20% [14].

Furthermore, the LCSR predictions do not include effects
from terms proportional to the pion mass. In the Q2 region
of this experiment, the predictions indicate a suppression of
the S0+ multipole [14] and this multipole is very sensitive to
corrections of all kinds, including the pion mass corrections.
In the LET predictions, some pion mass corrections have been
included [7]. This may also explain the discrepancy between

the predictions and the extracted results for S0+ and G
π0p
2 .

Owing to these theoretical uncertainties, the predictions of

the magnitude of S0+ and G
π0p
2 /GD , and where they cross

zero, differ for the two methods of calculation. The exper-

imental results indicate that this sign change for G
π0p
2 /GD

occurs at Q2 > 4 GeV2 rather than at the LCSR prediction of
around 2.2 or 3.5 GeV2.

The results of the structure functions, Figs. 14–16, indicate
a significant contribution of the p-wave in the near-threshold
region as indicated by the almost linear dependence of the
σT + εσL as a function of cos θ∗

π . This contribution increases as
one moves away from threshold to higher W (e.g., see Fig. 16).

This is highly underestimated in the overall LCSR predictions
for the structure functions and cross-section calculations. Their
predictions are tuned to include mostly s-wave and very little
p-wave contribution very close to threshold at high Q2. This
also explains the good agreement of the extracted E0+ and

G
π0p
1 to their predictions but the strong disagreement of the

S0+, G
π0p
2 , the cross sections, and the structure functions.

The extracted generalized form factors, G
π0p
1 and G

π0p
2 ,

show a faster falloff than the dipole form. This suggests a
broadening of the spatial distribution of the correlated pion-
nucleon system. It suggests that the correlated pion-nucleon
system is broader than the bare nucleon itself because the bare
nucleon follows the dipole form factor.

The results for G
π0p
1 show similar trends to the previously

extracted Gπ+n
1 [15]. In comparison, the former is about 30%

higher in magnitude while the overall behavior as a function
of Q2 is similar. There are no results for Gπ+n

2 for comparison.
However, the generalized form factor results for the π0p
channel provide strong constraints on chiral aspects of the
nucleon structure and the validity of the LETs at high Q2.
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