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SUPERCONVERGENCE AND A POSTERIORI ERROR

ESTIMATES OF A LOCAL DISCONTINUOUS GALERKIN

METHOD FOR THE FOURTH-ORDER INITIAL-BOUNDARY

VALUE PROBLEMS ARISING IN BEAM THEORY

MAHBOUB BACCOUCH

Abstract. In this paper, we investigate the superconvergence properties and a posteriori error
estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear
fourth-order initial-boundary value problems arising in study of transverse vibrations of beams.
We present a local error analysis to show that the leading terms of the local spatial discretization
errors for the k-degree LDG solution and its spatial derivatives are proportional to (k+1)-degree
Radau polynomials. Thus, the k-degree LDG solution and its derivatives are O(hk+2) supercon-
vergent at the roots of (k + 1)-degree Radau polynomials. Computational results indicate that
global superconvergence holds for LDG solutions. We discuss how to apply our superconvergence
results to construct efficient and asymptotically exact a posteriori error estimates in regions where
solutions are smooth. Finally, we present several numerical examples to validate the supercon-
vergence results and the asymptotic exactness of our a posteriori error estimates under mesh
refinement. Our results are valid for arbitrary regular meshes and for P k polynomials with k ≥ 1,
and for various types of boundary conditions.

Key words. Local discontinuous Galerkin method; fourth-order initial-boundary value problems;
Euler-Bernoulli beam equation; superconvergence; a posteriori error estimates.

1. Introduction

The goal of this paper is to investigate the superconvergence properties and
develop a simple procedure to compute a posteriori error estimates of the spatial
errors for the local discontinuous Galerkin (LDG) method applied to the following
linear fourth-order initial-boundary value problem in one space dimension:

(1.1a) utt + uxxxx = f(x, t), x ∈ [0, L], t ∈ [0, T ],

subject to the initial conditions

(1.1b) u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ [0, L],

and to one of the following four kinds of boundary conditions which are commonly
encountered in practice (t ∈ [0, T ]):

u(0, t) = u1(t), uxx(0, t) = u2(t), ux(L, t) = u3(t), uxxx(L, t) = u4(t),(1.1c)

u(0, t) = u1(t), uxx(0, t) = u2(t), u(L, t) = u3(t), uxx(L, t) = u4(t),(1.1d)

u(0, t) = u1(t), ux(0, t) = u2(t), u(L, t) = u3(t), ux(L, t) = u4(t),(1.1e)

u(0, t) = u(L, t), ux(0, t) = ux(L, t), uxx(0, t) = uxx(L, t), uxxx(0, t) = uxxx(L, t).(1.1f)

In our analysis we assume that the interval [0, T ] is a finite time interval, and select
the side conditions and the source, f(x, t), such that the exact solution, u(x, t), is
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a smooth function on [0, L] × [0, T ]. Even though the analysis in this paper is
restricted to (1.1a), the same results can be directly generalized to the well-known
Euler-Bernoulli beam equation with constant and variable geometrical and physical
properties

(E(x)I(x)uxx)xx + ρ(x)A(x)utt = f(x, t),

where u(x, t) is the deflection of the neutral axis of the beam, E(x) is the Young’s
modulus of elasticity, I(x) is the area moment of inertia of the cross section with
respect to its neutral midplane, A(x) is the cross section in the yz-plane, ρ(x) is
the mass density per unit length, and f(x, t) is the transverse load.

The fourth-order Euler-Bernoulli beam equation considered in this paper plays a
very important role in both theory and applications. This is due to its use to de-
scribe a large number of physical and engineering phenomenons such as the flexural
vibrations of a slender isotropic beam within the framework of Euler-Bernoulli as-
sumptions. Several numerical schemes are proposed in the literature for solving
(1.1a). Consult [11, 12, 14, 35, 36, 37, 41, 42, 47] and the references cited therein
for more details. In this paper, we develop, analyze and test a superconvergent
LDG method for solving (1.1). The proposed scheme is based on the fourth-order
Runge-Kutta method approximation in time and on the LDG approximation in the
spatial discretization. Our proposed scheme for solving the beam equation extend-
s our previous work [16, 23] in which we investigated the convergence properties
and the error estimates of the LDG method applied to the second-order wave and
convection-diffusion equations in one space dimension.

The main motivation for the LDG method proposed in this paper originates from
the LDG techniques which have been developed for convection-diffusion equations.
The LDG finite element method considered here is an extension of the discontinuous
Galerkin (DG) method aimed at solving ordinary and partial differential equations
(PDEs) containing higher than first-order spatial derivatives. The DG method is
a class of finite element methods using completely discontinuous piecewise polyno-
mials for the numerical solution and the test functions. With discontinuous finite
element bases, they capture discontinuities in, e.g., hyperbolic systems with high
accuracy and efficiency; simplify adaptive h−, p−, r−, refinements and produce
efficient parallel solution procedures. The DG method was initially introduced by
Reed and Hill in 1973 as a technique to solve neutron transport problems [44].
Lesaint and Raviart [40] presented the first numerical analysis of the method for
a linear advection equation. Since then, DG methods have been used to solve or-
dinary and partial differential equations. Consult [32, 17] and the references cited
therein for a detailed discussion of the history of DG method and a list of important
citations on the DG method and its applications.

The LDG method for solving convection-diffusion problems was first introduced by
Cockburn and Shu in [33]. They further studied the stability and error estimates
for the LDG method. Castillo et al. [26] presented the first a priori error analy-
sis for the LDG method for a model elliptic problem. They considered arbitrary
meshes with hanging nodes and elements of various shapes and studied general
numerical fluxes. They showed that, for smooth solutions, the L2 errors in ∇u and
in u are of order k and k + 1/2, respectively, when polynomials of total degree not
exceeding k are used. Cockburn et al. [31] presented a superconvergence result for
the LDG method for a model elliptic problem on Cartesian grids. They identified
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a special numerical flux for which the L2-norms of the gradient and the potential
are of orders k + 1/2 and k + 1, respectively, when tensor product polynomials of
degree at most k are used. Several LDG schemes have been developed for various
high order PDEs including the convection-diffusion equations [33], second-order
wave equations [16, 20], nonlinear KdV type equations [48, 50], and beam equa-
tion [18, 19]. More details about the LDG methods for high order time dependent
equations can be found in the review paper [49] and the recent proceeding of Shu
[46]. Furthermore, some LDG methods for other high order wave equations were
developed by Yan and Shu [51], which were high order accurate and stable schemes.

The study of superconvergence and a posteriori error estimates of DG methods has
been an area of active research in both mathematics and engineering, see e.g. [15]. A
knowledge of superconvergence properties can be used to (i) construct simple and
asymptotically exact a posteriori estimates of discretization errors and (ii) help
detect discontinuities to find elements needing limiting, stabilization and/or refine-
ment. Typically, a posteriori error estimators employ the known numerical solution
to derive estimates of the actual solution errors. They are also used to steer adaptive
schemes where either the mesh is locally refined (h-refinement) or the polynomial
degree is raised (p-refinement). For an introduction to the subject of a posteriori
error estimation see the monograph of Ainsworth and Oden [13]. Superconvergence
properties for DG methods have been studied in [34, 40] for ordinary differential
equations, [4, 16, 8, 9] for hyperbolic problems and [2, 3, 5, 9, 10, 24, 25, 27, 28]
for diffusion and convection-diffusion problems. Several a posteriori DG error esti-
mates are known for hyperbolic [29, 30, 38, 22, 7] and diffusive [39, 45] problems.

Adjerid and Baccouch [4] investigated the global convergence of the implicit residual-
based a posteriori error estimates of Adjerid et al. [8]. They proved that, for smooth
solutions, these a posteriori error estimates at a fixed time t converge to the true
spatial error in the L2-norm under mesh refinement. Recently, Adjerid and Bac-
couch [6, 5] showed that LDG solutions are superconvergent at Radau points for
two-dimensional convection-diffusion problems. They used these results to con-
struct asymptotically correct a posteriori error estimates. In [16], we presented
new superconvergence results for the semi-discrete LDG method applied to the
second-order scalar wave equation in one space dimension. We performed an er-
ror analysis on one element and showed that the k-degree LDG solution and its
spatial derivative are O(hk+2) superconvergent at the roots of (k + 1)-degree right
and left Radau polynomials, respectively. Computational results showed that glob-
al superconvergence holds for LDG solutions. We used these results to construct
asymptotically correct a posteriori error estimates by solving local steady problem
with no boundary conditions on each element. However, we only presented several
numerical results suggesting that the global spatial error estimates converge to the
true errors under mesh refinement where temporal errors are assumed to be negligi-
ble. More recently, Baccouch [21, 20] analyzed the superconvergence properties of
the LDG formulation applied to transient convection-diffusion and wave equations
in one space dimension. The author proved that the leading error term on each
element for the solution is proportional to a (k+1)-degree right Radau polynomial
while the leading error term for the solution’s derivative is proportional to a (k+1)-
degree left Radau polynomial, when polynomials of degree at most k are used. He
further analyzed the convergence of a posteriori error estimates and proved that
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these error estimates are globally asymptotically exact under mesh refinement.

The goals of this paper are to (i) design a superconvergent LDG method for solving
the fourth-order initial-boundary value problems, (ii) investigate the superconver-
gence properties of LDG solutions, and (iii) develop computationally simple a pos-
teriori error estimates. We show that the local discretization errors for the k-degree
LDG solution and its derivatives up to third order converge as O(hk+2) at the root-
s of Radau polynomials of degree k + 1 on each element. More precisely, a local
error analysis reveals that the leading terms of the spatial discretization errors for
the LDG solution and its derivatives, using k-degree polynomial approximations,
are proportional to (k + 1)-degree (either right or left) Radau polynomials. We
use these results to construct asymptotically exact a posteriori error estimates in
regions where solutions are smooth. The leading terms of the discretization errors
for the solution and its spatial derivatives are estimated by solving a local steady
problem with no boundary conditions on each element. The four coefficients of the
leading terms of the spatial discretization errors are functions of the time variable
and obtained from a 4-by-4 linear algebraic system on each element. Several nu-
merical simulations are performed to validate the theory.

This paper is organized as follows: In section 2 we define the LDG scheme and we
introduce some notations and definitions which will be used in our error analysis. In
section 3, we present the LDG error analysis and prove our main superconvergence
results. In section 4, we discuss our error estimation procedure. In section 5, we
present numerical results to confirm the global superconvergence results and the
asymptotic exactness of our a posteriori error estimates under mesh refinement.
We conclude and discuss our results in section 6.

2. The LDG scheme

In order to construct the LDG scheme, we first introduce three auxiliary variables
q = ux, p = qx, r = px and rewrite our model problem (1.1a) as a first-order system
in space

utt + rx = f, r − px = 0, p− qx = 0, q − ux = 0.(2.1)

In order to obtain a weak LDG formulation we partition the interval I = [0, L] into
a quasi-uniform mesh, ∆N = {0 = x0 < x1 < x2 < · · · < xn−1 < xN = L}, having
N subintervals Ii = [xi−1, xi], i = 1, · · · , N with length hi = xi−xi−1. The length
of the largest subinterval is denoted by h = max1≤i≤N hi. Throughout this paper,
v
∣

∣

i
denotes the value of the function v = v(x, t) at x = xi. We also define v−

∣

∣

i
and

v+
∣

∣

i
to be the left limit and the right limit of the function v at the discontinuity

point xi, i.e.,

v−
∣

∣

i
= v−(xi, t) = lim

s→0−
v(xi + s, t), v+

∣

∣

i
= v+(xi, t) = lim

s→0+
v(xi + s, t).

We define a finite element space consisting of piecewise kth-degree polynomial func-
tions V k

h = {v : v|Ii ∈ P k(Ii)}, where P k(Ii) is the space of polynomials of degree
not exceeding k on Ii. Note that polynomials in the space V k

h are allowed to have
discontinuities across element boundaries.
Let us multiply the four equations in (2.1) by test functions v, w, s, and z, re-
spectively, integrate over an arbitrary subinterval Ii, and use integration by parts
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to write

∫

Ii

uttvdx−

∫

Ii

rvxdx+ rv
∣

∣

i
− rv

∣

∣

i−1
=

∫

Ii

fvdx,(2.2a)

∫

Ii

rwdx +

∫

Ii

pwxdx− pw
∣

∣

i
+ pw

∣

∣

i−1
= 0,(2.2b)

∫

Ii

psdx+

∫

Ii

qsxdx− qs
∣

∣

i
+ qs

∣

∣

i−1
= 0,(2.2c)

∫

Ii

qzdx+

∫

Ii

uzxdx− uz
∣

∣

i
+ uz

∣

∣

i−1
= 0.(2.2d)

Next, we approximate the exact solutions u(., t), q(., t), p(., t), and r(., t) by piece-
wise polynomials uh(., t) ∈ V k

h , qh(., t) ∈ V k
h , ph(., t) ∈ V k

h , and rh(., t) ∈ V k
h ,

respectively, whose restriction to Ii are in P k(Ii). Here uh, qh, ph, and rh are
not necessarily continuous at the endpoints of Ii. The semi-discrete LDG method
consists of finding uh, qh, ph, rh ∈ V k

h such that ∀ i = 1, . . . , N ,

∫

Ii

(uh)ttvdx−

∫

Ii

rhvxdx+ r̂hv
−
∣

∣

i
− r̂hv

+
∣

∣

i−1
=

∫

Ii

fv dx, ∀ v ∈ V
k
h ,(2.3a)

∫

Ii

rhw dx+

∫

Ii

phwx dx− p̂hw
−
∣

∣

i
+ p̂hw

+
∣

∣

i−1
= 0, ∀ w ∈ V

k
h ,(2.3b)

∫

Ii

phs dx+

∫

Ii

qhsx dx− q̂hs
−
∣

∣

i
+ q̂hs

+
∣

∣

i−1
= 0, ∀ s ∈ V

k
h ,(2.3c)

∫

Ii

qhz dx+

∫

Ii

uhzx dx− ûhz
−
∣

∣

i
+ ûhz

+
∣

∣

i−1
= 0, ∀ z ∈ V

k
h ,(2.3d)

where the hatted terms, ûh, q̂h, p̂h, and r̂h are the so-called numerical fluxes.
These numerical fluxes are single-valued functions defined on the boundaries of Ii
and should be designed to ensure numerical stability.
For the boundary conditions (1.1c), we choose the following alternating fluxes

ûh

∣

∣

i
=

{

u1(t), i = 0,
u−
h

∣

∣

i
, i = 1, . . . , N,

q̂h
∣

∣

i
=

{

q+h
∣

∣

i
, i = 0, . . . , N − 1,

u3(t), i = N,

p̂h
∣

∣

i
=

{

u2(t), i = 0,
p−h

∣

∣

i
, i = 1, . . . , N,

r̂h
∣

∣

i
=

{

r+h
∣

∣

i
, i = 0, . . . , N − 1,

u4(t), i = N.
(2.3e)

If other boundary conditions are chosen, the numerical fluxes can be easily designed.
For instance the numerical fluxes associated with the boundary conditions (1.1d)
can be taken as

ûh

∣

∣

i
=







u1(t), i = 0,
u−

h

∣

∣

i
, i = 1, . . . , N − 1,

u3(t), i = N,

q̂h
∣

∣

i
=

{

q+h
∣

∣

i
, i = 0, . . . , N − 1,

(

q−h − δ2(u
−

h − u3)
) ∣

∣

i
, i = N,

p̂h
∣

∣

i
=







u2(t), i = 0,
p−h

∣

∣

i
, i = 1, . . . , N − 1,

u4(t), i = N,

r̂h
∣

∣

i
=

{

r+h
∣

∣

i
, i = 0, . . . , N − 1,

(

r−h − δ2(p
−

h − u4)
) ∣

∣

i
, i = N,

(2.3f)

where the stabilization parameters δ1 and δ2 for the LDG method are given by
δ1 = k

hi

and δ2 = k
hi

.
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Similarly, the numerical fluxes associated with the boundary conditions (1.1e) can
be taken as

ûh

∣

∣

i
=







u1(t), i = 0,
u−

h

∣

∣

i
, i = 1, . . . , N − 1,

u3(t), i = N,

q̂h
∣

∣

i
=







u2(t), i = 0,
q+h

∣

∣

i
, i = 1, . . . , N − 1,

u4(t), i = N,

p̂h
∣

∣

i
=

{
(

p+h + δ1(q
+
h − u2)

) ∣

∣

i
, i = 0,

p−h
∣

∣

i
, i = 1, . . . , N,

r̂h
∣

∣

i
=

{

r+h
∣

∣

i
, i = 0, . . . , N − 1,

(

r−h − δ2(u
−

h − u3)
)
∣

∣

i
, i = N.

(2.3g)

where the stabilization parameters δ1 and δ2 for the LDG method are given by
δ1 = k

hi

and δ2 = k
h3
i

.

For the periodic boundary conditions (1.1f), we choose the following alternating
fluxes (e.g., see [43])

ûh

∣

∣

i
=

{

u−
h

∣

∣

N
, i = 0,

u−
h

∣

∣

i
, i = 1, . . . , N,

q̂h
∣

∣

i
=

{

q+h
∣

∣

i
, i = 0, . . . , N − 1,

q+h
∣

∣

0
, i = N,

p̂h
∣

∣

i
=

{

p−h
∣

∣

N
, i = 0,

p−h
∣

∣

i
, i = 1, . . . , N,

r̂h
∣

∣

i
=

{

r+h
∣

∣

i
, i = 0, . . . , N − 1,

r+h
∣

∣

0
, i = N.

(2.3h)

We note that this choice is not unique. For instance the following choice is also fine

ûh

∣

∣

i
=

{

u+
h

∣

∣

i
, i = 0, . . . , N − 1,

u+
h

∣

∣

0
, i = N,

q̂h
∣

∣

i
=

{

q−h
∣

∣

N
, i = 0,

q−h
∣

∣

i
, i = 1, . . . , N,

p̂h
∣

∣

i
=

{

p+h
∣

∣

i
, i = 0, . . . , N − 1,

p+h
∣

∣

0
, i = N,

r̂h
∣

∣

i
=

{

r−h
∣

∣

N
, i = 0,

r−h
∣

∣

i
, i = 1, . . . , N.

(2.3i)

In order to complete the definition of the semi-discrete LDG method we need to
design the initial conditions of our numerical scheme. In this paper, the initial
conditions uh(x, 0) ∈ V k

h and (uh)t(x, 0) ∈ V k
h are obtained by interpolating the

exact initial conditions u(x, 0) = g(x) and ut(x, 0) = h(x) as

(2.4) uh(x, 0) = π+g(x), (uh)t(x, 0) = π+h(x), x ∈ Ii, i = 1, · · · , N,

where π+v is the k-degree polynomial that interpolates v at the roots of (k + 1)-
degree right Radau polynomial which will be defined later.
Remark : In our numerical experiments we approximated the initial conditions of the
numerical scheme by the polynomials that interpolate the exact initial conditions
at the roots of the right Radau polynomial of degree k+1. However, numerical ex-
periments suggest that if we use the standard L2 projection of the initial conditions
as our numerical initial conditions instead, the convergence and superconvergence
rates do not converge to the desired k + 1 and k + 2 accuracy, respectively. We
observed that the order of accuracy for the solution and the auxiliary variables is
oscillating. Furthermore, we did not observe any pointwise superconvergence. We
would like to emphasize that our special choice of initial conditions (2.4) is essential
to obtain the desired superconvergence rate of the proposed LDG method.
In order to discretize in time, we first solve for the auxiliary variables qh, ph, and rh
in terms of uh in an element-by-element fashion using (2.3b)-(2.3d). Substituting
the resulting expressions for qh, ph, and rh into (2.3a), then expressing uh(x, t) =
∑k

j=0 cj,i(t)Lj,i(x), x ∈ Ii, as a linear combination of orthogonal basis Lj,i(x), j =

0, . . . , k, where Lj,i denotes the j
th-degree Legendre polynomial on Ii, and choosing

the test functions v = Lj,i, j = 0, . . . , k, we obtain the following linear second-order
ordinary differential system:

Mi

d2C′′
i (t)

dt2
= AiCi(t) + bi(t), i = 1, · · · , N,
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where Ci(t) = [c0,i(t), c1,i(t), · · · , ck,i(t)] denotes the solution vector at time t, Mi

denotes the mass matrix, Ai is a matrix, and bi(t) is a vector which depends on
the source term and the boundary conditions but independent of solution. We
introduced the superscript i to emphasize that these systems can be solved on
each element Ii using e.g., the classical fourth-order Runge-Kutta method. As our
interest is in the effect of the spatial discretization, we determine the time-step ∆t
so that temporal errors are small relative to spatial errors. We do not discuss the
influence of the time discretization error in this paper.
In our analysis we need the kth-degree Legendre polynomial defined by Rodrigues
formula [1]

Lk(ξ) =
1

2kk!

dk

dξk
[(ξ2 − 1)k], −1 ≤ ξ ≤ 1,

which satisfies the following properties: Lk(1) = 1, Lk(−1) = (−1)k and

∫ 1

−1

Lk(ξ)Lp(ξ)dξ =
2

2k + 1
δkp, where δkp is the Kronecker symbol.(2.5)

Next, we define the (k+1)−degree right Radau polynomial as R̃+
k+1(ξ) = Lk+1(ξ)−

Lk(ξ), −1 ≤ ξ ≤ 1, which has k + 1 real distinct roots, −1 < ξ+0 < · · · < ξ+k = 1.

We also define the (k + 1)-degree left Radau polynomial R̃−
k+1(ξ) = Lk+1(ξ) +

Lk(ξ), −1 ≤ ξ ≤ 1, which has k + 1 real distinct roots, −1 = ξ−0 < · · · < ξ−k < 1.
Mapping the element Ii = [xi−1, xi] into a reference element [−1, 1] by the standard
affine mapping

(2.6) x(ξ, hi) =
xi + xi−1

2
+

hi

2
ξ,

we obtain the shifted Radau polynomials R±
k+1,i(x) = R̃±

k+1

(

2x−xi−xi−1

hi

)

on Ii.

In this paper, we define the L2 inner product of two integrable functions, u = u(x, t)
and v = v(x, t), depending on x and t on the intervals Ii = [xi−1, xi] and I = [0, L]
as

(u(., t), v(., t))i =

∫

Ii

u(x, t)v(x, t)dx, (u(., t), v(., t)) =

∫

I

u(x, t)v(x, t)dx,

and the subsequent induced norms are ‖u(., t)‖
2
i = (u(., t), u(., t))i and ‖u(., t)‖

2
=

(u(., t), u(., t)). In the remainder of this paper we will omit the notation (., t) used
in the subsequent induced norms unless needed for clarity. Thus we use ‖u‖ instead
of ‖u(., t)‖ etc.

3. Superconvergence error analysis

In this section we investigate the superconvergence properties of the LDGmethod.
We show that uh and ph are O(hk+2) superconvergent at the (k + 1)-degree right-
Radau polynomial and qh and rh are O(hk+2) superconvergent at the (k+1)-degree
left-Radau polynomial. The local superconvergence results are proved and the glob-
al superconvergence results are confirmed numerically.
Throughout this paper, eu, eq, ep, and er, respectively, denote the errors between
the exact solutions of (2.1) and the numerical solutions defined in (2.3) i.e.,

eu = u− uh, eq = q − qh, ep = p− ph, er = r − rh.
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We subtract (2.3) from (2.2) with v, w, s, z ∈ V k
h to obtain the LDG orthogonality

conditions for the errors eu, eq, ep, and er on Ii
∫

Ii

(eu)ttvdx −

∫

Ii

ervxdx+ êrv
−
∣

∣

i
− êrv

+
∣

∣

i−1
= 0,(3.1a)

∫

Ii

erw dx+

∫

Ii

epwx dx− êpw
−
∣

∣

i
+ êpw

+
∣

∣

i−1
= 0,(3.1b)

∫

Ii

eps dx+

∫

Ii

eqsx dx− êqs
−
∣

∣

i
+ êqs

+
∣

∣

i−1
= 0,(3.1c)

∫

Ii

eqz dx+

∫

Ii

euzx dx− êuz
−
∣

∣

i
+ êuz

+
∣

∣

i−1
= 0.(3.1d)

Using the mapping of Ii = [xi−1, xi] onto the canonical element [−1, 1] defined
by (2.6) and denoting ẽu(ξ, t, hi) = eu(x(ξ, hi), t), ẽq(ξ, t, hi) = eq(x(ξ, hi), t),
ẽp(ξ, t, hi) = ep(x(ξ, hi), t), ẽr(ξ, t, hi) = er(x(ξ, hi), t), we obtain the LDG or-
thogonality condition (3.1) on the reference element [−1, 1]

hi

2

∫ 1

−1

(ẽu)ttṽdξ −

∫ 1

−1

ẽrṽξdξ + ˜̂er ṽ
−
∣

∣

i
− ˜̂erṽ

+
∣

∣

i−1
= 0,(3.2a)

hi

2

∫ 1

−1

ẽrw̃dξ +

∫ 1

−1

ẽpw̃ξdξ − ˜̂epw̃
−
∣

∣

i
+ ˜̂epw̃

+
∣

∣

i−1
= 0,(3.2b)

hi

2

∫ 1

−1

ẽps̃dξ +

∫ 1

−1

ẽqs̃ξdξ − ˜̂eq s̃
−
∣

∣

i
+ ˜̂eq s̃

+
∣

∣

i−1
= 0,(3.2c)

hi

2

∫ 1

−1

ẽqz̃dξ +

∫ 1

−1

ẽuz̃ξdξ − ˜̂euz̃
−
∣

∣

i
+ ˜̂euz̃

+
∣

∣

i−1
= 0.(3.2d)

If the exact solution u is analytic, the LDG solutions (uh, qh, ph, rh) on Ii are also
analytic with respect to x since they are polynomials in x. We further note that
ũh(ξ, t, hi) = uh(x(ξ, hi), t), q̃h(ξ, t, hi) = qh(x(ξ, hi), t), p̃h(ξ, t, hi) = ph(x(ξ, hi), t),
and r̃h(ξ, t, hi) = rh(x(ξ, hi), t) are analytic with respect to hi by transforming the
local LDG weak problem to the reference element and solving for the finite element
coefficients which are analytic functions of hi. Thus, at fixed time t, we can expand
the local errors in Maclaurin series with respect to hi as

ẽu(ξ, t, hi) =

∞
∑

j=0

Ũj(ξ, t)h
j
i , ẽq(ξ, t, hi) =

∞
∑

j=0

Q̃j(ξ, t)h
j
i ,(3.3a)

ẽp(ξ, t, hi) =
∞
∑

j=0

P̃j(ξ, t)h
j
i , ẽr(ξ, t, hi) =

∞
∑

j=0

R̃j(ξ, t)h
j
i ,(3.3b)

where Ũj(., t), Q̃j(., t), P̃j(., t), and R̃j(., t) ∈ P j([−1, 1]) are polynomials of degree
j in the variable ξ and are obtained by applying the chain rule as

Ũj(ξ, t) =
1

j!

dj ẽu

dhj
i

(ξ, t, 0) =
1

j!

j
∑

l=0

ξl

2l
(

j

l

)

∂l
x∂

j−l
h ẽu(0, t, 0),

Q̃j(ξ, t) =
1

j!

dj ẽq

dhj
i

(ξ, t, 0) =
1

j!

j
∑

l=0

ξl

2l
(

j
l

)

∂l
x∂

j−l
h ẽq(0, t, 0),

P̃j(ξ, t) =
1

j!

dj ẽp

dhj
i

(ξ, t, 0) =
1

j!

j
∑

l=0

ξl

2l
(

j
l

)

∂l
x∂

j−l
h ẽp(0, t, 0),
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R̃j(ξ, t) =
1

j!

dj ẽr

dhj
i

(ξ, t, 0) =
1

j!

j
∑

l=0

ξl

2l
(

j

l

)

∂l
x∂

j−l
h ẽr(0, t, 0),

where the binomial coefficient
(

j
l

)

is defined by
(

j
l

)

= j!
l! (j−l)! for 0 ≤ l ≤ j.

For simplicity, we present a local error analysis on the element [0, h]. For this, we
consider the problem (1.1a) on [0, h] subject to the initial conditions (1.1b), where
x ∈ [0, h] and to either the boundary conditions (1.1c) or (1.1d). For each case,
the proof is presented separately. Similar results hold when using the boundary
conditions (1.1f) and (1.1e). The proofs are very similar to proofs provided for the
first two cases, and are therefore omitted to save space. Several numerical examples
are included to validate these results globally.

3.1. Case 1. In this subsection, we consider the problem (1.1a) in [0, h] subject
to the initial conditions (1.1b) and the boundary conditions (1.1c). In the next
theorem, we state and prove the following pointwise superconvergence results.

Theorem 3.1. Let (u, q, p, r) and (uh, qh, ph, rh), respectively, be the solutions of
(2.1) and (2.3) in [0, h] with the numerical fluxes (2.3e) subject to (1.1b) and (1.1c).
If we apply the mapping of [0, h] onto the canonical element [−1, 1] defined by (2.6),
then, the local finite element errors can be written as

ẽu(ξ, t, h) =
∞
∑

j=k+1

Ũj(ξ, t)h
j , ẽq(ξ, t, h) =

∞
∑

j=k+1

Q̃j(ξ, t)h
j ,(3.4a)

ẽp(ξ, t, h) =

∞
∑

j=k+1

P̃j(ξ, t)h
j , ẽr(ξ, t, h) =

∞
∑

j=k+1

R̃j(ξ, t)h
j ,(3.4b)

where the leading terms of the discretization errors are given by

Ũk+1(ξ, t) = ak+1(t)R̃
+
k+1(ξ), Q̃k+1(ξ, t) = bk+1(t)R̃

−
k+1(ξ),(3.4c)

P̃k+1(ξ, t) = ck+1(t)R̃
+
k+1(ξ), R̃k+1(ξ, t) = dk+1(t)R̃

−
k+1(ξ).(3.4d)

In the remainder of this paper we will omit the˜unless we feel it is needed for
clarity. Since we consider one element, we will omit the ±, for instance, v+(−1) =
v(−1) and v−(1) = v(1), etc.

Proof. Since we consider one element [0, h], the numerical fluxes (2.3e) using the
boundary conditions (1.1c) become

ûh(−1, t, h) = u1(t), ûh(1, t, h) = uh(1, t, h),

q̂h(−1, t, h) = qh(1, t, h), q̂h(1, t, h) = u3(t),

p̂h(−1, t, h) = u2(t), p̂h(1, t, h) = ph(1, t, h),

r̂h(−1, t, h) = rh(1, t, h), r̂h(1, t, h) = u4(t).

Thus, the LDG orthogonality conditions (3.2) for the local errors can be simplified
to

h

2

∫ 1

−1

(eu)ttvdξ −

∫ 1

−1

ervξdξ − er(−1, t, h)v(−1) = 0,(3.5a)

h

2

∫ 1

−1

erwdξ +

∫ 1

−1

epwξdξ − ep(1, t, h)w(1) = 0,(3.5b)

h

2

∫ 1

−1

epsdξ +

∫ 1

−1

eqsξdξ + eq(−1, t, h)s(−1) = 0,(3.5c)
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h

2

∫ 1

−1

eqzdξ +

∫ 1

−1

euzξdξ − eu(1, t, h)z(1) = 0.(3.5d)

Substituting (3.3) into (3.5) and collecting terms having the same powers of h lead
to

−

∫ 1

−1

R0vξdξ−R0(−1, t)v(−1)+

k
∑

j=1

h
j

(

1

2

∫ 1

−1

(Uj−1)ttvdξ −

∫ 1

−1

Rjvξdξ −Rj(−1, t)v(−1)

)

(3.6a) +

∞
∑

j=k+1

h
j

(

1

2

∫ 1

−1

(Uj−1)ttvdξ −

∫ 1

−1

Rjvξdξ −Rj(−1, t)v(−1)

)

= 0,

∫ 1

−1

P0wξdξ − P0(1, t)w(1) +

k
∑

j=1

h
j

(

1

2

∫ 1

−1

Rj−1wdξ +

∫ 1

−1

Pjwξdξ − Pj(1, t)w(1)

)

+

(3.6b)

∞
∑

j=k+1

h
j

(

1

2

∫ 1

−1

Rj−1wdξ +

∫ 1

−1

Pjwξdξ − Pj(1, t)w(1)

)

= 0,

∫ 1

−1

Q0sξdξ+Q0(−1, t)s(−1)+
k

∑

j=1

h
j

(

1

2

∫ 1

−1

Pj−1sdξ +

∫ 1

−1

Qjsξdξ +Qj(−1, t)s(−1)

)

+

(3.6c)
∞
∑

j=k+1

h
j

(

1

2

∫ 1

−1

Pj−1sdξ +

∫ 1

−1

Qjsξdξ +Qj(−1, t)s(−1)

)

= 0,

∫ 1

−1

U0zξdξ − U0(1, t)z(1) +
k

∑

j=1

h
j

(

1

2

∫ 1

−1

Qj−1zdξ +

∫ 1

−1

Ujzξdξ − Uj(1, t)z(1)

)

+

(3.6d)
∞
∑

j=k+1

h
j

(

1

2

∫ 1

−1

Qj−1zdξ +

∫ 1

−1

Ujzξdξ − Uj(1, t)z(1)

)

= 0.

Setting each term of the power series zero, the polynomials Uj ∈ P j([−1, 1]),
Qj ∈ P j([−1, 1]), Pj ∈ P j([−1, 1]) and Rj ∈ P j([−1, 1]), j = 0, · · · , k, satisfy the
following conditions: ∀ v, w, s, z ∈ P k([−1, 1]),

−

∫ 1

−1

R0vξdξ −R0(−1, t)v(−1) = 0,(3.7a)

1

2

∫ 1

−1

(Uj−1)ttvdξ −

∫ 1

−1

Rjvξdξ −Rj(−1, t)v(−1) = 0, j = 1, · · · , k,(3.7b)

∫ 1

−1

P0wξdξ − P0(1, t)w(1) = 0,(3.7c)

1

2

∫ 1

−1

Rj−1wdξ +

∫ 1

−1

Pjwξdξ − Pj(1, t)w(1) = 0, j = 1, · · · , k,(3.7d)

∫ 1

−1

Q0sξdξ +Q0(−1, t)s(−1) = 0,(3.7e)

1

2

∫ 1

−1

Pj−1sdξ +

∫ 1

−1

Qjsξdξ +Qj(−1, t)s(−1) = 0, j = 1, · · · , k,(3.7f)

∫ 1

−1

U0zξdξ − U0(1, t)z(1) = 0,(3.7g)

1

2

∫ 1

−1

Qj−1zdξ +

∫ 1

−1

Ujzξdξ − Uj(1, t)z(1) = 0, j = 1, · · · , k.(3.7h)
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Next, we will use induction to prove

(3.8) Uj(ξ, t) = Qj(ξ, t) = Pj(ξ, t) = Rj(ξ, t) = 0, 0 ≤ j ≤ k.

Taking v = w = s = z = 1 in (3.7a), (3.7c), (3.7e), and (3.7g), respectively, gives

U0(1, t) = Q0(−1, t) = P0(1, t) = R0(−1, t) = 0.

Since U0, Q0, P0, R0 ∈ P 0([−1, 1]) are constant polynomials of degree 0, we have
U0(ξ, t) = Q0(ξ, t) = P0(ξ, t) = R0(ξ, t) = 0. Thus, (3.8) is true for j = 0. Now
we assume that Uj(ξ, t) = Qj(ξ, t) = Pj(ξ, t) = Rj(ξ, t) = 0, 0 ≤ j ≤ k − 1 and
prove that Uk(ξ, t) = Qk(ξ, t) = Pk(ξ, t) = Rk(ξ, t) = 0.
Next, we note that (3.7b), (3.7d), (3.7f), and (3.7h) for j = k become

−

∫ 1

−1

Rkvξdξ −Rk(−1, t)v(−1) = 0, ∀ v ∈ P k([−1, 1]),(3.9a)

∫ 1

−1

Pkwξdξ − Pk(1, t)w(1) = 0, ∀ w ∈ P k([−1, 1]),(3.9b)

∫ 1

−1

Qksξdξ +Qk(−1, t)s(−1) = 0, ∀ s ∈ P k([−1, 1]),(3.9c)

∫ 1

−1

Ukzξdξ − Uk(1, t)z(1) = 0, ∀ z ∈ P k([−1, 1]).(3.9d)

Setting v = w = s = z = 1 in (3.9a), (3.9b), (3.9c), and (3.9d), respectively, yields

Uk(1, t) = Qk(−1, t) = Pk(1, t) = Rk(−1, t) = 0.(3.10)

Combining (3.9) and (3.10) we obtain: ∀ v, w, s, z ∈ P k([−1, 1]),
∫ 1

−1

Rkvξdξ = 0,

∫ 1

−1

Pkwξdξ = 0,

∫ 1

−1

Qksξdξ = 0,

∫ 1

−1

Ukzξdξ = 0.(3.11)

Writing Uk(ξ, t), Qk(ξ, t), Pk(ξ, t), and Rk(ξ, t) as a linear combination of Legendre
polynomials,

Uk(ξ, t) =

k
∑

j=0

aj(t)Lj(ξ), Qk(ξ, t) =

k
∑

j=0

bj(t)Lj(ξ),

Pk(ξ, t) =

k
∑

j=0

cj(t)Lj(ξ), Rk(ξ, t) =

k
∑

j=0

dj(t)Lj(ξ),

and using (3.11) and the orthogonality relation (2.5), we arrive at

Uk(ξ, t) = ak(t)Lk(ξ), Qk(ξ, t) = bk(t)Lk(ξ),

Pk(ξ, t) = ck(t)Lk(ξ), Rk(ξ, t) = dk(t)Lk(ξ).

Using (3.10) and the properties of Legendre polynomial Lk(1) = 1, Lk(−1) = (−1)k,
we get

0 = Uk(1, t) = ak(t)Lk(1) = ak(t), 0 = Qk(−1, t) = bk(t)Lk(−1) = (−1)kbk(t),

0 = Pk(1, t) = ck(t)Lk(1) = ck(t), 0 = Rk(−1, t) = dk(t)Lk(−1) = (−1)kdk(t).

Thus,

Uk(ξ, t) = Qk(ξ, t) = Pk(ξ, t) = Rk(ξ, t) = 0.(3.12)
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Next, after using (3.12), the O(hk+1) terms in (3.6) yield

−

∫ 1

−1

Rk+1vξdξ −Rk+1(−1, t)v(−1) = 0, ∀ v ∈ P k([−1, 1]),(3.13a)

∫ 1

−1

Pk+1wξdξ − Pk+1(1, t)w(1) = 0, ∀ w ∈ P k([−1, 1]),(3.13b)

∫ 1

−1

Qk+1sξdξ +Qk+1(−1, t)s(−1) = 0, ∀ s ∈ P k([−1, 1]),(3.13c)

∫ 1

−1

Uk+1zξdξ − Uk+1(1, t)z(1) = 0, ∀ z ∈ P k([−1, 1]).(3.13d)

Taking v = w = s = z = 1 in (3.13a), (3.13b), (3.13c), and (3.13d), respectively,
we get

Uk+1(1, t) = Qk+1(−1, t) = Pk+1(1, t) = Rk+1(−1, t) = 0.(3.14)

Therefore, (3.13) becomes: ∀ v, w, s, z ∈ P k([−1, 1]),

(3.15)

∫ 1

−1 Rk+1vξdξ = 0,
∫ 1

−1 Pk+1wξdξ = 0,
∫ 1

−1 Qk+1sξdξ = 0,
∫ 1

−1 Uk+1zξdξ = 0.

Expanding Uk+1, Qk+1, Pk+1, Rk+1 ∈ P k+1([−1, 1]) in series of Legendre polyno-
mials i.e.,

Uk+1(ξ, t) =

k+1
∑

j=0

aj(t)Lj(ξ), Qk+1(ξ, t) =

k+1
∑

j=0

bj(t)Lj(ξ),(3.16a)

Pk+1(ξ, t) =

k+1
∑

j=0

cj(t)Lj(ξ), Rk+1(ξ, t) =

k+1
∑

j=0

dj(t)Lj(ξ),(3.16b)

and using the orthogonality relation (2.5), we obtain

Uk+1(ξ, t) = ak(t)Lk(ξ) + ak+1(t)Lk+1(ξ), Qk+1(ξ, t) = bk(t)Lk(ξ) + bk+1(t)Lk+1(ξ),

Pk+1(ξ, t) = ck(t)Lk(ξ) + ck+1(t)Lk+1(ξ), Rk+1(ξ, t) = dk(t)Lk(ξ) + dk+1(t)Lk+1(ξ).

Using (3.14) and the properties Lk(1) = 1, Lk(−1) = (−1)k, we have

0 = Uk+1(1, t) = ak(t)Lk(1) + ak+1(t)Lk+1(1) = ak(t) + ak+1(t),

0 = Qk+1(−1, t) = bk(t)Lk(−1) + bk+1(t)Lk+1(1) = (−1)kbk(t) + (−1)k+1
bk+1(t),

0 = Pk+1(1, t) = ck(t)Lk(1) + ck+1(t)Lk+1(1) = ck(t) + ck+1(t),

0 = Rk+1(−1, t) = dk(t)Lk(−1) + dk+1(t)Lk+1(1) = (−1)kdk(t) + (−1)k+1
dk+1(t),

which give ak+1(t) = −ak(t), bk+1(t) = bk(t), ck+1(t) = −ck(t), dk+1(t) =
dk(t). Thus, the leading terms of the discretization errors can be written as

Uk+1(ξ, t) = ak+1(t) (Lk+1(ξ)− Lk(ξ)) = ak+1(t)R
+
k+1(ξ),

Qk+1(ξ, t) = bk+1(t) (Lk+1(ξ) + Lk(ξ)) = bk+1(t)R
−
k+1(ξ),

Pk+1(ξ, t) = ck+1(t) (Lk+1(ξ)− Lk(ξ)) = ck+1(t)R
+
k+1(ξ),

Rk+1(ξ, t) = dk+1(t) (Lk+1(ξ) + Lk(ξ)) = dk+1(t)R
−
k+1(ξ),

which complete the proof of the Theorem. �
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3.2. Case 2. Here, we consider the problem (1.1a) in [0, h] subject to the initial
conditions (1.1b) and to the boundary conditions (1.1d). In the following theorem,
we show that the results of Theorem 3.1 still hold.

Theorem 3.2. Let (u, q, p, r) and (uh, qh, ph, rh), respectively, be the solutions of
(2.1) and (2.3) in [0, h] subject to the initial conditions (1.1b) and the boundary
conditions (1.1d). Let x(ξ, h) = h

2 (ξ + 1) be the mapping of [0, h] onto [−1, 1].
Then (3.4) holds.

Proof. Since we consider one element [0, h], the numerical fluxes (2.3f) using the
boundary conditions (1.1d) with δ1 = k

h
and δ2 = k

h
become

ûh(0, t) = u1(t), ûh(h, t) = u3(t),

q̂h(0, t) = qh(0, t), q̂h(h, t) = qh(h, t)−
k

h
(uh(h, t)− u3(t)),

p̂h(0, t) = u2(0, t), p̂h(h, t) = u4(t),

r̂h(0, t) = rh(0, t), r̂h(h, t) = rh(h, t)−
k

h
(ph(h, t)− u4(t)),

where uh, qh, ph and rh are the LDG solutions on [0, h]. Thus,

êu(0, t) = u(0, t)− ûh(0, t) = u1(t)− u1(t) = 0,

êu(h, t) = u(h, t)− ûh(h, t) = u3(t)− u3(t) = 0,

êq(0, t) = q(0, t)− q̂h(0, t) = q(0, t)− qh(0, t) = eq(0, t),

êq(h, t) = q(h, t)− q̂h(h, t) = q(h, t)− qh(h, t) +
k

h
(uh(h, t)− u3(t))

= eq(h, t)−
k

h
eu(h, t),

êp(0, t) = p(0, t)− p̂h(0, t) = u2(t)− u2(t) = 0,

êp(h, t) = p(h, t)− p̂h(h, t) = u4(t)− u4(t) = 0,

r̂h(0, t) = r(0, t)− r̂h(0, t) = r(0, t)− rh(0, t) = er(0, t),

êr(h, t) = r(h, t) − rh(h, t) = r(h, t) − rh(h, t) +
k

h
(ph(h, t)− u4(t))

= er(h, t)−
k

h
ep(h, t).

Using the mapping of [0, h] onto [−1, 1] given by (2.6), we have

êu(−1, t, h) = 0, êu(1, t, h) = 0,

êq(−1, t, h) = eq(−1, t, h), êq(1, t, h) = eq(1, t, h)−
k

h
eu(1, t, h),

êp(−1, t, h) = 0, êp(1, t, h) = 0,

êr(−1, t, h) = er(−1, t, h), êr(1, t, h) = er(1, t, h)−
k

h
ep(1, t, h).

The LDG orthogonality conditions (3.2) with the boundary conditions (1.1d) and
numerical fluxes (2.3f) become

h

2

∫ 1

−1

(eu)ttvdξ −

∫ 1

−1

ervξdξ +

(

er(1, t, h)−
k

h
ep(1, t, h)

)

v(1)

−er(−1, t, h)v(−1) = 0,(3.17a)

h

2

∫ 1

−1

erwdξ +

∫ 1

−1

epwξdξ = 0,(3.17b)
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h

2

∫ 1

−1

epsdξ +

∫ 1

−1

eqsξdξ −

(

eq(1, t, h)−
k

h
eu(1, t, h)

)

s(1)

+eq(−1, t, h)s(−1) = 0,(3.17c)

h

2

∫ 1

−1

eqzdξ +

∫ 1

−1

euzξdξ = 0.(3.17d)

Substituting the series (3.3) in the LDG orthogonality condition (3.17) and collect-
ing terms having the same powers of h we get

−kP0(1, t)v(1) + (−

∫ 1

−1

R0vξdξ + (R0(1, t)− kP1(1, t)) v(1)−R0(−1, t)v(−1))h

+

∞
∑

j=2

hj(
1

2

∫ 1

−1

(Uj−2)ttvdξ −

∫ 1

−1

Rj−1vξdξ + (Rj−1(1, t)− kPj(1, t)) v(1)

−Rj−1(−1, t)v(−1)) = 0,

∫ 1

−1

P0wξdξ +
∞
∑

j=1

hj

(

1

2

∫ 1

−1

Rj−1wdξ +

∫ 1

−1

Pjwξdξ

)

= 0,

kU0(1, t)s(1) + (

∫ 1

−1

Q0sξdξ − (Q0(1, t)− kU1(1, t)) s(1) +Q0(−1, t)s(−1))h+

∞
∑

j=2

hj(
1

2

∫ 1

−1

Pj−2sdξ +

∫ 1

−1

Qj−1sξdξ − (Qj−1(1, t)− kUj(1, t)) s(1)

+Qj−1(−1, t)s(−1)) = 0,

∫ 1

−1

U0zξdξ +

∞
∑

j=1

hj

(

1

2

∫ 1

−1

Qj−1zdξ +

∫ 1

−1

Ujzξdξ

)

= 0.

Setting each term of the power series zero yields the orthogonality conditions:
∀ v, w, s, z ∈ P k([−1, 1]),

−kP0(1, t)v(1) =

∫ 1

−1

P0wξdξ = kU0(1, t)s(1) =

∫ 1

−1

U0zξdξ = 0,(3.18a)

−

∫ 1

−1

R0vξdξ + (R0(1, t)− kP1(1, t)) v(1)−R0(−1, t)v(−1) = 0,(3.18b)

∫ 1

−1

Q0sξdξ − (Q0(1, t)− kU1(1, t)) s(1) +Q0(−1, t)s(−1) = 0,(3.18c)

1

2

∫ 1

−1

(Uj−2)ttvdξ −

∫ 1

−1

Rj−1vξdξ + (Rj−1(1, t)− kPj(1, t)) v(1)

−Rj−1(−1, t)v(−1) = 0, j ≥ 2,(3.18d)

1

2

∫ 1

−1

Rj−1wdξ +

∫ 1

−1

Pjwξdξ = 0, j ≥ 1,(3.18e)

1

2

∫ 1

−1

Pj−2sdξ +

∫ 1

−1

Qj−1sξdξ − (Qj−1(1, t)− kUj(1, t)) s(1)

+Qj−1(−1, t)s(−1) = 0, j ≥ 2,(3.18f)

1

2

∫ 1

−1

Qj−1zdξ +

∫ 1

−1

Ujzξdξ = 0, j ≥ 1.(3.18g)
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Again, by induction we will prove that

(3.19) Uj(ξ, t) = Qj(ξ, t) = Pj(ξ, t) = Rj(ξ, t) = 0, 0 ≤ j ≤ k.

Taking v = 1 and s = 1 in (3.18a) and using the fact that U0, P0 ∈ P 0([−1, 1])
yields U0(ξ, t) = P0(ξ, t) = 0. Similarly, choosing w = z = 1 in (3.18e) and (3.18g)
for j = 1 leads to Q0(ξ, t) = R0(ξ, t) = 0.
Taking v = 1 and s = 1 in (3.18b) and (3.18c), respectively, and using the fact that
Q0(ξ, t) = R0(ξ, t) = 0, we obtain

(3.20) U1(1, t) = P1(1, t) = 0.

Letting w = ξ in (3.18e) for j = 1 and z = ξ in (3.18g) for j = 1 and using
Q0(ξ, t) = R0(ξ, t) = 0, we obtain

(3.21)

∫ 1

−1

U1dξ =

∫ 1

−1

P1dξ = 0.

Combining (3.20) with (3.21) we get U1(ξ, t) = P1(ξ, t) = 0. Now, we assume that

(3.22) Uj(ξ, t) = Qj(ξ, t) = Pj(ξ, t) = Rj(ξ, t) = 0, 0 ≤ j ≤ k − 1,

and use induction to show that Uk(ξ, t) = Qk(ξ, t) = Pk(ξ, t) = Rk(ξ, t) = 0.
Next, we note that (3.22), (3.18d), (3.18e), (3.18f), and (3.18g) for j = k gives:
∀ v, w, s, z ∈ P k([−1, 1]),

(3.23) Pk(1, t)v(1) =

∫ 1

−1

Pkwξdξ = Uk(1, t)s(1) =

∫ 1

−1

Ukzξdξ = 0.

Letting v = s = 1 in (3.23), we get

(3.24) Uk(1, t) = Pk(1, t) = 0.

Writing Uk(ξ, t) and Pk(ξ, t) as a linear combination of Legendre polynomials,

Uk(ξ, t) =
∑k

j=0 aj(t)Lj(ξ), Pk(ξ, t) =
∑k

j=0 cj(t)Lj(ξ), using (3.23), and the or-

thogonality (2.5), we obtain Uk(ξ, t) = ak(t)Lk(ξ) and Pk(ξ, t) = ck(t)Lk(ξ), which,
after applying (3.24) and the fact that Lk(1) = 1, give 0 = Uk(1, t) = ak(t)Lk(1) =
ak(t) and 0 = Pk(1, t) = ck(t)Lk(1) = ck(t). Thus,

(3.25) Uk(ξ, t) = Pk(ξ, t) = 0.

Combining (3.18d) and (3.18f) for j = k + 1 with (3.22) and (3.25) yields (∀ s ∈
P k([−1, 1]))

−

∫ 1

−1

Rkvξdξ + (Rk(1, t)− kPk+1(1, t)) v(1)−Rk(−1, t)v(−1) = 0,(3.26)

∫ 1

−1

Qksξdξ − (Qk(1, t)− kUk+1(1, t)) s(1) +Qk(−1, t)s(−1) = 0.(3.27)

Testing against w = z = 1 in (3.18e) and (3.18g), respectively, for j = k + 1 yield

(3.28)

∫ 1

−1

Rkdξ = 0,

∫ 1

−1

Qkdξ = 0.

Testing against v = ξ − 1 in (3.26) and s = ξ − 1 in (3.27), we get

(3.29) −

∫ 1

−1

Rkdξ + 2Rk(−1, t) = 0,

∫ 1

−1

Qkdξ − 2Qk(−1, t) = 0.

Combining (3.29) with (3.28), we arrive at

(3.30) Rk(−1, t) = Qk(−1, t) = 0.
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Now, (3.26) and (3.27) become

−

∫ 1

−1

Rkvξdξ + (Rk(1, t)− kPk+1(1, t)) v(1) = 0,(3.31)

∫ 1

−1

Qksξdξ − (Qk(1, t)− kUk+1(1, t)) s(1) = 0.(3.32)

Choosing v = s = (ξ − 1)i, 1 ≤ i ≤ k, the second terms in (3.31) and (3.32) vanish
and

−

∫ 1

−1

Rk(ξ − 1)i−1dξ = 0,

∫ 1

−1

Qk(ξ − 1)i−1dξ = 0, ∀ 1 ≤ i ≤ k.

Expanding Qk(ξ, t) =
∑k

j=0 bj(t)Lj(ξ), Rk(ξ, t) =
∑k

j=0 dj(t)Lj(ξ), and (ξ −

1)i−1 =
∑i−1

j=0 ej(t)Lj(ξ), 1 ≤ i ≤ k, in series of Legendre polynomials and us-

ing the orthogonality relation (2.5), we arrive at

Qk(ξ, t) = bk(t)Lk(ξ), Rk(ξ, t) = dk(t)Lk(ξ).

Applying (3.30) and using the property Lk(−1) = (−1)k, we obtain

0 = Qk(−1, t) = bk(t)Lk(−1) = (−1)kbk(t),

0 = Rk(−1, t) = dk(t)Lk(−1) = (−1)kdk(t),

which yield bk = dk = 0. We conclude that Qk(ξ, t) = Rk(ξ, t) = 0, which complete
the proofs of (3.4a) and (3.4b). Next we will show (3.4c) and (3.4d). On the one
hand, since Qk(ξ, t) = Rk(ξ, t) = 0, (3.26) and (3.27) give

(3.33) Uk+1(1, t) = Pk+1(1, t) = 0.

On the other hand, (3.18e) and (3.18g) for j = k + 1 yield

(3.34)

∫ 1

−1

Pk+1wξdξ = 0,

∫ 1

−1

Uk+1zξdξ = 0, ∀ w, z ∈ P k([−1, 1]).

Expanding Uk+1 ∈ P k+1([−1, 1]) and Pk+1 ∈ P k+1([−1, 1]) in series of Legendre

polynomials Uk+1(ξ, t) =
∑k+1

j=0 aj(t)Lj(ξ), Pk+1(ξ, t) =
∑k+1

j=0 cj(t)Lj(ξ), using

(3.34) and the orthogonality relation (2.5), we arrive at

Uk+1(ξ, t) = ak(t)Lk(ξ) + ak+1(t)Lk+1(ξ),

Pk+1(ξ, t) = ck(t)Lk(ξ) + ck+1(t)Lk+1(ξ).

Applying (3.33) and the fact that Lk(1) = Lk+1(1) = 1, we obtain

0 = Uk+1(1, t) = ak(t)Lk(1) + ak+1(t)Lk+1(1) = ak(t) + ak+1(t),

0 = Pk+1(1, t) = ck(t)Lk(1) + ck+1(t)Lk+1(1) = ck(t) + ck+1(t),

which give ak+1(t) = −ak(t) and ck+1(t) = −ck(t). Thus,

Uk+1(ξ, t) = ak+1(t) (Lk+1(ξ) − Lk(ξ)) , Pk+1(ξ, t) = ck+1(t) (Lk+1(ξ)− Lk(ξ)) .

Next, (3.18d) and (3.18f) for j = k + 2 become

−

∫ 1

−1

Rk+1vξdξ + (Rk+1(1, t)− kPk+2(1, t)) v(1)− Rk+1(−1, t)v(−1) = 0,

∀ v ∈ P k([−1, 1]),(3.35a)
∫ 1

−1

Qk+1sξdξ − (Qk+1(1, t)− kUk+2(1, t)) s(1) +Qk+1(−1, t)s(−1) = 0,

∀ s ∈ P k([−1, 1]).(3.35b)
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Taking v = s = ξ − 1 gives

(3.36) −

∫ 1

−1

Rk+1dξ + 2Rk+1(−1, t) = 0,

∫ 1

−1

Qk+1dξ − 2Qk+1(−1, t) = 0.

Testing against w = z = 1 in (3.18e) and (3.18g) for j = k + 1, we obtain

(3.37)

∫ 1

−1

Rk+1dξ = 0,

∫ 1

−1

Qk+1dξ = 0.

Combining (3.36) and (3.37), we get

(3.38) Qk+1(−1, t) = Rk+1(−1, t) = 0.

Thus, (3.35) becomes

−

∫ 1

−1

Rk+1vξdξ + (Rk+1(1, t)− kPk+2(1, t)) v(1) = 0, ∀ v ∈ P k([−1, 1]),(3.39a)

∫ 1

−1

Qk+1sξdξ − (Qk+1(1, t)− kUk+2(1, t)) s(1) = 0, ∀ s ∈ P k([−1, 1]).(3.39b)

Testing against v = s = (ξ − 1)i, 1 ≤ i ≤ k, the second terms in (3.39) are 0 and

(3.40) −

∫ 1

−1

Rk+1(ξ − 1)i−1dξ = 0,

∫ 1

−1

Qk+1(ξ − 1)i−1dξ = 0, ∀ 1 ≤ i ≤ k.

Expanding Qk+1(ξ, t) =
∑k+1

j=0 bj(t)Lj(ξ), Rk+1(ξ, t) =
∑k+1

j=0 dj(t)Lj(ξ), and (ξ −

1)i−1 =
∑i−1

j=0 ej(t)Lj(ξ), 1 ≤ i ≤ k in series of Legendre polynomials and using

the orthogonality relation (2.5), (3.40) yields
(3.41)
Qk+1(ξ, t) = bk(t)Lk(ξ)+bk+1(t)Lk+1(ξ), Rk+1(ξ, t) = dk(t)Lk(ξ)+dk+1(t)Lk+1(ξ).

Combining (3.38) with (3.41) we conclude that bk+1 = bk and dk+1 = dk, which
complete the proof of the Theorem. �

In the previous section, we proved that the k-degree LDG solutions uh and ph are
O(hk+2) superconvergent at the roots of the (k+1)-degree right Radau polynomial
and qh and rh are O(hk+2) superconvergent at the roots of the (k + 1)-degree left
Radau polynomial. Now, let us note that a global superconvergence error analysis
is yet to be performed and will be investigated in the future. We expect that a
similar superconvergence result of Shu et al. [52, 28, 43] will be needed.

4. A posteriori error estimation

In this section, we present a technique to compute asymptotically exact a poste-
riori estimates of the LDG errors. The LDG error estimates under investigation are
computed by solving a local steady problem with no boundary conditions on each
element. Our numerical examples show that the LDG discretization error estimates
converge to the true spatial errors in the L2-norm as h → 0.
Before we present the weak finite element formulations to compute a posteriori error
estimates for the beam equation (1.1a), we state and prove some results which will
be needed in our a posteriori error analysis.

Lemma 4.1. The (k+1)-degree Radau polynomials on Ii, R
±
k+1,i(x), x ∈ Ii, satisfy

(4.1)

∫

Ii

dR+
k+1,i

dx
R+

k+1,idx = −2,

∫

Ii

dR−
k+1,i

dx
R−

k+1,idx = 2.
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Proof. Since Lk(1) = 1 and Lk(−1) = (−1)k, we have R̃+
k+1(1) = R+

k+1,i(xi) = 0

and R̃+
k+1(−1) = R+

k+1,i(xi−1) = 2(−1)k+1. Thus,

∫

Ii

dR+
k+1,i

dx
R+

k+1,idx =
1

2
(R+

k+1,i)
2(xi)−

1

2
(R+

k+1,i)
2(xi−1)

= −
1

2
(R+

k+1,i)
2(xi−1) = −2.(4.2)

Similarly, since R̃−
k+1(1) = R−

k+1,i(xi) = 2 and R̃−
k+1(−1) = R−

k+1,i(xi−1) = 0, we
have

∫

Ii

dR−
k+1,i

dx
R−

k+1,idx =
1

2
(R−

k+1,i)
2(xi)−

1

2
(R−

k+1,i)
2(xi−1)

=
1

2
(R−

k+1,i)
2(xi) = 2.(4.3)

Thus, we have completed the proof the Lemma. �

Next, we present the weak finite element formulations to compute a posteriori
error estimates for the beam equation (1.1a). Multiplying the four equations in
(2.1) by test functions v, w, s, and z, respectively, integrating over an arbitrary
element Ii, and replacing u by uh+ eu, q by qh + eq, p by ph+ ep, and r by rh + er,
we get

∫

Ii

(er)xvdx =

∫

Ii

(Rh,1 − (eu)tt) vdx,(4.4a)

−

∫

Ii

(ep)xwdx =

∫

Ii

(Rh,2 − er)wdx,(4.4b)

−

∫

Ii

(eq)xsdx =

∫

Ii

(Rh,3 − ep) sdx,(4.4c)

−

∫

Ii

(eu)xzdx =

∫

Ii

(Rh,4 − eq) zdx,(4.4d)

where

Rh,1 = f−(uh)tt−(rh)x, Rh,2 = (ph)x−rh, Rh,3 = (qh)x−ph, Rh,4 = (uh)x−qh.

Since the true errors can be split into significant parts and less significant parts as
shown in Theorem 3.1, our error estimate procedure consists of approximating the
true errors on each element Ii by the leading terms as

eu ≈ Eu = ak+1(t)R
+
k+1,i(x), eq ≈ Eq = bk+1(t)R

−
k+1,i(x), x ∈ Ii, t ∈ [0, T ],

ep ≈ Ep = ck+1(t)R
+
k+1,i(x), er ≈ Er = dk+1(t)R

−
k+1,i(x), x ∈ Ii, t ∈ [0, T ],

where the coefficients of the leading terms of the errors, ak+1, bk+1, ck+1, dk+1 can
be obtained from (4.4) as follows: (i) Neglecting the unknowns errors (eu)tt, eq, ep
and er which will be justified in Remark 1, (ii) replacing eu by Eu, eq by Eq, ep by

Ep, and er by Er in (4.4), and (iii) choosing v = s = R−
k+1,i(x), w = z = R+

k+1,i(x),
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we obtain the following equations for ak+1, bk+1, ck+1, and dk+1

dk+1

∫

Ii

dR−
k+1,i

dx
R−

k+1,idx =

∫

Ii

Rh,1R
−
k+1,idx,(4.5a)

−ck+1

∫

Ii

dR+
k+1,i

dx
R+

k+1,idx =

∫

Ii

Rh,2R
+
k+1,idx,(4.5b)

−bk+1

∫

Ii

dR−
k+1,i

dx
R−

k+1,idx =

∫

Ii

Rh,3R
−
k+1,idx,(4.5c)

−ak+1

∫

Ii

dR+
k+1,i

dx
R+

k+1,idx =

∫

Ii

Rh,4R
+
k+1,idx.(4.5d)

Using the properties in (4.1) and solving for ak+1, bk+1, ck+1, and dk+1, we get

ak+1(t) =
1

2

∫

Ii

Rh,4R
+
k+1,idx, bk+1(t) = −

1

2

∫

Ii

Rh,3R
−
k+1,idx,(4.6a)

ck+1(t) =
1

2

∫

Ii

Rh,2R
+
k+1,idx, dk+1(t) =

1

2

∫

Ii

Rh,1R
−
k+1,idx.(4.6b)

Remark 1. Numerical experiments show that neglecting the terms involving (eu)tt,
eq, ep and er does not affect the quality of the a posteriori error estimates for u, q, p
and r. In fact, the terms involving (eu)tt, eq, ep and er on the right-hand side of
(4.4) can be neglected since the terms on the left-hand side contain the derivative
of the errors with respect to x.

An accepted efficiency measure of a posteriori error estimates is the effectivity
index. In this paper, we use the global effectivity indices

θu(t) =
‖Eu‖

‖eu‖
, θq(t) =

‖Eq‖

‖eq‖
, θp(t) =

‖Ep‖

‖ep‖
, θr(t) =

‖Er‖

‖er‖
.

Ideally, the global effectivity indices should stay close to one and should converge
to one under mesh refinement.

5. Numerical examples

In this section, we provide some numerical examples to demonstrate the global
superconvergence results and the asymptotic exactness of our a posteriori errors
estimates under mesh refinement. The initial conditions are determined using (2.4).
Temporal integration is performed by the fourth-order classical explicit Runge-
Kutta method. A time step ∆t is chosen so that temporal errors are small relative
to spatial errors. We do not discuss the influence of the time discretization error
in this paper. We compute the maximum LDG errors ‖eu‖

∗
and ‖ep‖

∗
at shifted

roots of (k + 1)-degree right-Radau polynomial on each element Ii and then take
the maximum over all elements Ii, i = 1, · · · , N . Similarly, the maximum LDG
errors ‖eq‖

∗
and ‖er‖

∗
are computed at shifted roots of (k + 1)-degree left-Radau

polynomial on each element and by taking the maximum over all elements i.e.,

‖eu‖
∗
= max

1≤i≤N

(

max
1≤j≤k+1

|eu(x
+
j,i, t)|

)

, ‖eq‖
∗
= max

1≤i≤N

(

max
1≤j≤k+1

|eq(x
−
j,i, t)|

)

,

‖ep‖
∗
= max

1≤i≤N

(

max
1≤j≤k+1

|ep(x
+
k,i, t)|

)

, ‖er‖
∗
= max

1≤i≤N

(

max
1≤j≤k+1

|er(x
−
j,i, t)|

)

,

where x±
j,i are the shifted roots of R±

k+1,i on Ii.
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Example 5.1. We consider the following problem with mixed boundary conditions







utt + uxxxx = 2ex+t, x ∈ [0, 1], t ∈ [0, 1],
u(x, 0) = ex, ut(x, 0) = ex, x ∈ [0, 1],
u(0, t) = et, ux(1, t) = e1+t, uxx(0, t) = et, uxxx(0, t) = e1+t, t ∈ [0, 1].

This problem has the exact solution u(x, t) = ex+t. We implement the proposed
LDG method with the numerical fluxes (2.3e). We consider the case of uniform
meshes having N = 4, 8, 12, 16, 20 elements and using the spaces P k with k = 1, 2
and 3. The L2-norm of the true errors eu, eq, ep and er at final time T = 1 are
presented in Table 1. This indicates that the order of convergence is k + 1 for P k

spaces. Next, we present the zero-level curves of the true errors eu, eq, ep, and er in
Figures 1-3 at time t = 1 and for k ranging from 1 to 3. The Radau points of degree
k + 1 are shown on each element as × signs. We observe that the zero-level curves
pass close to the superconvergence points marked by × and the roots of the true
errors get closer to the roots of Radau polynomials with increasing k and N . The
maximum errors at the superconvergence points as well as their order of convergence
shown in Table 2 indicate that the LDG errors eu, eq, ep, and er at time t = 1 are
O(hk+2) superconvergent at Radau points. This example demonstrates that the
local superconvergence results hold globally. On each element we apply the error
estimation procedure (4.6) to compute error estimates for the LDG solution and its
derivatives up to third order. The global effectivity indices at t = 1 shown in Table
3 indicate that, for smooth solutions, our a posteriori error estimates converge to
the true errors under both h- and p-refinements. We repeated this experiment with
all parameters kept unchanged except for the boundary conditions where we used

(1) u(0, t) = et, ux(0, t) = et, u(1, t) = e1+t, ux(1, t) = e1+t, t ∈ [0, 1],
(2) u(0, t) = et, uxx(0, t) = et, u(1, t) = e1+t, uxx(1, t) = e1+t, t ∈

[0, 1].

The exact solution for both cases is given by u(x, t) = ex+t. Similar results have
been observed. These results are not included to save space.

Example 5.2. In this example we consider the following problem subject to the
periodic boundary conditions

{

utt + uxxxx = 2et cosx, x ∈ [0, 2π], t ∈ [0, 5],
u(x, 0) = cos(x), ut(x, 0) = cos(x), x ∈ [0, 2π],

The exact solution is given by u(x, t) = et cosx. We solve this problem using
the LDG method on uniform meshes having N = 4, 8, 12, 16, 20 elements and
using the spaces P k with k = 1, 2 and 3. Table 4 shows that the true errors eu,
eq, ep and er at t = 5 are O(hk+1) convergent in L2 norm. We present the zero-
level curves of the true errors eu, eq, ep, and er in Figures 4-6 at time t = 5 and
for k ranging from 1 to 3. The Radau points of degree k + 1 are shown on each
element as × signs. We observe that all errors vanish at points close to the Radau
points for all solutions. The maximum errors at the superconvergence points as
well as their order of convergence shown in Table 5 indicates that the LDG errors
eu, eq, ep, and er at time t = 5 are O(hk+2) superconvergent at Radau points. This
is in full agreement with the theory. On each element we apply the error estimation
procedure (4.6) to compute error estimates for the LDG solution and its derivatives
up to third order. The results shown in Table 6 indicate that the global effectivity
indices at t = 5 converge to unity under h-refinement.
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Table 1. ||eu||, ||eq||, ||ep|| and ||er|| errors at t = 1 and orders
of convergence for Example 5.1 on uniform meshes having N =
4, 8, 12, 16, 20 elements using P k, k = 1 to 3.

N k = 1 k = 2 k = 3

||eu|| order ||eu|| order ||eu|| order

4 1.8113e-2 3.6721e-4 5.6546e-6

8 4.5847e-3 1.9821 4.6154e-5 2.9921 3.5501e-7 3.9935

12 2.0440e-3 1.9923 1.3693e-5 2.9968 7.0196e-8 3.9975

16 1.1513e-3 1.9953 5.7801e-6 2.9980 2.2219e-8 3.9987

20 7.3736e-4 1.9968 2.9603e-6 2.9987 9.1030e-9 3.9990

||eq || order ||eq || order ||eq || order

4 1.8611e-2 3.7030e-4 5.6800e-6

8 4.6400e-3 2.0040 4.6346e-5 2.9982 3.5581e-7 3.9967

12 2.0596e-3 2.0031 1.3731e-5 3.0002 7.0300e-8 3.9994

16 1.1577e-3 2.0025 5.7922e-6 3.0003 2.2244e-8 3.9999

20 7.4063e-4 2.0018 2.9653e-6 3.0005 9.1102e-9 4.0005

||ep|| order ||ep|| order ||ep|| order

4 1.8425e-2 3.6783e-4 5.6595e-6

8 4.6037e-3 2.0008 4.6174e-5 2.9939 3.5514e-7 3.9942

12 2.0477e-3 1.9981 1.3695e-5 2.9975 7.0199e-8 3.9983

16 1.1525e-3 1.9980 5.7807e-6 2.9981 2.2184e-8 4.0043

20 7.3785e-4 1.9985 2.9606e-6 2.9987 9.2522e-9 3.9190

||er|| order ||er|| order ||er|| order

4 1.7364e-2 3.5928e-4 5.5682e-6

8 4.5394e-3 1.9355 4.5744e-5 2.9735 3.4562e-7 4.0100

12 2.0287e-3 1.9864 1.3673e-5 2.9784 6.9158e-8 3.9681

16 1.1432e-3 1.9937 5.7653e-6 3.0018 2.1749e-8 4.0212

20 7.3413e-4 1.9848 2.9420e-6 3.0150 8.8850e-9 4.0118

6. Concluding remarks

In this paper, we investigated the superconvergence properties of the LDG
method applied to the fourth-order initial-boundary value problems in one space
dimension. We performed a local error analysis to show that the leading terms
of the spatial discretization errors for the LDG solution and its spatial derivatives
up to third order using k-degree polynomial approximations are proportional to
(k+1)-degree Radau polynomials. As a consequence, the local discretization errors
converge as O(hk+2) at the roots of Radau polynomials of degree k+1 on each ele-
ment. These results are used to construct simple, efficient, and asymptotically exact
a posteriori error estimates. These LDG error estimates are computationally simple
and are obtained by solving a local steady problem with no boundary conditions
on each element. Our a posteriori error estimates are tested on several problems
to show their efficiency and accuracy under mesh refinement. Even though the
analysis in this paper is restricted to the classical Euler-Bernoulli beam equation
with constant coefficients, the same superconvergence results can be directly gener-
alized to the fourth-order Euler-Bernoulli beam equation with variable coefficients.
Superconvergence properties of the LDG method applied to two-dimensional prob-
lems on rectangular meshes are currently under investigation and will be reported
in a future paper. The generalization to nonlinear equations and to two space di-
mensions on triangular meshes involve several technical difficulties. These will be
investigated in the future.
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Figure 1. Zero-level curves of eu(·, t = 1), eq(·, t = 1), ep(·, t = 1),
er(·, t = 1) (from upper left to lower right) for Example 5.1 using
P k, k = 1 on uniform meshes having N = 8 elements.
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Figure 2. Zero-level curves of eu(·, t = 1), eq(·, t = 1), ep(·, t = 1),
er(·, t = 1) (from upper left to lower right) for Example 5.1 using
P k, k = 2 on uniform meshes having N = 8 elements.
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Figure 5. Zero-level curves of eu(·, t = 5), eq(·, t = 5), ep(·, t = 5),
er(·, t = 5) (from upper left to lower right) for Example 5.2 using
P k, k = 2 on uniform meshes having N = 12 elements.
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er(·, t = 5) (from upper left to lower right) for Example 5.2 using
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Table 5. Maximum errors and orders of convergence of eu, eq,
ep and er at Radau points and t = 5 for Example 5.2 on uniform
meshes having N = 4, 8, 12, 16, 20 elements using P k, k = 1− 3.

N k = 1 k = 2 k = 3

||eu||
∗ order ||eu||

∗ order ||eu||
∗ order

4 6.0206 3.2547e-1 1.5898e-2

8 8.5198e-1 2.8210 2.2443e-2 3.8582 5.4020e-4 4.8792

12 2.5840e-1 2.9424 4.3296e-3 4.0583 7.0849e-5 5.0100

16 1.0991e-1 2.9715 1.3537e-3 4.0414 1.6763e-5 5.0103

20 5.6485e-2 2.9832 5.5104e-4 4.0279 5.4838e-6 5.0074

||eq ||
∗ order ||eq ||

∗ order ||eq ||
∗ order

4 7.4938 2.6504e-1 1.1768e-2

8 9.9104e-1 2.9187 2.0263e-2 3.7093 4.8209e-4 4.6094

12 2.9521e-1 2.9869 4.1152e-3 3.9316 6.7248e-5 4.8580

16 1.2473e-1 2.9947 1.3140e-3 3.9683 1.6273e-5 4.9321

20 6.3905e-2 2.9970 5.4046e-4 3.9813 5.3801e-6 4.9600

||ep||
∗ order ||ep||

∗ order ||ep||
∗ order

4 6.7028 3.1762e-1 1.9194e-2

8 8.7421e-1 2.9387 1.9592e-2 4.0190 5.3538e-4 5.1639

12 2.6134e-1 2.9781 4.0473e-3 3.8895 7.0486e-5 5.0006

16 1.1062e-1 2.9884 1.3038e-3 3.9376 1.6696e-5 5.0064

20 5.6718e-2 2.9936 5.3744e-4 3.9715 5.4725e-6 4.9987

||er||
∗ order ||er||

∗ order ||er||
∗ order

4 8.9681 8.3742e-1 5.3033e-2

8 1.0251 3.1290 6.0824e-2 3.7832 2.0130e-3 4.7195

12 2.9913e-1 3.0377 1.2332e-2 3.9357 2.7368e-4 4.9213

16 1.2556e-1 3.0175 3.9417e-3 3.9647 6.5725e-5 4.9585

20 6.4129e-2 3.0110 1.6209e-3 3.9823 2.1657e-5 4.9751

Table 6. Global effectivity indices at t = 5 for Example 5.2 on
uniform meshes having N = 4, 8, 12, 16, 20 elements using P k,
k = 1 to 3.

N k = 1 k = 2 k = 3

θu θq θu θq θu θq
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