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METHODOLOGY ARTICLE Open Access

Model-based clustering with certainty
estimation: implication for clade
assignment of influenza viruses
Shunpu Zhang1*, Zhong Li2, Kevin Beland3 and Guoqing Lu3*

Abstract

Background: Clustering is a common technique used by molecular biologists to group homologous sequences
and study evolution. There remain issues such as how to cluster molecular sequences accurately and in particular
how to evaluate the certainty of clustering results.

Results: We presented a model-based clustering method to analyze molecular sequences, described a subset
bootstrap scheme to evaluate a certainty of the clusters, and showed an intuitive way using 3D visualization to
examine clusters. We applied the above approach to analyze influenza viral hemagglutinin (HA) sequences. Nine
clusters were estimated for high pathogenic H5N1 avian influenza, which agree with previous findings. The
certainty for a given sequence that can be correctly assigned to a cluster was all 1.0 whereas the certainty for a
given cluster was also very high (0.92–1.0), with an overall clustering certainty of 0.95. For influenza A H7 viruses,
ten HA clusters were estimated and the vast majority of sequences could be assigned to a cluster with a certainty
of more than 0.99. The certainties for clusters, however, varied from 0.40 to 0.98; such certainty variation is likely
attributed to the heterogeneity of sequence data in different clusters. In both cases, the certainty values estimated
using the subset bootstrap method are all higher than those calculated based upon the standard bootstrap
method, suggesting our bootstrap scheme is applicable for the estimation of clustering certainty.

Conclusions: We formulated a clustering analysis approach with the estimation of certainties and 3D visualization
of sequence data. We analysed 2 sets of influenza A HA sequences and the results indicate our approach was
applicable for clustering analysis of influenza viral sequences.

Keywords: Model-based clustering, Multidimensional scaling, Bootstrap, Certainty, Influenza A hemagglutinin (HA)

Background
Clustering is a common technique used in biology,
which partitions molecular sequence data or gene ex-
pression data into groups such that the data points are
highly similar within group but different between/among
groups [1, 2]. In general, clustering methods are divided
into 2 categories: the non-model-based (distance/similar-
ity-based) approaches and the model-based approaches [3,
4]. The widely used k-means method, as well as its vari-
ants, is a non-model based method. Model-based cluster-
ing techniques can be traced at least as far back as 1963

[5]. In model-based clustering the data are assumed
from a finite mixture of different probability models
such as the multivariate normal distributions [6–9].
With the underlying probability models, the number of
clusters and the parameters in the probability models
are estimated using statistical methods such as the ex-
pectation maximization (EM) algorithm. A review of
model-based clustering can be found in [10].
The clustering methods can also be divided into parti-

tional clustering and hierarchical clustering [3, 4]. A parti-
tional clustering method divides the data objects into M
(often specified a priori) groups according to some
optimization criteria. The k-means algorithm is a classic
example of partitional methods [1]. A hierarchical method
builds a hierarchical set of nested clusters, with the clus-
tering at the top level containing a single cluster of all data
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objects, and the clustering at the bottom level containing
singleton clusters (i.e., 1 cluster for each data object). The
resulting hierarchy shows at each level 2 clusters are
merged together with the inter-cluster distance pre-
sented, and thus provides a good visualization tool. The
Single-Link, Complete-Link and Average-Link Cluster-
ing methods are examples of hierarchical clustering.
Influenza virus is an important pathogen not only to

humans, but also to many other animals such as birds and
pigs [11, 12]. The influenza virus can evolve rapidly to
avoid detection and neutralization by the host immune
system. Detecting new viral strains is thus an ongoing task
for improved influenza surveillance and control. To this
end, the WHO (World Health Organization), OIE (World
Organization for Animal Health) and FAO (Food and
Agriculture Organization of the United Nations) H5N1
Evolution Working Group developed a clade nomencla-
ture system for Eurasian highly pathogenic avian influenza
(HPAI) A (H5N1) viruses [11, 13]. Several statistical and
bioinformatics issues remain unresolved, including how to
cluster the sequences more accurately, how to visualize
the clustering results intuitively, and how to evaluate the
certainty of the sequences within a cluster and the cer-
tainty of a cluster.
In our previous study, 2 dimensional scaling analysis

was conducted on 109 HA sequences of well-
represented HPAI H5N1 viruses to evaluate the above
clade designation system by WHO/OIE/FAO [14]. In
this paper, we focused on the model-based clustering
approach due to its flexibility in finding meaningful
clusters in the data and applied this approach to
analyze influenza viral sequences. In addition, we
designed a subset bootstrap scheme and applied it to
estimate the certainty of a given sequence assigned to
a particular cluster as well as the certainty of cluster-
ing (the stability of the clusters when being considered
together).

Methods
Similarity estimation and visualization
In our proposed method, pairwise distances of aligned
sequences were computed using the identity matrix. The
resulting matrix contains the squared root of pairwise
distances. Many existing methods cluster sequences by
directly applying clustering algorithms (model or non-
model-based) to pairwise distances. We do not recom-
mend this approach since many of such methods (espe-
cially the model-based methods) require independence
of the data and this requirement is not satisfied due to
the dependence of the pairwise distances. Instead, we
apply the multidimensional scaling (MDS) methods to
the distance matrix to explore the similarity or dissimi-
larity features in the data by assigning a location, i.e., the
coordinates in a d-dimensional space, to each sequence,

where d is specified a priori. The MDS method can pro-
vide the location data that closely preserves the pairwise
distances. The MDS is a statistical method often used in
data visualization for exploring similarities or dissimilar-
ities of objects in a parsimonious way. Other methods
that have similar property as the MDS methods include
the principle component analysis, among others. With
the location data available in the d-dimensional space,
the corresponding sequences can be visualized using
graphical tools.

Mixture model analysis
Denote the location of a sequence generated by MDS in
the d-dimensional space by x = (x1,…,xd). In the multi-
variate normal mixture model, the location data ob-
tained from MDS are assumed from a mixture of
multivariate normal distributions where each distribu-
tion represents a cluster. The multivariate normality as-
sumption is not a very restrictive assumption. It has
been demonstrated in the literature that a non-
normal component in the data can often be approxi-
mated by several normal ones [15, 16]. Assume that
there are s sequences, and the s data points x1,…,xs
generated using MDS are from a g-variate normal dis-
tribution N (μk, ∑k), where μk is the mean vector and
∑k is the covariance matrix, the likelihood function of
x1,…,xs is

L θ1;…; θG;π1;…;πGjxð Þ ¼
Ys
i¼1

Xg
k¼1

πk f k xijθkð Þ; ð1Þ

where fk is the d-variate normal density of N (μk, ∑k), θk
= (μk, ∑k) and πk (≥0) is the probability that an observa-
tion is from N (μk, ∑k), the k-th cluster, satisfyingXg
k¼1

πk ¼ 1.

The multivariate mixture model (1) can be fit by using
the R-package Mclust [15]. The optimal model is se-
lected by comparing the Bayesian Information Criterion
(BIC) value of each model. The BIC is the value of the
maximized log-likelihood with a penalty for the number
of parameters in the model, and allows comparison of
models with different parameterizations and/or different
numbers of clusters. As stated in [15], in general the lar-
ger the value of the BIC, the stronger the evidence for
the model and the number of clusters. Based upon the
fitted multivariate normal mixture model, the sequences
can be assigned to the clusters according to their highest
posterior probabilities.

Certainty estimation
An important question about a clustering method is the
certainty in the clustering results. There are actually 2
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related questions: the certainty in the clustering of individ-
ual sequences in a cluster and the certainty of clusters.

The certainty of individual sequences in a cluster
Denote by zi = (zi,…,zig) the conditional (or posterior)
probability vector of the observed sequence i, is classi-
fied to the clusters, 1 ≤ i ≤ s, where g is the number of
clusters determined. We define the certainty associated
with sequence i as max (zi), which is the probability that
sequence i belongs to the cluster in which it has been
classified. To summarize the certainties in the classifica-
tion of individual sequences, we use the 5 number sum-
mary (the minimum, 25 % quantile, the median, the
75 % quantile, the maximum) of {max (zi), 1 ≤ i ≤ s} as an
overall measure of certainty in the classification of all se-
quences. Fraley and Raftery [9] used the concept of

uncertainty instead of certainty which is simply equal to
1 minus the certainty. For sequence analysis, it is more
convenient to use certainty as a measure of stability in
clustering instead of uncertainty.

The certainty of clusters
The subset bootstrap method
Bootstrapping is a well-accepted and widely used method
based upon random sampling with replacement method
to estimate support values for clustering or groupings. It
is a method vertically drawing samples with replacement,
and hence can mimic molecular evolution events such as
substitution, deletion or insertion. The general practice of
bootstrapping molecular sequences is to resample the
whole set of sequences [17, 18]. More specifically, the
aligned sequences are formed as a matrix with each

Fig. 1 Mardia criterion for selecting d, the number of dimensions for MDS

Fig. 2 The 3D MDS plot of highly pathogenic avian influenza (HPAI) H5N1 HA sequences
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sequence as a row of the matrix. The bootstrap method
constructs a bootstrap data by re-sampling all columns of
the original sequence data matrix with replacement. The
standard bootstrap method assumes the independence of
the columns of the aligned sequences [18].
The assumption of independence among the nucleo-

tide bases of a DNA sequence is obviously questionable.
Bootstrap methods for dependent data are an active re-
search area. Some of the well-known methods are the
subsampling method and the block bootstrap method
[19], among others. In the subsampling method random
subsamples of consecutive observations of length (<n,
where n is the length of the whole sequemce) are taken
from the whole sequence. The subsampling method has
quite universal applicability. However, a poor rate of
convergence has been shown in literature [20]. In the

block bootstrap method blocks of consecutive observations
are drawn with replacement from a set of blocks. The block
bootstrap is a very powerful method for dependent data
and has a very broad range of applications. Nevertheless, it
is hard to justify its use for re-sampling DNA sequences. In
this paper, we argue a more appropriate way to mimic nat-
ural evolution is to re-sample only a randomly selected sub-
set of the nucleic acid bases of the sequences while keeping
the remaining of the sequences fixed.
We propose a subset bootstrap method, where the prac-

titioner first decides the proportion of the sequence being
sampled, and bootstrapping is then conducted by ran-
domly choosing this proportion of the nucleic acid bases
of the DNA sequences as the subset for re-sampling, while
keeping the remaining sequence unchanged. Specific to
our sequence data, we first randomly select a subset of

Fig. 3 The BIC values corresponding to different numbers of clusters for highly pathogenic avian influenza (HPAI) H5N1 HA sequences

Fig. 4 The Mclust results from 3D-MDS location data of highly pathogenic avian influenza (HPAI) H5N1 HA sequences
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columns from the aligned sequences according to the pre-
determined proportion. Then, the standard bootstrap pro-
cedure is applied to the positions of the selected columns
in the subset to obtain a bootstrap sample. The obtained
new matrix is called a subset bootstrap sample. After a
subset bootstrap sample of sequences is available, the
finite mixture model is fitted to the subset bootstrap sam-
ple, and clustering is conducted based on the newly fitted
finite mixture model.
A reasonable way to choose an appropriate proportion

of subsampling in the subset bootstrap method is to use
the average substitution rate among observed sequences
under study. More specifically, we calculate the substitu-
tion rate from each pair of observed sequences, and then
use the average rate as the proportion of sub-sampling in
the subset bootstrapping method. A more sophisticated
way of determining the proportion of subsampling is to
randomly select a value from the rates of changes calcu-
lated from each pair of observed sequences, i.e., to apply
the bootstrap method to the pairwise rates of changes.
However, for simplicity we will only use the average rate
as the proportion of subsampling in this paper.

Evaluation of the certainty of clusters
One difficulty in evaluating the certainty/uncertainty of
clusters is how to define the similarity of 2 clusters.
Well-known similarity measures include the Jaccard co-
efficient [21–23], among others. We decided to use the
Jaccard coefficient due to its simplicity and other appeal-
ing features [24]. The Jacard coefficient is defined as
follows:

γðC1;C2Þ ¼ jC1∩C2j
jC1∪C2j ;

where C1, C2 are any 2 clusters and |▪| is the number of
elements in the set. It can be easily seen that the Jaccard
coefficient is 1 when 2 clusters are the same, is zero if 2
clusters are disjoint, and is between 0 and 1, otherwise.
Some theoretical justifications for the use of the Jaccard
coefficient to compare clusters can be found in [24, 25].
Denote by C = {C1,…,Ci…,CI} the clustering obtained

from the original data, where Ci is the ith cluster and I is
the number of clusters. For any given cluster Ci, we
evaluate its certainty as follows:
Given a pre-determined bootstrapping proportion p

and let b be the index of the bootstrap sample from the
subset bootstrap sampling, b = 1,…,B. For each b,
Step 1: Simulate the subset bootstrap sequences using

the subset bootstrap method.
Step 2: Apply Mclust to the bootstrapping sample to ob-

tain a new clustering, denoted as Ceb ¼ fC�
1;…;C�

Jb
g; ,

where Cj
* is the jth clusters and Jb is the number of clus-

ters of the new clustering, which may be different from

the number of clusters of the original clustering, it may
also be different depending on bootstrap samples.
Step 3: Calculate the maximum Jaccard coefficient be-

tween Ci and each cluster Cj
* in the new clustering ~Cb

and define it as the Jaccard coefficient between Ci and
~Cb, i.e.,

JðCi;CebÞ ¼ max1≤j≤JbfJðCi;C
�
j Þg;

where

i ¼ 1;…; I; b ¼ 1;…;B:

The certainty of cluster Ci is defined as

J Cið Þ ¼
XB

b¼1
J Ci; ; ~Cb
� �

=B; ð2Þ

where

i ¼ 1;…; I:

To estimate certainty between two clusterings, the Jac-
card coefficient is the proportion of observation pairs

Fig. 5 The 3D representation of highly pathogenic avian influenza
(HPAI) H5N1 HA sequences

Table 1 The certainties of clusters and overall clustering for
highly pathogenic avian influenza HPAI H5N1 HA sequences

Cluster
ID

Cluster Overall

1 2 3 4 5 6 7 8 9

Subset-
bootstrap
(7.5 %)

0.93 1.00 0.98 0.97 0.92 0.96 1.00 0.99 1.00 0.95

Standard
bootstrap
method

0.76 0.99 0.72 0.90 0.67 0.66 0.83 0.76 0.97 0.69
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Fig. 6 The BIC values corresponding to different numbers of clusters for influenza H7 HA sequences

Fig. 7 The 3D representation of 10 clusters for influenza H7 HA sequences

Zhang et al. BMC Bioinformatics  (2016) 17:287 Page 6 of 10



(observed sequence pairs) belonging to the same cluster in
both clusterings out of all the observation pairs belonging
to the same cluster in at least 1 of the clustering. Specific-
ally, let C1,C2 be 2 clusterings, and let n11 be the number
of observation pairs belonging to the same cluster in both
clusterings; n10 be the number of observation pairs be-
longing to the same cluster in the first clustering, but not
the second clustering; and n01 be the number of observa-
tion pairs belonging to the same cluster in the second
clustering, but not the first clustering. The Jaccard coeffi-
cient is defined as

J C1;C2ð Þ ¼ n11
n11 þ n10 þ n01

: ð3Þ

Using the clusters obtained from the mixture model
analysis of the original sequences of avian influenza vi-
ruses, we use the following algorithm to calculate the
overall certainty of the clusters. Given a pre-determined
bootstrapping proportion p and let b be the index of the
bootstrap sample, b = 1,…,B. For each b,
First, repeat Steps 1 and 2 from the previous algorithm.
Step 3: Calculate J C; ~Cb

� �
, b = 1,…,B, where C; ~Cb are

defined the same as before, i.e., they are the original
clustering and the clustering obtained from the bth

subset-bootstrap sample, respectively.
With J C; ~Cb

� �
being defined as (3), we define

J Cð Þ ¼
XB

b¼1
J C; ~Cb
� �

=B; ð4Þ

as the overall certainty of clustering C.

Data sets and analysis
Experimental dataset 1, kindly provided by the WHO/OIE/
FAO H5N1 Evolution Working Group (RO Donis, personal
communication), includes 109 HA sequences of HPAI
H5N1 viruses, each with approximately 1,659 nucleotides.
These sequences were selected from vaccine strains, refer-
ence strains, human isolates, pathogenesis study strains,
and geographically diverse isolates in order to establish a
unified system to name existing clades of highly pathogenic
H5N1 avian influenza A viruses [11, 13].

Table 2 Certainties of influenza A (H7) HA sequences assigned
to a specific cluster a

Cluster ID Strain Name Certainty

1 A/chicken/NJ/17206/99 0.88

A/Goose/New_Jersey/8600–3/98 0.97

2 A/chicken/FL/90348–4/01 0.54

A/avian/NY/74211–2/00 0.98

A/chicken/Pennsylvania/143586/2002 0.99

A/avian/NY/81746–5/00 0.95

A/avian/NY/70411–12/00 0.99

A/unknown/NY/85161/2000 0.77

A/chicken/NY/1398–6/99 0.97

A/chicken/NY/22409–4/99 0.98

A/avian/NY/76247–3/00 0.99

A/Chicken/New_Jersey/20621/99 0.99

A/Chicken/NJ/16224–6/99 0.99

3 A/mallard/Delaware/418/2005 0.96

6 A/turkey/England/647/77 0.84

8 A/swan/Shimane/42/1999 0.87

A/turkey/Italy/4479/2004 0.73

A/turkey/Italy/2856/2003 0.91

A/turkey/Germany–NW/R655/2009 0.78

A/turkey/Germany-NW/R655/2009 0.78

A/duck/Mongolia/47/2012 0.76

A/wild_goose/Dongting/PC0360/2012 0.80

A/duck/Fukui/160104/2012 0.99

A/duck/Iwate/0303001/2012 0.99

A/mallard/Poland/01/08 0.82

A/duck/Turkey/55/Cetinkaya/49/2006 0.90

A/teal/Crimea/2027/2008 0.98

9 A/duck/Mongolia/720/2007 0.57

A/turkey/Italy/3337/2004 0.96

A/quail/Italy/3347/2004 0.96

A/turkey/Italy/4130/2004 0.84

A/turkey/Italy/3439/2004 0.89

A/turkey/Italy/3829/2004 0.97

A/turkey/Italy/3399/2004 0.82

A/turkey/Italy/3477/2004 0.87

A/turkey/Italy/3807/2004 0.87

A/turkey/Italy/4042/2004 0.82

A/turkey/Italy/2685/2003 0.59

A/turkey/Italy/2043/2003 0.62

A/duck/Italy/4609/2003 0.87

A/quail/Italy/4610/2003 0.98

A/chicken/Italy/1285/2000 0.98

A/duck/Denmark/53–147–8/2008 0.90

Table 2 Certainties of influenza A (H7) HA sequences assigned
to a specific cluster a (Continued)

A/shoveler/Italy/2698–27/2006 0.85

A/mallard/Netherlands/22/2007 0.65

A/mallard/Sweden/95/2005 0.96

A/Mallard/Sweden/S90597/2005 0.73

A/chicken/England/4054/2006 0.96

A/tufted_duck/PT/13771/2006 0.82

A/mute_swan/Hungary/5973/2007 0.98
a sequences not listed with a certainty of over 0.99
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Experimental dataset 2 includes 1,168 HA sequences
of all influenza A viruses with a H7 subtype, each with
approximately 1,650 bp, downloaded from fludb (http://
www/fludb.org). The sequences were aligned with Clus-
talW [26] and the alignment was carefully checked and
manually edited using BioEdit 7.0 (http://www.mbio.nc-
su.edu/bioedit/bioedit.html). The clustering analysis was
conducted using the R-package. The aligned sequences
were analyzed using dist.alignment function in the R pack-
age Seqinr to compute pairwise distances using identity
matrix. The multidimensional scaling (MDS) analysis was
then conducted using the cmdscale module. We used the
function plot3d rgl to display the influenza sequences in
3D space and employed clusteval to calculate the overall
cluster certainty.

Results and discussion
The experimental dataset 1 was studied previous in [13],
where a 2D MDS was used to visualize structure of
HPAI H5N1 HA sequence data. Further investigation
identifies 2 issues: 1) the 2D MDS may not be an opti-
mal way to represent the complexity of the sequence
data; 2) there is no estimation of confidence level for in-
dividual sequences or specific clusters. To address the
first issue, we used the criterion suggested in [27] to
select the dimension of MDS (d). The Mardia criterion
(a parameter used for determining the number of di-
mensions that considerably differ) shows significant in-
creases for d from 1 to 2 and from 2 to 3 (Fig. 1), and
after that the increase becomes less obvious. Therefore,
we chose d = 3. Figure 2 shows the corresponding 3D
MDS plot of the H5N1 HA influenza sequences, which
obviously provides better separation between clusters (i.e.,
clades). Figure 3 displays the BIC values for different num-
bers of clusters. It can be seen clearly that the optimal
number of clusters according to BIC values of VEV, VVV,
and EEV models is 9, with corresponding BIC values being
1886.6, 1881.2, and 1874.9, respectively. Figure 4 shows
the 9 clusters identified by Mclust for the HPAI H5N1
HA sequences. Figure 5 provides a snapshot of the 3D
plot, where 9 clusters are clearly depicted.
We compared the clusters obtained from Mclust based

on the 3D MDS and those from the clade designation of
WHO. There is a general consensus between the clusters
obtained in the present study from Mclust and designed
previously by WHO (Additional file 1: Table S1). We
calculated the certainties of individual sequences in spe-
cific clusters using the method described and found that

for all 109 sequences the certainties assigned to a spe-
cific clade are all equal to 1.0, which indicates that the
sequences within cluster are very similar and that the se-
quences between the clusters are distinct. To summarize
the uncertainties in the classification of individual se-
quences, we obtained the 5 number summary (the mini-
mum, 25 % quantile, the median, the 75 % quantile, the
maximum) of {max (zi), 1 ≤ i ≤ s} as an overall measure
of certainty in the classification of all sequences. Not
surprisingly, for this dataset the certainties in the 5 num-
ber summary are all 1.0.
In order to conduct the subset bootstrap method to

evaluate the certainty of clustering obtained from the
mixture model method, we first calculated the average
substitution rate (0.075) from the H5N1 HA sequences.
Then we used this rate for the subset bootstrap. The
certainties of clusters and the clustering are then
calculated using (2) and (4), respectively. The clustering
C = {C1,…,C9}, the reference clustering in (2) and (4) for
calculating the certainties, was obtained by applying
model based method (1) to the original data and is re-
ported in the first column of Additional file 1: Table S1. It
can be seen that {C1,…,C9} is consistent with the WHO-
curated clade information. Each cluster is either a clade, a
subclade, a combination of clades, or a combination of
subclades of the same clade. We have not observed any
case in which 2 influenza sequences belonging to the same
clade or subclade were assigned to different clusters.
Table 1 shows that the certainties of given sequences

assigned to a specific cluster are high, ranging from 0.92
to 1.0 and the overall certainty of clustering is 0.95
(Table 1). For comparison, we included the results from
the standard bootstrap method (i.e., the subset bootstrap
method with proportion p = 100 %) in Table 1. Appar-
ently, as we expected, the certainty values estimated
using the subset bootstrap method are all higher than
those estimated using the standard bootstrap method,
suggesting our bootstrap scheme is practicable.
It is tempting to fit the Mclust directly to the pairwise

distance matrix due to its simplicity. However, Fig. 6
shows that the resulting BIC plot of influenza H7 HA
sequences (dataset 2) does not provide a clear answer
to the question, i.e., which model is the best. This may
be caused by the noise in the original pairwise distance
matrix, as well as the correlation between the rows of
the matrix. The MDS method, however, provides an
approximation to the proximity between sequences by
representing them in a lower-dimensional space, while

Table 3 The certainties of clusters and overall clustering for influenza A (H7) HA sequences

Cluster ID 1 2 3 4 5 6 7 8 9 10 Overall

Subset bootstrap (10 %) 0.84 0.85 0.93 0.73 0.67 0.43 0.66 0.40 0.90 0.98 0.82

Standard bootstrap method 0.72 0.78 0.83 0.39 0.65 0.34 0.59 0.24 0.78 0.90 0.67
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filtering out the noise in the pairwise distances. This
motivated us to consider fitting Mclust on the location
data obtained from MDS, instead of directly on the
pairwise distance matrix. Figure 7 provides a snapshot
of the 3D plot.
We used the 3D MDS to obtain the location data of

influenza A (H7) HA sequences in a 3 dimensional
space. By fitting the finite normal mixture model with
the 3D coordinates of 1,168 sequences, we obtained a
finite normal mixture with 10 clusters. Figure 7 shows a
snapshot of the 10 clusters. The clustering result of the
sequences is shown in Additional file 2: Table S2. The
vast majority of sequences are assigned to a specific
cluster with over 0.99 certainty, and only 50 sequences
among 1,168 whose certainty is less than or equal to
0.99 (Table 2). We estimated the average substitution
rate from the 1,168 sequences and used 0.10 as a thresh-
old for the subset bootstrap. Table 3 reports the certain-
ties of clusters from the subset bootstrap method and
the standard bootstrap method, which shows the subset
bootstrap method performs better than the standard
bootstrap method. The certainties for cluster 6 and 8 are
both below 0.50, indicating these 2 clusters are not well-
supported by the bootstrapping data. We investigated
the phylogenetic tree of the sequences in cluster 6 and
found at least 2 subgroups in this cluster (Additional file
3: Figure S1). The low certainty values for some clusters
might be contributed by the homogeneity variation of
sequences within clusters.

Conclusions
We formulated a clustering approach with the estima-
tion of certainty and visualization of sequence data in
3D and applied it to analyse 2 datasets of influenza virus
HA sequences. The results demonstrated the applicabil-
ity of our approach in evolutionary clade assignment.

Additional files

Additional file 1: Table S1. Cluster ID from Mclust, WHO designation
of HPAI (H5N1) A HA sequences. Cluster ID from Mclust of the influenza
A (H7) HA sequences. (DOCX 34 kb)

Additional file 2: Table S2. Cluster ID from Mclust of the influenza A
(H7) HA sequences. (DOCX 29 kb)

Additional file 3: Figure S1. Phylogenetic tree of influenza A (H7) HA
sequences in cluster 6. (PDF 2 kb)

Acknowledgements
We would like to thank Dr. R. Donis at the Centers for Disease Control and
Prevention (CDC), U.S. Department of Health and Human Services for
providing us HPAI H5N1 HA sequences.

Funding
This publication was made possible by NIH grant number R01 LM009985-
01A1. The authors also acknowledge the UCRCA, the University of Nebraska
at Omaha (UNO), for continuous funding support to this research program.

Authors’ contributions
SZ conceived of the study, designed and tested the methods, and wrote the
manuscript. GL conceived of the study, participated in the design of
methods, and wrote the manuscript. ZL and KB participated in the data
analysis and revised the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Availability of data and material
All sequences are available at the NCBI Influenza Virus Resource (http://
www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html).

Author details
1Department of Statistics, University of Central Florida, Orlando, FL 32816, USA.
2College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
3Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182,
USA.

Received: 30 October 2015 Accepted: 13 July 2016

References
1. Wilkin GA, Huang X. A practical comparison of two K-Means clustering

algorithms. BMC Bioinformatics. 2008;9(6):S19.
2. Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to

reduce the size of large protein databases. Bioinformatics. 2001;17(3):282–3.
3. Hartigan JA. Clustering algorithms (probability & mathematical statistics).

New York: John Wiley & Sons Inc; 1975.
4. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM computing

surveys (CSUR). 1999;31(3):264–323.
5. Wolfe JH. Object cluster analysis of social areas. New Jersey: University of

California; 1963.
6. Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering.

Biometrics. 1993;49:803–21.
7. Celeux G, Govaert G. Gaussian parsimonious clustering models. Pattern

Recogn. 1995;28(5):781–93.
8. Edwards AW, Cavalli-Sforza LL. A method for cluster analysis. Biometrics.

1965;21:362–75.
9. Fraley C, Raftery AE. MCLUST version 3: an R package for normal mixture

modeling and model-based clustering. In: DTIC Document. 2006.
10. Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and

density estimation. J Am Stat Assoc. 2002;97(458):611–31.
11. Donis R, Smith G, Brown I, Capua I, Cattoli G, Chen H, Cox N, Davis C, Donis

R, Fouchier R. Continuing progress towards a unified nomenclature for the
highly pathogenic H5N1 avian influenza viruses: Divergence of clade 2 · 2
viruses. Influenza Other Respir Viruses. 2009;3(2):59–62.

12. Lu G, Rowley T, Garten R, Donis RO. FluGenome: a web tool for genotyping
influenza A virus. Nucleic Acids Res. 2007;35 suppl 2:W275–9.

13. WHO/OIE/FAO H5N1 Evolution Working Group. Toward a unified
nomenclature system for highly pathogenic avian influenza virus (H5N1).
Emerg Infect Dis. 2008;14(7):e1.

14. Zhang S, Fang X, Davis T, Ruben D, Lu G. Multidimensional scaling and
model-based clustering analyses for the clade assignments of the HPAI
H5N1 viruses. In: Options for the Control of Influenza VI. London:
Blackwell; 2007.

15. Fraley C, Raftery AE. How many clusters? Which clustering method?
Answers via model-based cluster analysis. Comput J. 1998;41(8):578–88.

16. Dasgupta A, Raftery AE. Detecting features in spatial point processes with
clutter via model-based clustering. J Am Stat Assoc. 1998;93(441):294–302.

17. Felsenstein J. Statistical inference of phylogenies. J R Stat Soc SerA. 1983;
146:246–72.

18. Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phylogenetic
trees. Proc Natl Acad Sci. 1996;93(23):13429–13429.

Zhang et al. BMC Bioinformatics  (2016) 17:287 Page 9 of 10

dx.doi.org/10.1186/s12859-016-1147-x
dx.doi.org/10.1186/s12859-016-1147-x
dx.doi.org/10.1186/s12859-016-1147-x
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html


19. Politis DN, Romano JP, Wolf M. Subsampling Springer-Verlag New York.
1999.

20. Hall P, Jing B. On sample reuse methods for dependent data. J R Stat Soc
Ser B Methodol. 1996;86:727–37.

21. Rand WM. Objective criteria for the evaluation of clustering methods. J Am
Stat Assoc. 1971;66(336):846–50.

22. Jaccard P. Distribution de la Flore Alpine: dans le Bassin des dranses et dans
quelques régions voisines: Rouge. 1901.

23. Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
24. Hennig C. Cluster-wise assessment of cluster stability. Comput Stat Data

Anal. 2007;52(1):258–71.
25. Hennig C. A general robustness and stability theory for cluster analysis:

Schwerpunkt Mathematische Statistik und Stochastische Prozesse,
Fachbereich Mathematik, Universität Hamburg. 2004.

26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res.
1994;22:4673–80.

27. Mardia KV, Kent JT, Bibby JM. Multivariate analysis: Academic press. 1979.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Zhang et al. BMC Bioinformatics  (2016) 17:287 Page 10 of 10


	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-21-2016

	Model-based clustering with certainty estimation: implication for clade assignment of influenza viruses
	Shunpu Zhang
	Zhong Li
	Kevin Beland
	Guoquing Lu
	Recommended Citation


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Similarity estimation and visualization
	Mixture model analysis
	Certainty estimation
	The certainty of individual sequences in a cluster
	The certainty of clusters
	The subset bootstrap method
	Evaluation of the certainty of clusters

	Data sets and analysis

	Results and discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Availability of data and material
	Author details
	References

