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Recent Progress on Truncated Toeplitz
Operators

Stephan Ramon Garcia and William T. Ross

Abstract This paper is a survey on the emerging theory of truncated
Toeplitz operators. We begin with a brief introduction to the subject and
then highlight the many recent developments in the field since Sarason’s
seminal paper [88] from 2007.

1 Introduction

Although the subject has deep classical roots, the systematic study of trun-
cated Toeplitz operators for their own sake was only recently spurred by the
seminal 2007 paper of Sarason [88]. In part motivated by several of the prob-
lems posed in the aforementioned article, the area has undergone vigorous
development during the past several years [13][14[23, 25,128 [35] 4549521 56
59,[65188-90,9293,96]. While several of the initial questions raised by Sara-
son have now been resolved, the study of truncated Toeplitz operators has
nevertheless proven to be fertile ground, spawning both new questions and
unexpected results. In this survey, we aim to keep the interested reader up to
date and to give the uninitiated reader a historical overview and a summary
of the important results and major developments in this area.

Our survey commences in Section [2] with an extensive treatment of the ba-
sic definitions, theorems, and techniques of the area. Consequently, we shall be
brief in this introduction and simply declare that a truncated Toeplitz operator
is the compression A7 : K, — K, of a classical Toeplitz operator T, to a shift
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coinvariant subspace K, := H2SuH? of the classical Hardy space H2. Here u
denotes a nonconstant inner function and we write A f = P,(¢f) where P,
denotes the orthogonal projection from L? onto K. Interestingly, the study
of potentially unbounded truncated Toeplitz operators, having symbols ¢ in
L? as opposed to L™, has proven to be spectacularly fruitful. Indeed, a num-
ber of important questions in the area revolve around this theme (e.g., the
results of Section []).

Before proceeding, let us first recall several instances where truncated
Toeplitz operators have appeared in the literature. This will not only provide
a historical perspective on the subject, but it will also illustrate the fact that
truncated Toeplitz operators, in various guises, form the foundations of much
of modern function-related operator theory.

Let us begin with the poweful Sz.-Nagy-Foiag model theory for Hilbert
space contractions, the simplest manifestation of which is the compressed
shift AY [T6TTHT9/82]. To be more specific, every Hilbert space contraction T
having defect indices (1, 1) and such that lim,_,, 7*" = 0 (SOT) is unitarily
equivalent to AY for some inner function u. Natural generalizations of this
result are available to treat contractions with arbitrary defect indices by
employing the machinery of vector-valued model spaces and operator-valued
inner functions.

In his approach to the Gelfand problem, that is the characterization of the
invariant subspace lattice LatV of the Volterra integration operator

V() = / " ) dy 1)

on L?[0,1], Sarason noted that the Volterra operator is unitarily equivalent
to the Cayley transform of the compressed shift AY corresponding to the
atomic inner function u(z) = exp(2t}) [84]. This equivalence was then used
in conjunction with Beurling’s Theorem to demonstrate the unicellularity of
LatV [(8,79,[84,[86]. Interestingly, it turns out that the Volterra operator,
and truncated Toeplitz operators in general, are natural examples of complex
symmetric operators, a large class of Hilbert space operators which has also
undergone significant development in recent years [24}[35]45H50,[54] 55, 6T
63, [71],[72,[74, TO3HIOT]. This link between truncated Toeplitz operators and
complex symmetric operators is explored in Section

Sarason himself identified the commutant of A% as the set {Ag : p € H>}
of all analytic truncated Toeplitz operators. He also obtained an H* func-
tional calculus for the compressed shift, establishing that p(AY) = AY holds
for all ¢ in H*® [85]. These seminal observations mark the beginning of the
so-called commutant lifting theory, which has been developed to great effect
over the ensuing decades [42,[80,[0T]. Moreover, these techniques have given
new perspectives on several classical problems in complex function theory. For
instance, the Carathéodory and Pick problems lead one naturally to consider
lower triangular Toeplitz matrices (i.e., analytic truncated Toeplitz operators
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on K,n) and the backward shift on the span of a finite collection of Cauchy
kernels (i.e., A% on a finite dimensional model space K, ). We refer the reader
to the text [I] which treats these problems in greater detail and generality.

Toeplitz matrices, which can be viewed as truncated Toeplitz operators
on K,n, have long been the subject of intense research. We make no at-
tempt to give even a superficial discussion of this immense topic. Instead,
we merely refer the reader to several recent texts which analyze various as-
pects of this fascinating subject. The pseudospectral properties of Toeplitz
matrices are explored in [I00]. The asymptotic analysis of Toeplitz operators
on H? via large truncated Toeplitz matrices is the focus of [19]. The role
played by Toeplitz determinants in the study of orthogonal polynomials is
discussed in [94,[05] and its relationship to random matrix theory is exam-
ined in [I5.[70]. Finally, we should also remark that a special class of Toeplitz
matrices, namely circulant matrices, are a crucial ingredient in many aspects
of numerical computing [37].

We must also say a few words about the appearance of truncated Toeplitz
operators in applications to control theory and electrical engineering. In such
contexts, extremal problems posed over H* often appear. It is well-known
that the solution to many such problems can be obtained by computing
the norm of an associated Hankel operator [43]44]. However, it turns out
that many questions about Hankel operators can be phrased in terms of
analytic truncated Toeplitz operators and, moreover, this link has long been
exploited [81] eq. 2.9]. Changing directions somewhat, we remark that the
skew Toeplitz operators arising in H> control theory are closely related to
selfadjoint truncated Toeplitz operators [T7,[18].

Among other things, Sarason’s recent article [88] is notable for opening
the general study of truncated Toeplitz operators, beyond the traditional
confines of the analytic (¢ € H®) and co-analytic (g € H>) cases and
the limitations of the case u = 2V (i.e., Toeplitz matrices), all of which
are evidently well-studied in the literature. By permitting arbitrary symbols
in L>, and indeed under some circumstances in L?, an immense array of
new theorems, novel observations, and difficult problems emerges. It is our
aim in this article to provide an overview of the ensuing developments, with
an eye toward promoting further research. In particular, we make an effort
to highlight open problems and unresolved issues which we hope will spur
further advances.

2 Preliminaries

In this section we gather together some of the standard results on model
spaces and Aleksandrov-Clark measures which will be necessary for what
follows. Since most of this material is familiar to those who have studied
Sarason’s article [88], the following presentation is somewhat terse. Indeed,
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it serves primarily as a review of the standard notations and conventions of
the field.

2.1 Basic Notation

Let D be the open unit disk, 0D the unit circle, m = df/27 normalized
Lebesgue measure on 0D, and L? := LP(0D, m) be the standard Lebesgue
spaces on dD. For 0 < p < co we use HP to denote the classical Hardy spaces
of D and H* to denote the bounded analytic functions on D. As is standard,
we regard HP as a closed subspace of LP by identifying each f € HP with its
m-~almost everywhere LP boundary function

f(¢) := lim f(r{), m-a.e. € ID.
r—1-
In the Hilbert space setting H? (or L?) we denote the norm as || - || and the
usual integral inner product by (-,-). On the rare occasions when we need
to discuss LP norms we will use || - ||,. We let C denote the Riemann sphere

Cu{oo} and, for aset A C C, we let A~ denote the closure of A. For a subset
VCLP, welet V:={f:f €V} We interpret the Cauchy integral formula

_ f©)
f()\) - oD 1 _Z)\

dm(),
valid for all f in H?2, in the context of reproducing kernel Hilbert spaces by
writing f(A\) = (f, ¢x) where

1
11—z

(2)

ex(z)
denotes the Cauchy kernel (also called the Szegd kernel). A short computa-

tion now reveals that the orthogonal projection P, from L? onto H? (i.e.,
the Riesz projection) satisfies

[P fI(A) = (f,ex)
for all f € L? and A € D.

2.2 Model Spaces

Let S : H? — H? denote the unilateral shift

[S1(2) = 2f(2), (3)
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and recall that Beurling’s Theorem asserts that the nonzero S-invariant sub-
spaces of H? are those of the form uH? for some inner function u. Letting

f(z) = 1(0)

z

[S*f1(z) = (4)
denote the backward shift operator, it follows that the proper S*-invariant
subspaces of H? are precisely those of the form

Ky = H?* ©uH?. (5)

The subspace (B is called the model space corresponding to the inner function
u, the terminology stemming from the important role that IC,, plays in the
model theory for Hilbert space contractions [79, Part C].

Although they will play only a small role in what follows, we should also
mention that the backward shift invariant subspaces of the Hardy spaces H?
for 0 < p < oo are also known. In particular, for 1 < p < oo the proper
backward shift invariant subspaces of HP are all of the form

KP .= H? NuH?, (6)

where H{ denotes the subspace of HP consisting of those H? functions which
vanish at the origin and where the right-hand side of (@) is to be understood
in terms of boundary functions on 9. For further details and information on
the more difficult case 0 < p < 1, we refer the reader to the text [27] and the
original article [4] of Aleksandrov. For p = 2, we often suppress the exponent
and simply write C,, in place of 2.

2.3 Pseudocontinuations

Since the initial definition (@) of P is somewhat indirect, one might hope
for a more concrete description of the functions belonging to K. A conve-
nient function-theoretic characterization of K is provided by the following
important result.

Theorem 1 (Douglas-Shapiro-Shields [39]). If 1 < p < oo, then [ be-
longs to KL if and only if there exists a G € HP(C\D™) which vanishes at
mﬁmt such that

lim G(r¢) = lim i(r()

r—1t r—1- U
for almost every ¢ on JD.

The function G in the above theorem is called a pseudocontinuation of f/u
to C\D~. We refer the reader to the references [5l271[391[83] for further infor-

1 Equivalently, G(1/z) € HJ.
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mation about pseudocontinations and their properties. An explicit function
theoretic parametrization of the spaces KF is discussed in detail in [45].

2.4 Kernel Functions, Conjugation, and Angular
Derivatives

Letting P, denote the orthogonal projection from L? onto K, we see that

[PufI(A) = (f, kx) (7)
for each X\ in . Here Ru(:)
1 —u(Mu(z

RaE) = T )

denotes the reproducing kernel for IC,. In particular, this family of functions
has the property that f(A) = (f, kx) for every f € K, and A € D.

Each model space K,, carries a natural conjugation (an isometric, conjugate-
linear involution) C : K,, — K, defined in terms of boundary functions by

[CFIC) = F(O)Cu(C). (9)

For notational convenience, we sometimes denote the conjugate C'f of f by f.
More information about conjugations in general, along with specific proper-
ties of the map (@) can be found in [45]. For the moment, we simply mention
that the so-called conjugate kernels

u(z) —u()

(Chal() = 2=

(10)
will be important in what follows. In particular, observe that each conjugate
kernel is a difference quotient for the inner function u. We therefore expect
that derivatives will soon enter the picture.

Definition 1. For an inner function v and a point ¢ on 0D we say that u
has an angular derivative in the sense of Carathéodory (ADC) at ¢ if the
nontangential limits of v and v’ exist at ¢ and |u(¢)| = 1.

The following theorem provides several useful characterizations of ADCs.

Theorem 2 (Ahern-Clark [3]). For an inner function u = bus,,, where by
is a Blaschke product with zeros A = {\,}52,, repeated according to multi-
plicity, s, is a singular inner function with corresponding singular measure
W, and ¢ € 0D, the following are equivalent:

(i) Every f € K, has a nontangential limit at (.
(i) For every f € K., f(\) is bounded as A — ¢ nontangentially.
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(i1i) u has an ADC at (.
(iv) The function

1—
c(2) = 1UEC%Z(Z), (11)
belongs to H?.
(v) The following condition holds:
1 - |)\n|2 d.u(g)
—_— . 12
St e -

n>1

In fact, the preceding is only a partial statement of the Ahern-Clark result,
for there are several other additional conditions which can be appended to
the preceding list. Moreover, they also characterized the existence of nontan-
gential boundary limits of the derivatives (up to a given order) of functions
in IC,,. An extension of Theorem [ to the spaces K? is due to Cohn [32].

Among other things, Theorem [2] tells us that whenever u has an ADC at
a point ¢ on JD, then the functions (IIl), are reproducing kernels for &, in
the sense that the reproducing property f(¢) = (f, k¢) holds for all f in IC,,.
In a similar manner, the functions

u(z) — u(¢)
z2=C

are also defined and belong to K, whenever u has an ADC at (.

[Ckcl(z) =

2.5 Two Results of Aleksandrov

Letting H* denote the Banach algebra of all bounded analytic functions on
D, we observe that the set K£° := K, N H* is dense in KC,, since span{S*"u :
n=1,2,...} is dense in K,. Another way to see that K2° is dense in I, is
to observe that each reproducing kernel () belongs to K2° whence span{k) :
A € A} is dense in K,, whenever A is a uniqueness set for /C,.

For many approximation arguments, the density of KC° in /C,, is sufficient.
In other circumstances, however, one requires continuity up to the boundary.
Unfortunately, for many inner functions (e.g., singular inner functions) it is
difficult to exhibit a single nonconstant function in X, which is continuous
on D~ (i.e., which belongs to the intersection of K,, with the disk algebra A).
The following surprising result asserts that IC,, N A, far from being empty, is
actually dense in /C,,.

Theorem 3 (Aleksandrov [6]). For p € (1,00), K2 N A is dense in KP.
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A detailed exposition of Aleksandrov’s density theorem can be found in [26]
p. 186]. For related results concerning whether or not IC,, contains functions
of varying degrees of smoothness, the reader is invited to consult [41]. One
consequence of Theorem Bl is that it allows us to discuss whether or not P
can be embedded in LP(u) where p is a measure on 0D.

Theorem 4 (Aleksandrov [6]). Let u be an inner function, u be a positive
Borel measure on 0D, and p € (1,00). If there exists a C > 0 such that

[l < Cllfllp, — Vf € ANKE, (13)

then every function in K has a finite nontangential limit p-almost every-

where and ([A3) holds for all f € KL

It is clear that every measure on 0D which is also Carleson measure (see
[62]) satisfies (I3]). However, there are generally many other measures which
also satisfy (I3)). For example, if u has an ADC at ¢, then the point mass d¢
satisfies ([I3]) with p = 2.

2.6 The Compressed Shift

Before introducing truncated Toeplitz operators in general in Subsection 2.9]
we should first introduce and familiarize ourselves with the most important
and well-studied example. The so-called compressed shift operator is simply
the compression of the unilateral shift (3]) to a model space K,:

A% = P,S|kc, . (14)

The adjoint of A¥ is the restriction of the backward shift ) to K,. Being
the compression of a contraction, it is clear that AY is itself a contraction
and in fact, such operators and their vector-valued analogues can be used to
model certain types of contractive operators [16][77H79]. The following basic
properties of A% are well-known and can be found, for instance, in [78]88].

Theorem 5. If u is a nonconstant inner function, then

(i) The invariant subspaces of AY are vH? N (uH?)%, where v is an inner
function which divides u (i.e., u/v € H®).

(i1) AY is cyclic with cyclic vector ko. That is to say, the closed linear span of
{(A"ky : n = 0,1,2,---} = Ky. Moreover, f € K, is cyclic for AY if
and only if u and the inner factor of f are relatively prime.

(111) AY is irreducible (i.e., has no proper, nontrivial reducing subspaces).

To discuss the spectral properties of A we require the following definition.
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Definition 2. If w is an inner function, then the spectrum o(u) of w is the
set

o(u) == {/\ € D™ : liminf u(z)| = o} .

If w = bys,, where b is a Blaschke product with zero sequence A = {\,}
and s, is a singular inner function with corresponding singular measure ,
then

o(u) = A~ Usuppp.

The following related lemma is well-known result of Moeller and we refer the
reader to [78, p. 65] or [27, p. 84] for its proof.

Lemma 1. Fach function in IC,, can be analytically continued across 0D\o(u).

An explicit description of the spectrum of the compressed shift A% can be
found in Sarason’s article [88], Lem. 2.5], although portions of it date back to
the work of Livsic and Moeller [78] Lec. III.1].

Theorem 6. If u is an inner function, then

(i) The spectrum o(AY) of AY is equal to o(u).

(1) The point spectrum of op(AY) of AY is equal to o(u) N D.
(i1i) The essential spectrum o.(AY) of AY is equal to o(u) N ID.

2.7 Clark Unitary Operators and their Spectral
Measures

Maintaining the notation and conventions of the preceding subsection, let us
define, for each a € dD, the following operator on KC,:

«
Ll (15)

In the above, the operator f ® g, for f,g € H?, is given by the formula

(f @ g)(h) = (h.g)f.

A seminal result of Clark [29] asserts that each U, is a cyclic unitary opera-
tor and, moreover, that every unitary, rank-one perturbation of AY is of the
form ([3). Furthermore, Clark was even able to concretely identify the corre-
sponding spectral measures o, for these so-called Clark operators. We discuss
these results below (much of this material is presented in greater detail in
the recent text [26]).
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Theorem 7 (Clark). For each oo € 0D, U, is a cyclic unitary operator on
Ku. Moreover, any unitary rank-one perturbation of AY is equal to U, for
some a € OD.

The spectral theory for the Clark operators U, is well-developed and ex-
plicit. For instance, if u(0) = 0, then a point ¢ on dD is an eigenvalue of U, if
and only if u has an ADC at ¢ and u(¢) = «. The corresponding eigenvector
is

() = 127
—Cz
which is simply a boundary kernel (ITJ).

Since each U, is cyclic, there exists a measure o, supported on 9D, so
that U, is unitarily equivalent to the operator M, : L%*(c,) — L*(04) of
multiplication by the independent variable on the Lebesgue space L2(o,),
ie., M,f = zf. To concretely identify the spectral measure o, we require
an old theorem of Herglotz, which states that any positive harmonic function
on D can be written as the Poisson integral

1|22

(Bo)e) = [ = de(0)

of some unique finite, positive, Borel measure o on 0D [40, Thm. 1.2].

Theorem 8 (Clark). If o, is the unique measure on 9D satisfying

1- |’U,(Z)|2 — /8 1- |Z|2 dUQ(C)y (16)

o —u(2)? p ¢ — 2|2

then Uy, is unitarily equivalent to the operator M, : L*(c4) — L?(04) defined
by M.f =zf.

The Clark measures {04 : @ € D} corresponding to an inner function u
have many interesting properties. We summarize some of these results in the
following theorem. The reader may consult [26] for further details.

Theorem 9.

(i) o4 is singular with respect to Lebesgue measure for each o € OD.

(i) oo L op when o # 5.

(i1i) (Nevanlinna) oo ({¢}) > 0 if and only if u(¢) = a and u has an ADC

at . Moreover, .
oa({C}) = PGk

(iv) (Aleksandrov) For any f € C(0D) we have

/| < | a0 daa(C)>dm(a) = [ s0am© -
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Condition (iv) of the preceding theorem is a special case of the Aleksandrov
disintegration theorem: If g belongs to L', then the map

a— | g(¢)doa(C)

oD

is defined for m-almost every « in 0D and, as a function of «, it belongs to L'
and satisfies the natural analogue of ([IT)). In fact, the Clark measures o, are
often called Aleksandrov-Clark measures in light of Aleksandrov’s deep work
on the subject, which actually generalizes to measures p,, on JD satisfying

- _ [ 1P
PR e LG

for arbitrary functions v belonging to the unit ball of H*. The details and
ramifications of this remarkable result are discussed in detail in [26].

2.8 Finite Dimensional Model Spaces

It is not hard to show that the model space IC,, is finite dimensional if and only
if u is a finite Blaschke product. In fact, if u is a finite Blaschke product with
Zeros A1, Ag,..., Ay, repeated according to multiplicity, then dim/C, = N

and N1 _

- ai

Ko = %V:]JJ—J_ZCLJ‘E(C . (18)
Hj:l(l —Ajz)

With respect to the representation (I8]), the conjugation (@) on K, assumes
the simple form

o ( o % ) _ S e
Hj'v:1(1 - )‘_JZ) Hj'v:1(1 _)\_]Z)

If the zeros of u are distinct, then the Cauchy kernels ¢y, from () corre-
sponding to the \; form a basis for X, whence

Ky = span{cx,, Crys -« -5 Cap -

If some of the \; are repeated, then one must include the appropriate deriva-
tives of the cy, to obtain a basis for .

Although the natural bases for K, described above are not orthogonal, a
particularly convenient orthonormal basis exists. For A € D, let
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be a disk automorphism with a zero at A and for each 1 <n < N let

VI_M 2nHlb (19)

'Yn(

The following important fact was first observed by Takenaka [98] in 1925,
although it has been rediscovered many times since.

Theorem 10 (Takenaka). {y1,72,...,Yn} i an orthonormal basis for IC,,.

If w is an infinite Blaschke product, then an extension, due to Walsh [78],
of the preceding result tells us that {v1,72,...} is an orthonormal basis for
K-

Let us return now to the finite dimensional setting. Suppose that w is
a finite Blaschke product with N zeros, repeated according to multiplic-
ity. To avoid some needless technical details, we assume that «(0) = 0. If
{¢1,¢2, ..., Cn} are the eigenvalues of the Clark unitary operator

Ua = AZ’ + Oéko ® Oko,

(i.e., the N distinct solutions on 9D to u(¢) = «), then the corresponding
eigenvectors {k¢,, k¢, , . .., kcy } are orthogonal. A routine computation shows
that ||k¢, || = v/]u/(¢)] so that

kCl kCz kCN 20
{\/Iu’(C1)|7\/|u’(C2)|’ 7 |U’(CN)|} 20)

is an orthonormal basis for K. This is called a Clark basis for K. Letting
w; = exp (—4(arg(; — arga)), it turns out that

{ w1 ke, wake, wnkey } (21)

VI VIK@G) VI ()]

is an orthonormal basis for IC,, each vector of which is fixed by the conjuga-
tion (@) on I, (i.e., in the terminology of [49], 1) is a C'-real basis for KC,,).
We refer to a basis of the form (2II) as a modified Clark basis for IC,, (see [45]
and [51] for further details).

2.9 Truncated Toeplitz Operators

The truncated Toeplitz operator Ay on K, having symbol ¢ in L? is the closed,
densely defined operator

A;f = Pu(‘/).f)
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having domain3
-@(AZ;) = {f €Ky : Pu(‘/)f) € ICu}

When there is no danger of confusion, we sometimes write A, in place of Ag.
A detailed discussion of unbounded truncated Toeplitz operators and their
properties can be found in Section [[0] For the moment, we focus on those
truncated Toeplitz operators which can be extended to bounded operators
on ICy.

Definition 3. Let 7, denote the set of all bounded truncated Toeplitz oper-
ators on KC,,.

For Toeplitz operators, recall that ||T,|| = ||¢|lc holds for each ¢ in L.
In contrast, we can say little more than

0 <[JAZH < Nl (22)

for general truncated Toeplitz operators. In fact, computing, or at least esti-
mating, the norm of a truncated Toeplitz operator is a difficult problem. This
topic is discussed in greater detail in Section @l However, a complete charac-
terization of those symbols which yield the zero operator has been obtained
by Sarason [88, Thm. 3.1].

Theorem 11 (Sarason). A truncated Toeplitz operator A 1s identically
zero if and only if ¢ € uH? + uH?2.

In particular, the preceding result tells us that there are always infinitely
many symbols (many of them unbounded) which represent the same trun-
cated Toeplitz operator. On the other hand, since Ay, = A} if and only if
Y =p+uH?+ wH?, we actually enjoy some freedom in specifying the sym-
bol of a truncated Toeplitz operator. The following corollary makes this point
concrete.

Corollary 1. If A belongs to 7, then there exist 1 and 2 in K, such that
A = A, 155 Furthermore, p1 and @2 are uniquely determined if we fix the
value of one of them at the origin.

To some extent, the preceding corollary can be reversed. As noted in [14],
if we assume that A € 7, has a symbol p1 + @z, where ¢ and 5 belong to
K. and ¢2(0) = 0, then we can recover p; and @2 by knowing the action of
A on the reproducing kernels k) and the conjugate reproducing kernels Cky.
Indeed, one just needs to solve the following linear system in the variables

©1(A) and pa(A):
u(N)p2(N) = (Ako, k),
¥1

P1(A) )
©a2(N) Ju(N)p1(N) = (ACkq, Cko) — (Ako, ko).

2 Written as an integral transform, P, can be regarded as an operator from L' into Hol(DD).

—u
—

0
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With more work, one can even obtain an estimate of max{||¢1]l, ||¢2ll} [14].
Letting C denote the conjugation (@) on /C,,, a direct computation confirms
the following result from [49]:

Theorem 12 (Garcia-Putinar). For any A € 7, we have A = CA*C.

In particular, Theorem [[2]says each truncated Toeplitz operator is a com-
plex symmetric operator, a class of Hilbert space operators which has under-
gone much recent study [2413545H50L54L5561163L 7117274 T03HI0T]. In fact,
it is suspected that truncated Toeplitz operators might serve as some sort of
model operator for various classes of complex symmetric operators (see Sec-
tion[@). For the moment, let us simply note that the matrix representation of
a truncated Toeplitz operator A with respect to a modified Clark basis (2
is complex symmetric (i.e., self-transpose). This was first observed in [49] and
developed further in [45].

An old theorem of Brown and Halmos [20] says that a bounded oper-
ator T on H? is a Toeplitz operator if and only if T = STS*. Sarason
recently obtained a version of this theorem for truncated Toeplitz opera-
tors [88, Thm. 4.1].

Theorem 13 (Sarason). 4 bounded operator A on K, belongs to 7, if and
only if there are functions ¢,y € IC,, such that

A= APAAYY* + o ® ko + ko © .

When K, is finite dimensional, one can get more specific results using
matrix representations. For example, if u = 2%, then {1,2,...,2¥"1} is an
orthonormal basis for K,~. Any operator in ,~ represented with respect
to this basis yields a Toeplitz matrix and, conversely, any N x N Toeplitz
matrix gives rise to a truncated Toeplitz operator on &, ~. Indeed the matrix
representation of AfON with respect to {1,z,...2N 71} is the Toeplitz ma-
trix (P(5 — k))jv - For more general finite Blaschke products we have the
following result from [28].

Theorem 14 (Cima-Ross-Wogen). Let u be a finite Blaschke product of
degree n with distinct zeros A1, A2, ..., A\n and let A be any linear transfor-
mation on the n-dimensional space IC,,. If M4 = (Ti,j)ﬁj:1 is the matriz rep-
resentation of A with respect to the basis {kx,,kxy, - ,kx,}, then A € Z, if

and only if
I u'(A1) rLi(A = A) (A — A
,] — UI()\i) )\j —_ )\i ’

forl1<i,j<nandi+#j

Although the study of general truncated Toeplitz operators appears to be
difficult, there is a distinguished subset of these operators which are remark-
ably tractable. We say that AY is an analytic truncated Toeplitz operator
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if the symbol ¢ belongs to H>, or more generally, to H2. It turns out that
the natural polynomial functional calculus p(AY) = A} can be extended to
H® in such a way that the symbol map ¢ > p(AY) := Af is linear, contrac-
tive, and multiplicative. As a broad generalization of Theorem [6] we have the
following spectral mapping theorem [78, p. 66], the proof of which depends
crucially on the famous Corona Theorem of L. Carleson [21].

Theorem 15. If p € H™, then
(i) o(A7) = {A: infeen(|u(2)] + [(2) — Al) = 0}
(i) If ¢ € H> N C(ID), then o(AY) = p(o(u)).

We conclude this section by remarking that vector-valued analogues are
available for most of the preceding theorems. However, these do not concern
us here and we refer the reader to [78] for further details.

3 7, as a Linear Space

Recent work of Baranov, Bessonov, and Kapustin [I3] has shed significant
light on the structure of .7, as a linear space. Before describing these results,
let us first recount a few important observations due to Sarason. The next
theorem is [88, Thm. 4.2].

Theorem 16 (Sarason). 7, is closed in the weak operator topology.

It is important to note that .7, is not an operator algebra, for the product
of truncated Toeplitz operators is rarely itself a truncated Toeplitz operator
(the precise conditions under which this occurs were found by Sedlock [92]
93]). On the other hand, .7, contains a number of interesting subsets which
are algebras. The details are discussed in Section[7] followed in Section Bl by a
brief discussion about C*-algebras generated by truncated Toeplitz operators.

In order to better frame the following results, first recall that there are
no nonzero compact Toeplitz operators on H? [20]. In contrast, there are
many examples of finite rank (hence compact) truncated Toeplitz operators.
In fact, the rank-one truncated Toeplitz operators were first identified by
Sarason [88, Thm. 5.1].

Theorem 17 (Sarason). For an inner function u, the operators

(Z) kx® Cky = A%, fOT’)\ e D,

Z—X

(ii) Cky @ kx = Aug for A e D,

A

(111) ke @ ke = AZ<+Efl where u has an ADC at ¢ € 0D,

are truncated Toeplitz operators having rank one. Moreover, any truncated
Toeplitz operator of rank one is a scalar multiple of one of the above.
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We should also mention the somewhat more involved results of Sarason [88]
Thms. 6.1 & 6.2] which identify a variety of natural finite rank truncated
Toeplitz operators. Furthermore, the following linear algebraic description of
T has been obtained [88, Thm. 7.1] in the finite dimensional setting.

Theorem 18 (Sarason). If dimC,, = n, then

(i) dim 9, = 2n — 1,

(ii) If A, M, ... Aon 1 are distinct points of D, then the operators kY @ k.
for j=1,2,...,2n —1 form a basis for %E

When confronted with a novel linear space, the first questions to arise con-
cern duality. Baranov, Bessonov, and Kapustin recently identified the predual
of 7, and discussed the weak-* topology on 7, [13]. Let us briefly summarize
some of their major results. First consider the space

X, = {Fz > faTn ¢ fuign €Kun > I falllgnll < oo}
n=1

n=1

with norm

| F[lx, := inf {Z I £allllgnll - F =" fng_n} :
n=1 n=1

It turns out that
X, CuzH'NuzH',

and that each element of X, can be written as a linear combination of four
elements of the form fg, where f and g belong to IC,,. The importance of the
space X, lies in the following important theorem and its corollaries.

Theorem 19 (Baranov-Bessonov-Kapustin [13]). For any inner func-
tion u, X}, the dual space of X, is isometrically isomorphic to 7, via the
dual pairing

(FvA) ::Z<Afnvgn>v F:ang_na Ac T,
n=1 n=1

Furthermore, if ¢ denotes the compact truncated Toeplitz operators, then
(.6)*, the dual of TF, is isometrically isomorphic to X,,.

Corollary 2 (Baranov-Bessonov-Kapustin).
(i) The weak topology and the weak-x topology on T, are the same.

(i1) The norm closed linear span of the rank-one truncated Toeplitz operators

is Jf.

3 Recall that we are using the notation f:: Cf for f € Ky.
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(i1i) T.¢ is weakly dense in 7,.

For a general inner function u, we will see below that not every bounded
truncated Toeplitz operator on K, has a bounded symbol (see Section ). On
the other hand, the following corollary holds in general.

Corollary 3 (Baranov-Bessonov-Kapustin). The truncated Toeplitz op-
erators with bounded symbols are weakly dense in 7.

This leaves open the following question.

Question 1 Are the truncated Toeplitz operators with bounded symbols norm
dense in T, ?

4 Norms of Truncated Toeplitz Operators

Recall that for ¢ in L>™ we have the trivial estimates (22)) on the norm of a
truncated Toeplitz operator, but little other general information concerning
this quantity. For ¢ in L?, we may also consider the potentially unbounded
truncated Toeplitz operator AZ;. Of interest is the quantity

[AG] == sup{[[AGfI| : f e Ku M H™, | f]] = 1}, (23)

which we regard as being infinite if A} is unbounded. For AY bounded, (23]
is simply the operator norm of A¢ in light of Theorem [3l Evaluation or
estimation of (23)) is further complicated by the fact that the representing
symbol ¢ for AY is never unique (Theorem [IT)).

If w is a finite Blaschke product (so that the corresponding model space
K., is finite dimensional) and ¢ belongs to H*°, then straightforward residue
computations allow us to represent A¢ with respect to any of the orthonor-
mal bases mentioned earlier (i.e., the Takenaka (I9]), Clark (20)), or modified
Clark (2I)) bases). For K,n, the Takenaka basis is simply the monomial basis
{1,2,2%,...,2" "'} and the matrix representation of AY is just a lower trian-
gular Toeplitz matrix. In any case, one can readily compute the norm of AZ;
by computing the norm of one of its matrix representations. This approach
was undertaken by the authors in [5I]. One can also approach this prob-
lem using the theory of Hankel operators (see [81] eq. 2.9] and the method
developed in [23]).

Let us illustrate the general approach with a simple example. If ¢ belongs
to H* and wu is the finite Blaschke product with distinct zeros A1, Ao, ..., Ay,
then the matrix representation for Ag with respect to the modified Clark

basis 21)) is

Wk W - o(\i) "
(wuf(cm VI ; W (M) = Gei)(1 —Z—Ai)) S

Jk=1
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In particular, observe that this matrix is complex symmetric, as predicted by
Theorem As a specific example, consider the Blaschke product

1
L1
2

u(z) =z
O)=5=F

and the H* function

() 22’—%
z) = .
4 1—%2’

The parameters in ([24) are
a=1, )‘1207)\2:%7 <1:17C2:_17 wy =1, wy = —i,

which yields

5 i
i 1
Al = H ( - 4{5) H =57+ V/37) ~ 2.1805.

T3 12

On a somewhat different note, it is possible to obtain lower estimates of
|AL|l for general ¢ in L?. This can be helpful, for instance, in determining
whether a given truncated Toeplitz operator is unbounded. Although a vari-
ety of lower bounds on [|A¢|| are provided in [52], we focus here on perhaps
the most useful of these. We first require the Poisson integral

1—|2?

B 1= [ 1= opeldm(Q

of a function ¢ in L!. In particular, recall that lim,_,;- (P)(r() = ¢(C)
whenever ¢ is continuous at a point ¢ € 9D [69, p. 32] or more generally,
when ( is a Lebesgue point of .

Theorem 20 (Garcia-Ross). If ¢ € L? and u is inner, then

[AZ] = sup{[(Bp)(N)] : A € D u(A) = 0},

where the supremum is regarded as 0 if u never vanishes on D.

Corollary 4. If ¢ belongs to C(0D) and u is an inner function whose zeros
accumulate almost everywhere on 9D, then ||AL|| = [|¢]co-

A related result on norm attaining symbols can be found in [51].

Theorem 21 (Garcia-Ross). If u is inner, ¢ € H>®, and A:f, 1§ compact,
then ||AL|l = ||l¢lloo if and only if ¢ is a scalar multiple of the inner factor of
a function from IC,,.

It turns out that the norm of a truncated Toeplitz operator can be related
to certain classical extremal problems from function theory. For the following
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discussion we require a few general facts about complex symmetric operators
[45,[491[50]. Recall that a conjugation on a complex Hilbert space H is a map
C : H — H which is conjugate-linear, involutive (i.e., C? = I), and isometric
(i.e., (Cz,Cy) = (y,z)). A bounded linear operator T : H — H is called C-
symmetric if T'= CT*C and complex symmetric if there exists a conjugation
C with respect to which 7' is C-symmetric. Theorem asserts that each
operator in .7, is C-symmetric with respect to the conjugation C' on K,
defined by ([@). The following general result from [51] relates the norm of a
given C-symmetric operator to a certain extremal problem (as is customary,
|T'| denotes the positive operator v T*T).

Theorem 22 (Garcia-Ross). If T : H — H is a bounded C-symmetric
operator, then

(1) ITI| = supjjz=1 [(Tz, Cx)].

(i) If ||z|| = 1, then ||T|| = [(Tx,Cx)| if and only if Tz = w||T||Cx for some
unimodular constant w.

(111) If T is compact, then the equation Tz = ||T||Cx has a unit vector solution.
Furthermore, this unit vector solution is unique, up to a sign, if and only
if the kernel of the operator |T| — | T||I is one-dimensional.

Applying the Theorem 22 to A¢ we obtain the following result.

Corollary 5. For inner u and ¢ € L™

1 pf?
AY|| =
4zl =sw{| % § 2o

For ¢ in H*, the preceding supremum can be taken over H?2.

Tkl —1}.

Corollary 6. For inner u and o € H*®

1 2
2mi Jop
The preceding corollary relates the norm of a truncated Toeplitz operator
to a certain quadratic extremal problem on H2. We can relate this to a
classical linear extremal problem in the following way. For a rational function

@) with no poles on OD we have the well-studied classical H! extremal problem
[40,62):

Az = sup{

e i =1}.

1
211 oD

A1) := sup {

:F6H1,||F|1_1}. (25)

On the other hand, basic functional analysis tells us that

A() = dist(y, H®).
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Following [51], we recall that the extremal problem A(t)) has an extremal
function F, (not necessarily unique). It is also known that F, can be taken to
be outer and hence F, = f? for some f in H?. Therefore the linear extremal
problem A(¢) and the quadratic extremal problem

r(w) - sup{‘% fg ufa:

have the same value. The following result from [51], combined with the numer-
ical recipes discussed at the beginning of this section, permit one to explicitly
evaluate many specific extremal problems. Before doing so, we remark that
many of these problems can be attacked using the theory of Hankel opera-
tors, although in that case one must compute the norm of a finite-rank Hankel
operator acting on an infinite-dimensional space. In contrast, the truncated
Toeplitz approach employs only n X n matrices.

e | f]| = 1} (26)

Corollary 7. Suppose that v is a rational function having no poles on D
and poles A1, Ao, ..., Ay lying in D, counted according to multiplicity. Let u de-
note the associated Blaschke product whose zeros are precisely A1, Aa, ..., A
and note that p = uip belongs to H*>°. We then have the following:

() 1AG] = T'(¢) = A(¥).

(i4) There is a unit vector f € Ky satisfying Ay f = [[AL||Cf and any such f
is an extremal function for I'(y). In other words,

Lj{ Vfdz
211 oD

(iii) Every extremal function f for I'(v) belongs to KC,, and satisfies

= [l Agll-

Af =l AqllC .

(iv) An extremal function for I'(v) is unique, up to a sign, if and only if the
kernel of the operator |AY| — [|A%||1 is one-dimensional.

We refer the reader to [51] for several worked examples of classical extremal
problems A(%)) along with a computation of several extremal functions F,.
For rational functions ¢ with no poles on 9D, we have seen that the linear (25])
and the quadratic (26]) extremal problems have the same value. Recent work
of Chalendar, Fricain, and Timotin shows that this holds in much greater
generality.

Theorem 23 (Chalendar-Fricain-Timotin [23]). For each ¢ in L,
() = A(Y).

It is important to note that for general ¢) in L* an extremal function for
A1) need not exist (see [51] for a relevant discussion). Nevertheless, for v
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in L*°, Chalendar, Fricain, and Timotin prove that A(y) = I'(¢)) by using
the fact that A(y) = ||Hyl|, where Hy, : H? — L? & H? is the corresponding
Hankel operator Hy f = P_(1f). Here P_ denotes the orthogonal projection
from L? onto L? & H?. We certainly have the inequality

L) = A(Y) = [[Hyll = dist(¢), H) < [|9]]co-

When equality holds in the preceding, we say that the symbol v is norm
attaining. The authors of [23] prove the following.

Theorem 24 (Chalendar-Fricain-Timotin). If ) € L™ is norm attain-
ing then ¥ has constant modulus and there exists an extremal outer function

for A).

Before proceeding, we should also mention the fact that computing the
norm of certain truncated Toeplitz operators and solving their related ex-
tremal problems have been examined for quite some time in the study of
H®° control theory and skew-Toeplitz operators [I7,[I8,43,44]. In the scalar
setting, a skew-Toeplitz operator is a truncated Toeplitz operator A, where
the symbol takes the form

n

Q)= au* ek ER,

Jk=0
making Ay self-adjoint. In H* control theory, the extremal problem
dist (¢, uH™),

where v is a rational function belonging to H°°, plays an important role.
From the preceding results, we observe that || A}l = dist(y, uH ).

5 The Bounded Symbol and Related Problems

Recall that 7, denotes the set of all truncated Toeplitz operators Ag, densely
defined on K, and having symbols ¢ in L?, that can be extended to bounded
operators on all of IC,,. As a trivial example, if ¢ belongs to L°, then clearly
A¢ belongs to Z.. A major open question involved the converse. In other
words, if AZ; is a bounded truncated Toeplitz operator, does there exist a
symbol g in L* such that Ay = Ag 7 This question was recently resolved
in the negative by Baranov, Chalendar, Fricain, Mashreghi, and Timotin
[14]. We describe this groundbreaking work, along with important related
contributions by Baranov, Bessonov, and Kapustin [I3], below.

For symbols ¢ in H?, a complete and elegant answer to the bounded
symbol problem is available. In the following theorem, the implication (i) <
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(ii) below is due to Sarason [85]. Condition (iii) is often referred to as the
reproducing kernel thesis for Ag.

Theorem 25 (Baranov, Chalendar, Fricain, Mashreghi, Timotin [14]).
For ¢ € H?, the following are equivalent.

(i) AL € T
(i) A = Ay, for some po € H™.

k
(1it) supep HAZW ‘ < 00.
Furthermore, there exists a universal constant C' > 0 so that any A:; € T
with € H?, has a bounded symbol @o such that

u

Ex
< C'sup HA —H .
||900H00 =X AeD LPHkXH

The following result demonstrates the existence of bounded truncated
Toeplitz operators with no bounded symbol (a small amount of function the-
ory, discussed below, is required to exhibit concrete examples). Recall from
Theorem [I7] that for ¢ in D, the rank one operator ks ® k¢ belongs to 7,
if and only if u has an ADC at (. Using two technical lemmas from [I4]
(Lemmas 5.1 and 5.2), they prove the following theorem.

Theorem 26 (Baranov, Chalendar, Fricain, Mashreghi, Timotin). If
u has an ADC at ¢ € OD and p € (2,00), then the following are equivalent:

(i) k¢ @ k¢ has a symbol in LP.
(ii) ke € LP.

Consequently, if ke ¢ L? for some p € (2,00), then k¢ ® k¢ belongs to 7, and
has no bounded symbol.

From Theorem [2] we know that if u = bas,, where b is a Blaschke product
with zeros 4 = {\,}22, (repeated according to multiplicity) and s, is a
singular inner function with corresponding singular measure p, then

1 — )= d
ko€ H? <= ) A HO o (27)
n=1

— ¢ = An]? € —¢I?
This was extended [3l32] to p € (1,00) as follows:

e d
ke € HP ZIC—L\J|p+ |§li(?|p < 0. (28)

Based upon this, one can arrange it so that k¢ belongs to H? but not to
H? for any p > 2. This yields the desired example of a bounded truncated
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Toeplitz operator which cannot be represented using a bounded symbol. We
refer the reader to the article [I4] where the details and further examples are
considered.

Having seen that there exist bounded truncated Toeplitz operators which
lack bounded symbols, it is natural to ask if there exist inner functions u so
that every operator in .7, has a bounded symbol? Obviously this holds when
u is a finite Blaschke product. Indeed, in this case the symbol can be taken
to be a polynomial in z and Z. A more difficult result is the following (note
that the initial symbol ¢ belongs to L?, as opposed to H?, as was the case
in Theorem [23]).

Theorem 27 (Baranov, Chalendar, Fricain, Mashreghi, Timotin). If

a>0,¢edD, and
B z4+C
u(z) = exp <az_<>,

then the following are equivalent for ¢ € L*:
(i) Ay € T
(i) A = Ay, for some po € L.

u_ky
(iii) supyep HAS(J Tl ‘ < 0.

Furthermore, there exists a universal constant C > 0 so that any Ag € T

with ¢ € L%, has a bounded symbol gy such that

a1l
Av 2|
1Rl

l¢olloe < C'sup
AeD

In light of Theorems and 27 one might wonder whether condition
(iii) (the reproducing kernel thesis) is always equivalent to asserting that A
belongs to 7,. Unfortunately, the answer is again negative [14], Sec. 5].

On a positive note, Baranov, Bessonov, and Kapustin recently discovered
a condition on the inner function u which ensures that every operator in .7,
has a bounded symbol [13]. After a few preliminary details, we discuss their
work below.

Definition 4. For p > 0, let C,,(u) denote the finite complex Borel measures
p on 0D such that KP embeds continuously into LP(|u]).

Since S*u belongs to IC,, it follows from Aleksandrov’s embedding theorem
(Theorem M) that for each p in Co(u), the boundary values of u are defined
|p¢|-almost everywhere. Moreover, it turns out that |u| = 1 holds |u|-almost
everywhere [6L[I3]. For 1 € Ca(u) the quadratic form

(fr9)— | fgdu, f,geky
oD
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is continuous and so, by elementary functional analysis, there is a bounded
operator A, : K, = K, such that

(Auf g) = /aD fgdu.

The following important result of Sarason [88, Thm. 9.1] asserts that each
such A, is a truncated Toeplitz operator.

Theorem 28 (Sarason). A, € .7, whenever j € Ca(u).

A natural question, posed by Sarason [88, p. 513], is whether the con-
verse holds. In other words, does every bounded truncated Toeplitz operator
arise from a so-called u-compatible measure [88, Sect. 9]? This question was
recently settled in the affirmative by Baranov, Bessonov, and Kapustin [13].

Theorem 29 (Baranov-Bessonov-Kapustin [13]). A € 7, if and only if
A=A, for some 1 € Ca(u).

The measure p above is called the quasi-symbol for the truncated Toeplitz
operator. For ¢ € L* we adopt the convention that A:Z dm = Ag so that
every bounded symbol is automatically a quasi-symbol.

It turns out that Ci(u?) C Ca(u) = Co(u?) always holds. Baranov,
Bessonov, and Kapustin showed that equality is the precise condition which

ensures that every A € .7, can be represented using a bounded symbol.

Theorem 30 (Baranov-Bessonov-Kapustin). An operator A € 7, has
a bounded symbol if and only if A = A, for some p € C1(u?). Consequently,
every operator in 7, has a bounded symbol if and only if C1(u?) = Ca(u).

Recall that each function F in H' can be written as the product F' = fg
of two functions in H?. Conversely, the product of any pair of functions in
H? lies in H'. For each f, g € K, we note that

1 Fr T 902 .= 271
H'> fg=fg= fgz*u” € zu”H},

whence fg € H' Nzu?H}. Moreover, one can show that finite linear com-
binations of pairs of products of functions from K, form a dense subset of
H'Nzu?H{. As a consequence, this relationship between K, and H' Nzu?H}
is sometimes denoted

Ku® Ky =H"'NzZu?H}.
For certain inner functions, one can say much more.

Theorem 31 (Baranov-Bessonov-Kapustin). For an inner function u
the following statements are equivalent.

(i) C1(u?) = Ca(u).



Recent Progress on Truncated Toeplitz Operators 25

(ii) For each f € H' N EuQH_& there exists sequences gj, h; in K, such that
225 l1gillllhs | < oo and
f=Ygih;.
J

Moreover, there exists a universal C > 0, independent of f, such that the
gj» hj can be chosen to satisfy > ||g;|[Ih;ll < Clf|l1-

As we have seen, the condition C;(u