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Systematic assessment of accuracy of comparative model of proteins belonging 
to different structural fold classes 

By: Suvobrata Chakravarty,  Dario Ghersi, and Roberto Sanchez 

 

Abstract 

In the absence of experimental structures, comparative modeling continues to be the chosen method 
for retrieving structural information on target proteins. However, models lack the accuracy of 
experimental structures. Alignment error and structural divergence (between target and template) 
influence model accuracy the most. Here, we examine the potential additional impact of backbone 
geometry, as our previous studies have suggested that the structural class (all-α, αβ, all-β) of a protein 
may influence the accuracy of its model. In the twilight zone (sequence identity ≤ 30%) and at a similar 
level of target-template divergence, the accuracy of protein models does indeed follow the trend all-α > 
αβ > all-β. This is mainly because the alignment accuracy follows the same trend (all-α > αβ > all-β), with 
backbone geometry playing only a minor role. Differences in the diversity of sequences belonging to 
different structural classes leads to the observed accuracy differences, thus enabling the accuracy of 
alignments/models to be estimated a priori in a class-dependent manner. This study provides a 
systematic description of and quantifies the structural class-dependent effect in comparative modeling. 
The study also suggests that datasets for large-scale sequence/structure analyses should have equal 
representations of different structural classes to avoid class-dependent bias. 

Keywords 

Homology modeling, Model accuracy, Sequence alignment, Alignment accuracy, Information 
content, Secondary structure 

 

Introduction  

Comparative (or homology) modeling uses experimentally determined protein structures (templates) to 
predict the 3D conformation of another protein with a similar amino acid sequence (target). As the 
number of known protein folds is potentially approaching completion [1] due to progress in structural 
genomics initiatives, comparative modeling will continue to be the method of choice for building protein 
structure models [2–4]. Not only is comparative modeling the most accurate method for structure 
prediction [5, 6], but it also allows a priori estimation of the approximate quality of the models [7]. In 
addition, due to their added value [8], models are particularly suitable for comparative studies over 
complete protein families [9–11]. Despite significant progress in X-ray crystallography and high-field 
NMR spectroscopy for structure elucidation [12, 13], the structures of many proteins, including 
therapeutically relevant targets, remain unavailable. A number of studies have documented the 
usefulness of comparative modeling in therapeutic [14] and general applications such as the 
identification of inhibitor/antagonists [15–17], virtual screening [18, 19], molecular replacement [20], 
and function prediction [21].  



In spite of these successful applications, predicted structures generally contain errors and seldom reach 
the accuracy of experimental structures. Three variables influence the accuracy of a comparative model 
[22]: (i) the structural similarity between the target and template, (ii) the target–template alignment 
accuracy, and (iii) the ability to refine the model (i.e., loop modeling and general refinement). Combining 
these factors, the quality of a model—measured in terms of errors—can be defined as [23]:  

Total Error = Structural Difference 

+ Alignment Error - Refinement    (1) 

Alignment error is frequently cited as the single most important variable influencing the quality of 
comparative models [24, 25]. We recently showed that not only do alignment errors affect model 
accuracy directly, but they also affect it indirectly by depriving the models of the benefit of structural 
complementarity in multiple template modeling [23]. Thus, a very strong correlation between the 
alignment accuracy and model accuracy is observed. Additionally, our previous work noted that the 
average model accuracy obtained at a certain level of alignment accuracy varied depending on the 
structural class of proteins (all-α, all-β and αβ) [23]. This suggested a role for backbone geometry (not 
discussed before) in influencing model accuracy. In the present work, we systematically investigate this 
relationship between model accuracy and protein structural class. This is relevant since most studies do 
not distinguish between structural classes when describing or estimating the accuracy of comparative 
models [7, 26–29] . Hence, we report here a comparison of the accuracy of comparative models of 
proteins belonging to the three main structural classes: all-α, all-β and χ/β proteins. The accuracy of 
models is measured by comparing them with their respective target experimental structure. As in our 
previous studies, we make use of a reference set of single-template comparative models without an 
explicit refinement step (e.g., loop modeling) [7]. In this context, the effect of the model-building 
method is negligible [5], thus making the conclusions general and applicable to the use of any 
comparative modeling software.  

Methods  

Construction of dataset  

Our previous dataset [7] was the starting point of construction (see the “Electronic supplementary 
material”). The selected pairs (size: 100–150 residues) were then sorted into sequence identity bins (10–
60% with a bin size of 5%) such that each bin had the same number of all-α, all-β and αβ pairs. The 
selected polypeptide chains of 100–160 residues were further sorted into 3 bins of 110± 10, 130±10 and 
150±10 residues. To avoid any observed difference resulting from the differences in protein size, each 
sequence identity bin had nearly same number of chains of 110±10, 130±10 and 150±10 residues from 
each of the all-α, all-β and αβ pairs. A total of 4,500 sequence pairs were finally selected by choosing 
1,500 pairs for each class. In addition, for each of the three structural classes, the template–target pairs 
were selected such that the average STR model accuracy curve—a measure of structural divergence—of 
each class across the sequence identity bins was nearly identical (Fig. 1b). We paid attention when 
selecting pairs to ensure that the overall structural deviations of the selected pairs, irrespective of the 
class, were very similar.  

 

 



Model building  

For each of the 4,500 selected pairs, three different alignments (SEQ, PRO, and STR) and their 
corresponding models were constructed (see below), resulting in a total of 13,500 models for this study. 
The alignments and template structures were used as input to the program MODELLER (version 6v2) 
[30].  

SEQ model: The target sequence is aligned with the template using the ALIGN command of 
MODELLER.  

STR model: The structural alignment between the target and the template was generated using the 
ALIGN3D command of MODELLER.  

PRO model: The target–template profile–profile-based alignment was generated in the following 
way. The nonredundant (NR) database was searched separately with each of the target and template 
sequences as a query using PSI-BLAST with 20 iterations [31]. The PSI-BLAST hits were sorted in 
ascending order of e-values for each query sequence. The first 1000 hits with the lowest e-values were 
selected to generate a multiple sequence alignment in a manner that did not alter the query-hits BLAST 
alignment. The two multiple alignments (one for each target–template pair) were simultaneously used 
as inputs to MODELLER 8v2 [30]. The profile–profile alignment was generated using the SALIGN 
command of MODELLER. The target and the template sequences were extracted from the profile– 
profile alignment without altering the alignment.  

Overall accuracy of models  

The overall accuracy of models was computed by measuring the root mean square deviation between 
the equivalent Cα atoms in the optimal superposition of target and model structures. Equivalent atoms 
were defined as those that were within 3.5 Å of their corresponding atoms in the target after optimal 
superposition of the structures. The structural superposition was carried out by minimizing the root 
mean squared deviation of the equivalent Cα atom coordinates. All the calculations are implemented 
with the SUPERPOSE command of the program MODELLER.  

Alignment accuracy 

The quality of the target–template SEQ and PRO alignments was determined with respect to the target–
template STR alignments. Alignment accuracy was defined as the ratio of the number of correctly 
aligned positions to the number of aligned positions of a given alignment. A target– template aligned 
residue pair of a given alignment was said to be a correctly aligned position if the particular pair was also 
aligned in the STR alignment [24]. The alignment accuracy used in this study refers to Qmod [24]. Qmod was 
defined as the number of amino acids correctly aligned in the sequence alignment divided by the total 
number of aligned residues in the sequence alignment. Residue neighborhood and pocket accuracy 
were determined as described in [7].  

Results  

Comparison of overall accuracy  

The average overall accuracies of models of individual protein domains (∼150 residues) belonging to all 
three structural classes are shown in Fig. 1. As in previous studies [7], models were built on single 



templates using three alternative alignments: target–template pairwise sequence alignment (SEQ 
models), profile–profile alignment (PRO models) and structure-based alignment (STR models) between 
the target and the template (see “Methods”). To be consistent with our earlier work and other studies 
[7], all comparisons of model accuracy are discussed as a function of template–target sequence identity. 
The respective average accuracies of the SEQ, PRO and STR models of the combined (all-α + αβ + all-β) 
dataset are shown for reference purposes (Fig. 1b). As previously shown, model quality increases in the 
order SEQ < PRO < STR (Fig. 1b), due to the increase in the alignment quality. Both the SEQ (Fig. 1a, left) 
and PRO (Fig. 1a, right) models of domains belonging to the all-α class are observed to be more accurate 
than the SEQ and PRO models of the αβ and all-β classes, respectively. In general, the accuracy was 
observed to decrease in the order all-α > αβ > all-β, indicating a possible influence of backbone 
geometry on model quality. The behavior of the αβ category of models is close to that of the combined 
averages of Fig. 1b, whereas those of the all-α and all-β models are respectively better and worse than 
the group average. Since the lengths of the modeled segments (domain size) in each of the three classes 
are very similar (∼150 residues), the effect of protein size on the observed difference can be discounted. 
The RMSD distributions for the structural superposition of pairs, irrespective of the class, were also 
nearly identical for all sequence identity bins. This selection criterion was important for the study, 
because we wanted to see the effect of alignment accuracy given the same level of structural divergence 
(see Eq. 1). Hence, the origin of the difference in the model accuracy was not due to a bias such as 
selecting pairs that were structurally more similar in the all-α class than in the other classes. 

Furthermore, we selected a set of all-α pairs with larger structural divergence (larger than average 
RMSD of the STR model curve, Fig. 1b) than the other two classes, and this still resulted in more 
accurate PRO and SEQ models than the rest, hence ruling out selection bias. The fact that the 
differences only appear below 30% sequence identity strongly suggests that sequence alignment 
accuracy plays a significant role in the observed difference in model accuracy. Comparison of alignment 
accuracy The protein structure of one class primarily differs from those of the others in the geometry of 
the backbone. In addition to alignment, the backbone geometry may also contribute to the observed 
difference in model accuracy (see “Electronic supplementary material” for details). If this is indeed the 
case, models of proteins from different structural classes will show significant differences in model 
accuracy (Cα-RMSD) at the same level of alignment accuracy (irrespective of target–template sequence 
similarity). Figure 2 shows that in fact there is a difference between the model accuracies of proteins 
from different classes at the same level of alignment accuracy, indicating that the geometric factor 
contributes to the differences in model accuracy. However, this is only observed for lower-quality 
alignments, below ∼30% alignment accuracy, and the fraction of models with this level of alignment 
accuracy is only ∼15% (Fig. 2). This observation suggests that the geometric factor plays a role in only a 
small number of cases. It also indicates that, even though on average different small isolated structural 
segments (see Fig. S1 of the “Electronic supplementary material”) respond differently (Cα-RMSD) to the 
same level of alignment error, the contribution of the geometric factor over the entire structure is 
averaged out and therefore much smaller. The alignment factor is examined next. The histogram of the 
fraction of models with a certain level of alignment accuracy (Fig. 2) shows that proteins belonging to 
the all-α category have a relatively small proportion of models with poor alignments and a relatively 
high proportion of accurate alignments than the all-β class. The distribution indicates that the alignment 
accuracy of proteins of the all-α category is higher than that for the all-β proteins, while the αβ category 
has an intermediate level of alignment accuracy (Fig. 3a, only PRO models are shown). Like model 
accuracy, the accuracy of prediction for a number of structure-derived properties (SDPs), such as inter-



residue distance, residue neighborhood, etc., varies substantially between the structural classes (see the 
“Electronic supplementary material” for details).  

Entropy of class-specific sequences  

The quality of alignment improves when the amount of information is increased in the alignment 
procedure. For example, PRO alignments are more accurate than SEQ alignments because additional 
information about general features in protein families such as position-specific sequence conservation is 
utilized [32], even if the query sequence lacks some of these features. Similarly, STR alignments, by 
virtue of high-resolution structural information to establish equivalences between residues of the two 
sequences, have the highest quality. Due to the observed higher accuracy of alignments of all-α pairs, 
we anticipated that the quality of information involving all-α sequences might be different than that of 
the rest. The information used when constructing an alignment, such as a profile– profile alignment, can 
be assessed by an entropy measure. The variability of amino acids in a profile column can be the basis of 
the entropy measure. Earlier studies have also utilized entropy as a measure of variability in profiles by 
counting the average number of different symbols in a profile column [33–35]. The identification of 
reliable regions in an alignment using a scoring scheme based on the sequence profile column has also 
been reported [36], justifying the relationship between entropy and alignment quality. We examined 
the average entropy in sequence profile columns to see if profiles generated from all-α class proteins 
differed in entropy from those of all-β proteins, thus explaining the observed difference in alignment 
accuracy. The distribution of the average column entropy (Shannon entropy) of sequence profiles for 
each category (Fig. 3c) shows that there is indeed a difference in entropy between the profiles in each 
category. A higher average value of entropy implies that each column has a more diverse set of amino 
acids in the profile than one with lower entropy. The average values of entropy computed from profiles 
show a clear trend all-α (2.059 ± 0.609) < αβ (2.209 ± 0.557) < all-β (2.303 ± 0.517). The profiles of all- α 
proteins tend to have lower entropy, indicating that there is on average less variability among amino 
acids in a profile column of all-α than in the all-β case. An earlier study on protein families highlighted 
the reduction of the alignment quality in the twilight zone, due to sequence diversity in profiles [33, 37]. 
The study indicated that families containing more diverse homologs in general produce less accurate 
profile–profile alignments [33, 37]. Hence, our observation could simply be capturing this general caveat 
of protein families categorized in the structural classes all-α, all-β and αβ; αβ and all-β are in general 
more diverse in sequence space than the all-α class.  

Discussion  

It is intriguing to ask if there is any structural basis for sequence diversity in a class-dependent manner, a 
question that is closely related to the topological basis of protein “designability” studied earlier [38, 39], 
which addressed the quantity of sequence space associated with a given structure/topology. Koehl and 
Levitt clearly demonstrated that both protein size and topology influenced the sequence space that can 
be accommodated in a structure fold [38]. A fixed set of designed sequences, energetically compatible 
with two different structural folds of a similar size, was used to compute a per residue entropy measure. 
In the study, ribosomal protein L7/L12 C-terminal domain (1ctf, αβ fold) was compatible with less 
diverse sequences (low entropy) than that of SH3 domain (2hsp, all-β fold)[38], very similar to the 
naturally occurring sequences of these proteins in the HSSP database. The higher helical content of the 
ribosomal protein L7/L12 C-terminal domain restrained the choice of amino acids in its sequence (low 
entropy), as there is a clearer pattern of amino-acid preferences for helices (helix propensities) than for 



strands [40]. Unlike α-helix formation, β-sheet propensity is modulated strongly by the tertiary context 
and not by intrinsic secondary structure preference [40], as β-sheets are elements of both secondary 
and tertiary structure. This may translate to a weaker signal of preferred amino acids for a strand-
forming segment than for a helix-forming segment. Hence, the increase in the profile entropies of all- β 
and αβ proteins compared to that for the all-α class could be explained by a wider spectrum of different 
amino acids than can be accommodated in a strand than a helix. An earlier study mapping local 
sequence to local structure by clustering segments of 3–15 residues of HSSP structural alignments of 
protein families also showed that sequence patterns were found more frequently in helices (such as 
amphipathic helix, less amphipathic helix, helix N-cap, Schellman helix C-cap, Schellman helix-turn-sheet, 
etc.) than in strands (amphipathic strands, αL strand C-cap, buried strand) [41–43]. Even a simple binary 
pattern (hydrophobic polar, HP) analysis showed a stronger sequence-structure correlation for α-helices 
than for β- strands [44]. The lower entropy values of helices probably aids in aligning more recognizable 
patterns in the sequence, resulting in a better alignment. This is true even for SEQ alignments, as we 
observe the accuracies of them to follow the same order: all-α > αβ > all-β proteins.  

Shakhnovich et al. showed that the number of sequences in a domain family depend on the contact 
density (CD) of the structure [45]. They reasoned that, the higher the proportion of favorably interacting 
residues that stabilize a fold or topology, the greater the chance that the rest of the sequence can 
change without destabilizing the fold. Simply put, if the CD for a given topology is high, there are more 
sequences that adopt the topology [45]. The distribution of the CDs for all-α class structures show 
smaller values compared to that for the αβ class (see Fig. S4 of the “Electronic supplementary 
material”), indicating that CD may play a role. However, all-β class proteins showed the smallest CD, 
which is not consistent with our observation. This could be because family size may not translate to 
higher sequence entropy when similar sequences populate a family.  

Re-examining the accuracy of models of small, medium and large proteins in our earlier study (Fig. 1a of 
[7]), we noted that the much superior accuracies for small proteins compared to those for larger ones 
was due to the overrepresentation of all-α proteins in the small proteins set, whereas the three groups 
were equally well represented in the medium- and large-sized protein sets. This underscores the need 
for large-scale analyses of models and alignments [33, 46] to provide equal representations of proteins 
from all three classes in order to avoid classdependent artifacts. The structural class dependent effect 
described here appears to be a general property of protein sequences and structures. The present study 
provides a systematic description and quantification of this effect in comparative modeling. However, a 
precise deconvolution of the complex interplay of various entangled factors such as sequence identity, 
information content, alignment accuracy, and class-specific substitution matrices requires further study 
at an even larger scale. It is also important to note that enzymes are dominated by the α/β (TIM barrel) 
and α+β (RRM-like fold) classes, along with β-class members such as the doublestranded β-helix (DSBH) 
domain and the β-propellers [47]. The α-class does not include dominant enzymatic folds [47]. This 
suggests that, in the absence of experimental structures, modeled enzyme structures should be used for 
highresolution structural feature analyses with great caution due to the high errors associated with 
nonhelical folds.  

Even though a single program, MODELLER [30], was used here for model building, the results obtained 
are software independent, as the study is based on simple comparative models [7]. The modeling 
procedure involves no explicit refinement protocol such as loop modeling or any other refinement, 
making model accuracy dependent only on alignment accuracy and target–template structural 



difference (see Eq. 1). In order to examine the influence of software on alignment accuracy, alternate 
alignments were constructed using the program MUSCLE [48], and these also showed clear class-
dependent alignment accuracy (data not shown), further supporting the software-independent nature 
of our results.  

Conclusions  

As a continuation of our characterization of simple comparative models [7, 8, 23], the results of this 
largescale (∼15,000 models) study show that, in the twilight zone of sequence similarity, and given the 
same level of target–template structural divergence, proteins belonging to different structural classes 
tend to be modeled with different accuracies, thus enabling a priori accuracy estimates of 
alignments/models in a class-dependent manner. As the geometry of the polypeptide backbone 
contributes negligibly to this observation, it is the dependence of the alignment accuracy on structural 
class that is the major factor contributing to the observed differences in model accuracy. This study once 
again reiterates the importance of alignment accuracy in comparative modeling, and that its causes and 
effects are not simply a function of sequence similarity.  
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