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Incremental procedures for partitioning highly intermixed

multi-class datasets into hyper-spherical and hyper-ellipsoidal

clusters

Qinglu Kong, Qiuming Zhu *

Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0050, USA

Abstract

Two procedures for partitioning large collections of highly intermixed datasets of different classes into a number of
hyper-spherical or hyper-ellipsoidal clusters are presented. The incremental procedures are to generate a minimum num-
bers of hyper-spherical or hyper-ellipsoidal clusters with each cluster containing a maximum number of data points of the
same class. The procedures extend the move-to-front algorithms originally designed for construction of minimum sized
enclosing balls or ellipsoids for dataset of a single class. The resulting clusters of the dataset can be used for data modeling,
outlier detection, discrimination analysis, and knowledge discovery.

Keywords: Data models; Data clustering; Mini-max partition; Geometrical approximation; Knowledge discovery

1. Introduction

Cluster analysis has been an important technique for discovering the embedded patterns of data groups and
identifying underlying distributions in the interested datasets [10,13]. An exact clustering process over a large
dataset can take a prohibitive amount of time due to the computational complexity of the process. Efforts have
been taken on finding methods for efficient and effective clustering on large datasets. Active themes of research
include the applications of genetic programming methods, the spatial- and high-dimensional geometrical shape
models, and the mixture of numerical and categorical primitives [23]. In this research, we pay attention to clus-
tering analysis to identify the coherent patterns embedded in data sets in terms of certain geometric primitives in
which the data distribution characteristics are modeled. As the size of datasets grow larger and the structures of
dataset turn to be highly intermixed [6], the high-dimension geometrical representations emerge to be a proper
way to abstract, model, and approximately describe the characteristics of the complex datasets.

The problem of using spherical and ellipsoidal primitives to describe dataset distributions in high dimen-
sions has been a topic of study by Calafiore [4] and Welzl [24], and recently by Gartner [8,9]. Most of their

* Corresponding author. Tel.: +1 402 554 3685; fax: +1 402 554 3400.
E-mail address: qzhu@mail.unomaha.edu (Q. Zhu).



work have been done on approximating the dataset of a uniform (single) class by a minimum sized enclosing
hyper-ball [9,24] and hyper-ellipsoid [8,18], or fitting the data points by spherical and ellipsoidal surfaces [3]. It
was mentioned in [3] that for the problem arising in pattern recognition it is often required to separating two
or more sets of data points of different classes. However, no detail of the construction procedures for such
applications was discussed.

The problem dealt with in this paper regards to a partition of n-dimensional datasets of highly intermixed
data points of multiple classes. We model the dataset by a minimal number of non-intersecting hyper-spheres
or hyper-ellipsoids, where each of the partitions contains a maximum number of data points of the same class.
Such a model is intended to provide an approximation to the underlying distribution of the dataset. As an
example of such approximation (Fig. 1) shows an intermixed dataset of two classes that cannot be partitioned
by a single hyper-sphere or hyper-ellipsoid for each class without intersecting each other. However, using a set
of hyper-spheres or hyper-ellipsoids it is possible to partition the dataset into non-intersecting clusters.

In the following of this paper, Section 2 reviews some existing geometrical methods for data clustering. Section
3 introduces the concept of the ‘‘move-to-front’’ algorithm for constructing the smallest enclosing ball/ellipsoid
on a set of uniform data points. In Section 4, we describe two ‘‘move-to-front’’ based hyper-ball and hyper-ellip-
soid generation procedures, named MFMHBC and MFMHEC, respectively, for clustering data points of multi-
ple classes. Section 5 presents experimental results of applying the MFMHBC and MFMHEC procedures to
datasets of various underlying distribution characteristics. Section 6 contains conclusion remarks.

2. Overview of geometrical data clustering

Given a dataset of n points (vectors) of pj, j ¼ 1; . . . ; n, a clustering process constructs k partitions Ci,
i ¼ 1; . . . ; k, k 6 n, of the point set such that the resulting clusters satisfy the criteria: (1) each partition con-
tains data points of the same class, and (2) a certain measurement (criterion) defined on the partitions
E ¼

Pk
i¼1

P
p2Ci

f ðp;CiÞ is minimized or maximized.
A clustering process usually starts with an initial partitioning. The process then applies an iterative alloca-

tion/reallocation technique to improve the partitions by moving data points among the clusters. Clustering
with the squared-error criterion

Pk
i¼1

P
p2Ci
kp � mik2, i.e. f(p, Ci) = kp � mik2, where mi is the center of the

partition Ci, is the most common in practice. With this criterion, the total Euclidean distance of data points
to their partition center is smaller than those between the partitions. That is, the process tries to make the k

clusters as compact and separated as possible. The squared-error minimization criterion based partition pro-
cess leads naturally to geometric entities in the forms of circles in two dimension [21], spheres (balls) in three
dimension [9], and hyper-spheres (hyper-sphere) in multi-dimension. The criterion works well when clusters
are compact clouds that are well separated from one to another. However, the method is often inadequate
to model datasets of arbitrarily or irregularly shaped clusters. Moreover, to achieve global optimality, this
clustering process requires an exhaustive enumeration of all possible partitions [10]. In practice, most appli-
cations adopt some heuristic methods for the efficiency consideration that leads to sub-optimal solutions.

To overcome the limitations of the spherical cluster modeling, several non-spherical clustering techniques
have been studied. A grid-based clustering approach uses a multi-resolution grid structure of geometry. It
quantizes the data space into a finite number of cells on which all of the operations for clustering are per-
formed [12]. A typical example of grid-based methods is named as statistical information grid (STING).
STING is a multi-resolution clustering technique in which the spatial area of data points is divided into rect-

Fig. 1. (a) Intermixed dataset of two classes, (b) hyper-spheric partition of the dataset, and (c) hyper-ellipsoidal partition of the dataset.



angular cells. There are usually several levels of such rectangular cells corresponding to different levels of res-

olution, and these cells form a hierarchical structure. Each cell at a high level is partitioned to form a number of 
cells at the next lower level. Statistical information regarding the attributes in each grid cell (such as the mean, 
maximum, and minimum values) is pre-computed and stored.

Another non-spherical modeling technique is called density-based clustering [6]. The density-based spatial 
clustering of applications with noise (DBSCAN) algorithm grows the geometrical regions with sufficiently high 
density and discovers clusters of arbitrary shape. It defines a cluster as a maximal set of density-connected 
points. The ordering points to identify the clustering structure (OPTICS) algorithm computes an ordering of 
augmented clusters rather than produces a data set of clusters explicitly. The ordering represents the den-sity-

based clustering structure of the data. The clustering based on density distribution functions, or density-based 
clustering (DENCLUE) algorithm is built on the ideas that (1) the influence of each data point can be formally 
modeled using a mathematical function, called an influence function, that describes the impact of a data point 
within its neighborhood; (2) the overall density of the data space can be modeled analytically as the sum of the 
influence functions of all data points; and (3) clusters can then be determined mathematically by identifying 
density attractors, which are local maxima of the overall density function. Based on these defini-tions, both 
centerly-defined cluster and arbitrarily-shaped cluster can be formally defined.

However, these non-spherical clustering algorithms also have their limitations. The DBSCAN algorithm 
clusters objects with respect to a given set of input parameters specifying the minimum number of points in each 
cluster and the number of neighborhood points to be searched. Thus it leaves the user with a responsi-bility of 
selecting proper parameter values so as to lead a discovery of acceptable clusters. Actually, this is a problem 
associated with a number of other partitioning based methods. The parameter settings are usually empirical and 
difficult to determine, especially for real-world, high-dimensional data sets. Most algorithms of this kind are 
very sensitive to such parameter values. Slightly different setting may lead to very different clustering results. 
Moreover, high-dimensional datasets often have very skewed distributions such that their intrinsic clustering 
structures may not be characterized by global density parameters. The OPTICS algorithm overcomes this 
difficulty by computing an ordering of augmented clusters for automatic and interactive cluster analysis. 
DENCLUE has good clustering properties for data sets with large amounts of noise, and allows a compact 
mathematical description of arbitrarily shaped clusters in high-dimensional data sets. However, DENCLUE 
also requires careful selection of the density parameters and noise threshold. The grid structure of the STING 
method facilitates parallel processing and incremental updating. However, the quality of STING clustering 
depends on the granularity of the lowest level of the grid structure. If the granularity is very fine, the cost of 
processing will increase substantially. If the bottom level of the grid structure is too coarse, it may reduce the 
quality of clustering result. Moreover, the shapes of the resulting clusters are isometric; that is, all of the cluster 
boundaries are either horizontal or vertical, and no diagonal boundary is detected. This may lower the quality 
and accuracy of the clusters despite the faster processing.

Besides the above partition based clustering techniques, a number of other clustering methods were 
developed that involve the use of some other geometric entities to partition a dataset [2,18]. A model-based 
method hypoth-esizes a curve or surface function for each of the clusters and attempts to optimize the best fit of 
the data to the given function [17]. A model-based algorithm may also locate clusters by constructing a density 
function that reflects the spatial distribution of the data points, and is often based on the assumption that the 
data are gener-ated by a mixture of underlying probability distribution. It leads to a way of automatically 
determining the num-ber of clusters based on standard statistics, taking ‘‘noise’’ or outliers into account, and 
yielding robust clustering methods. However, the model-based clustering methods have a number of limitations 
too. First, the assumption that probability distributions on separate attributes are statistically independent is 
not always true since corre-lation between attributes often exists. Second, the probability distribution is 
expensive to update since their time and space complexities depend on both the number of attributes and the 
values of each attribute.

The conceptual clustering approach, a form of clustering technique developed in machine learning research, 
produces a classification scheme over the data points that may or may not fit a geometrical model [16]. Unlike 
previous clustering methods, which primarily identify groups of similar objects, conceptual clustering process 
goes one step further by also finding characteristic descriptions for each group, where each group represents a 
concept or a class. It often creates a hierarchical clustering structure in the form of a classification tree, and uses 
some heuristic evaluation measures to guide the construction of this tree. However, the classification tree



may not be height-balanced for skewed input data, which may cause the time and space complexity of the
computation to degrade dramatically.

Hierarchical clustering is a sequential process in which data points are grouped in a tree structure called
dendrogram. Each data group is nested into the next group in the sequence, and creates a hierarchical decom-
position of the given set. A hierarchical method can be classified as being either agglomerative or divisive,
based on how the hierarchical decomposition is formed [11,13]. Divisive hierarchical clustering does the
reverse of agglomerative hierarchical clustering by starting with all objects in one cluster. It subdivides the
cluster into smaller and smaller pieces, until each object forms a cluster on its own or until it satisfies certain
termination conditions, under which the desired number of clusters is obtained or the distance between the
two closest clusters is above a certain threshold. The hierarchical clustering methods, though simple, often
encounter difficulties with respect to the selection of merging or spliting points. Such a decision is critical
because once a group of objects are merged or split, the process at the next step will operate on the newly gen-
erated clusters. Moreover, the method does not scale well since the decision of merge or split needs to examine
and evaluate a large number of objects or clusters. In order to improve the clustering quality of hierarchical
methods, people often integrate it with other techniques to create a multiple phased clustering process.

One important distinction between partitioning and hierarchical clustering approaches is that the hierarchi-
cal methods produce a nested series of geometric entities whereas partitioning methods produce a spatially flat
configuration of entities. Existing literature [17] shows that partitioning methods have advantages over the
other clustering methods, including the model-based, conceptual, and hierarchical methods, in applications
involving large data sets.

In this paper, we present a partitioning based geometrical clustering approach for modeling dataset with
respect to their coherent categorical characteristics. We concentrate on the development of incremental con-
struction algorithms for generating multiple data clusters in hyper-spherical and hyper-ellipsoidal shapes (i.e.,
hyper-balls and hyper-ellipsoids) to model approximately the highly intertwining dataset of multiple classes.

3. Minimum enclosing hyper-balls and hyper-ellipsoids constructions

The construction of smallest enclosing hyper-ball or hyper-ellipsoid over a given data set is a classical prob-
lem in computational geometry [1]. The history can be dated back to 150 years ago when Sylvester formulated
it for points in a plane [22]. Megiddo provided the first optimal linear-time algorithm for fixed dimensions [15].
In recent years, a number of randomized algorithms have been developed. These algorithms are attractive not
only because of their efficiency, but also because of their appealing simplicity. One of these algorithms is Sei-
del’s [19]. Given a set S of n points pi in a d-dimensional space, Seidel’s algorithm models the minimum enclos-
ing ball as a solution to a linear programming (LP) problem with n constraints and d variables. The algorithm
has an expected time complexity of O(n), provided d is constant. Clarkson described a randomized LP algo-
rithm where the expectation is averaged over random choices (‘coin flips’) made by the algorithm [5]. In par-
ticular, there is no input that may force the algorithm to perform poorly. In 1991, Welzl developed a simple
randomized method to solve the problem in expected linear time complexity [24]. In contrast to Megiddo’s
method, Welzl’s algorithm is easy to implement and very fast in practice for dimensions two and three. In
higher dimensions, a heuristic move-to-front variant considerably improves the performance.

The smallest enclosing hyper-ball/hyper-ellipsoid problem of an n-point set in d-space is formally defined as
follows:

Definition 3.1. Given a set P = {p1, . . . ,pn} of points in Rd, the smallest enclosing hyper-ball MB(P) of the
points P is the hyper-ball B � Rd of minimal radius rB 2 Rd which encloses all points in P.

Definition 3.2. Given a point c 2 Rd and a symmetric, positive definite matrix A 2 Rd*d, the set of points p 2 Rd

satisfying (p � c)TA(p � c) = 1 defines an hyper-ellipsoid with center c. The function f(p) = (p � c)TA(p � c) is
called the hyper-ellipsoid function, the set E = {p 2 Rdjf(p) 6 1} is the hyper-ellipsoid body. Given a point set
P = {p1, . . . ,pn} of points in Rd, we are interested in the hyper-ellipsoid body of the smallest volume containing
P. Identifying the body with its generating hyper-ellipsoid, we call this the smallest enclosing hyper-ellipsoid of
P, ME(P).



Definition 3.3. Given two disjoint sets S and R of data points, MBV(S,R) or MEV(S,R) denotes the set of
hyper-balls or hyper-ellipsoids of minimal volumes which enclose all points in the set S [ R and have at least
one of the points in the R on their boundary. In particular, a hyper-ball B 2MBV (/,R) or a hyper-ellipsoid
E 2MEV (/,R) is called a V-mini-ball or V-mini-ellipsoid.

Hereafter in this section, we will simply use the terms ‘‘ball’’ and ellipsoid’’ to stand for the hyper-ball and
hyper-ellipsoid. For the existence and uniqueness of the mini-balls Welzl used the following construction:
Given an n-point set P = {p1, . . . ,pn} � Rd, let MB(P) denote the ball of the smallest radius that contains
P, obviously MB(P) exists and is unique. For P,B � Rd, P \ B = /, let MB(P,B) be the smallest ball that con-
tains P and has all points of B on its boundary, we have MB(P) = MB(P,/), and if MB(P,B) exists, it is
unique. Finally, define MB (B) := MB(/,B) to be the smallest ball with all points of B on the boundary (if
it exists). A support set of (P,B) is an inclusion-minimal subset S of P such that MB(P,B) = MB(S,B). If
the points in B are affinely independent, there always exists a support set of size at most (d + 1), where d is
the dimension [24].

The idea behind the Welzl’s algorithm was, roughly speaking, to find a minimal subset S � P of the ori-
ginal balls B with the property MBðSÞ ¼ MBðP Þ. Then MBðP Þ coincides with MBð/, B), which is much sim-
pler to solve. Similarly, for the smallest enclosing ellipsoids, a support set of size at most (d + 3)d/2 should
exist [20].

The Welzl’s ‘‘move-to-front’’ heuristic algorithm computes the smallest enclosing ball MB(P,B) incremen-
tally by adding one point after another. The practical efficiency comes from the fact that ‘important’ points
(which for the purpose of the method are points outside the current ball) are moved to the front and will
therefore be processed early in subsequent recursive calls [9]. The method keeps the points in an ordered list
L, which gets reorganized as the algorithm runs. Let Li denote the length-i prefix of the list, and pi the ele-
ment at position i in L. Initially, L = Ln stores the points of P in random order. The algorithm is listed
below.

Algorithm 3.1. Welzl’s move-to-front method to compute the smallest enclosing ball

mtf_mb (Ln, B):
mb:¼ MB(B)
IF jBj = d + 1 THEN

RETURN mb
END

FOR I = 1 TO n DO

IFPi 62 mb THEN

Mb := mtf_mb(Li�1, B[{pi})
Update L by moving pi to the front

END
NEXT

RETURN mb

During the processing of each point pi 2 P, all non-trivial computations take place in the primitive opera-
tion of computing MBðBÞ for a given set B in the calls to mtf_mb, which stands for ‘‘move-to-front_mini-ball’’.
The algorithm guarantees that B is always a set of affinely independent points, from which jBj 6 d + 1 follows.
In that case, MBðBÞ is determined by the unique circum-sphere of the points in B with center restricted to the
affine hull of B. This means, the center c and squared radius r2 satisfy the following system of equations, where
B = {q0, . . . ,qm�1}, m 6 d + 1:

ðqi � cÞTðqi � cÞ ¼ r2; i ¼ 0; . . . ;m� 1;



Xm�1

i¼0

kiqi ¼ c;

Xm�1

i¼0

ki ¼ 1:

This formulation of the problem sounds like an instance of the abstract framework of so-called linear pro-
gramming (LP)-type problems [14]. Indeed, the problem of finding the mini-ball of a given point set turns
out to be exactly an LP-type problem. Defining Qi := qi � q0, for i = 0, . . .,m � 1 and C := c � q0, the system
can be rewritten as

CTC ¼ r2;

ðQi � CÞTðQi � CÞ ¼ r2; i ¼ 0; . . . ;m� 1;

Xm�1

i¼0

kiQi ¼ C:

Substituting C with
Pm�1

i¼1 kiQi in the equations, we deduce a linear system in the variables k1, . . .,km�1 which
we can write as

AB

k1

:

:

:

km�1

0
BBBBBB@

1
CCCCCCA
¼

QT
1 Q1

:

:

:

QT
m�1Qm�1

0
BBBBBB@

1
CCCCCCA
;

where

AB :¼

2QT
1 Q1 � � � 2QT

1 Qm�1

:

:

:

2QT
1 Qm�1 � � � 2QT

m�1Qm�1

0
BBBBBB@

1
CCCCCCA
:

Computing the values of k1, . . . ,km�1 amounts to solve the linear system, C and r2 are then obtain via

C ¼
Xm�1

i¼0

kiQi; r2 ¼ CTC:

C is referred as the center of the set B.
The principle of Welzl’s algorithm for computing the smallest ellipsoid MEðP Þ is similar to computing

MBðP Þ. It works in the following way. If P is empty, MEðP Þ is the empty set by definition. If not, choose a
point q 2 P and recursively determine E :¼ MEðP n fqgÞ. If q 2 E, then E ¼ MEðPÞ and we are done. Other-
wise, q must lie on the boundary of MEðP Þ, and we get MEðP Þ ¼ MEðP n fqg; fqgÞ, the smallest enclosing ellip-
soid of Pn{q} with q on the boundary. The generic call of the algorithm computes MEðQ;RÞ, the smallest
ellipsoid enclosing Q that has R on the boundary [8,19].

4. Incremental construction of hyper-spheres and hyper-ellipsoids for multi-class data clustering

Based on the preceding discussion, we introduce two procedures for incremental construction of hyper-
spheres and hyper-ellipsoids for datasets of multiple classes. The main difference of our procedures from
the Welzl’s is that our algorithms work for datasets that contain multi-classes of data points and these data
points are highly intermixed. The results of our hyper-spherical and hyper-ellipsoidal data models thus are
applicable for multi-class data classifications.



4.1. Move-to-front multi-hyper-ball-clustering algorithm (MFMHBC)

To give a formal description of MFMHBC, we first define the following notations:

t – the number of different classes in a given data set.
ni – the number of data points in class i, i 2 [1, t].
N – the total number of data points in a given data set (i.e. N ¼

Pt
i¼1niÞ.

c – the center of a hyper-ball in D-dimension space.
r – the radius of the hyper-ball in D-dimension space.
B – the set of hyper-balls.
Bi – the set of hyper-balls for class i, i 2 [1, t].
b – a hyper-ball in the set of hyper-balls B.
btemp – a temporary hyper-ball in D-dimension space.
kBk – the number of hyper-balls in B.
kBik – the number of hyper-ball in Bi, i 2 [1, t].
Pi – a subset of data set P, which contains the data points in class i, i 2 [1, t].
pi – a vector in D-dimensional space, pi = [pi1, pi2, . . . ,pij, . . . ,piD], pij is the jth value in vector pi.

Algorithm 4.1. Move-to-front multi-hyper-ball-clustering algorithm (MFMHBC)

Input: t, ni (i = 1,2, . . ., t), Pi (i = 1,2, . . . , t).
Output: {B}.

For each class i (i = 1,2, . . . , t) do

For each example pij 2 Pi (1 6 j 6 D) do

//step One.
For each b 2 Bi do

If (jpij � cj 6 r) then done.
Else Find a ball b 2 Bi such that jpij � cj is minimal.

End for;
//step Two.

If pij is not included in any existing hyper-ball in Bi then

{btemp b [ pij;
//step Three.

If NOT((btemp intersect with any b 0 2 B, b 0 5 b)
AND (p � btemp, p 2 P i0 , i 0 5 i)) then b btemp;
Else {btemp {pij}; B B [ btemp;}
}
End for;

End for;

Return {B}

The algorithm takes care of every data point in the set in a move-forward manner. For every data point in
step one, we test it against every existing hyper-ball of the same class. If this data point is included by one of
existing hyper-balls in the same class, in other words, if the Euclidean distance between the data point and the
center of the hyper-ball is less than or equal to the radius of the hyper-ball, we are done with this point.
Otherwise, we need to find a hyper-ball such that the Euclidean distance between the data point pij and the
center of the hyper-ball c is minimal among the distances between the data point and the center of any other
hyper-ball in the same class. In the step two, we form a new minimized hyper-ball, which is called a temporary
hyper-ball covering the data point and the hyper-ball found in step one. In the step three, we have to check
whether this temporary hyper-ball is intersected with any other existing hyper-ball, and whether data points in
other classes are included in this temporary hyper-ball. If this hyper-ball can meet above criterion, we replace



the previous hyper-ball with this newly formed hyper-ball; otherwise, a new hyper-ball is produced, with the
center being at the position of this data point and its radius being zero. After finishing all the iterations, we are
provided with a whole set of hyper-balls, and the number of clusters as well.

The MFMHBC algorithm has following properties:

1. Upon the algorithm termination, there is no intersection between any two hyper-balls of different data clas-
ses (i.e. b1 \ b2 = U, while b1 2 Bi, b2 2 Bj, i 5 j).

2. After the algorithm terminates, the hyper-ball set B is the minimum set with each hyper-ball b covering the
maximum number of data points.

3. The number of clusters resulting from the algorithm equals to the number of hyper-balls generated, without
the need to specify the number in advance.

The time complexity of the MFMHBC can be derived as the following. The Step One to check whether the
given data point is inside one of the existing hyper-balls of the same class has a running time O(C1N), where C1 is
a constant. In the Step Two, we compute the new center and radius if the test point is not included in any existing
hyper-ball of the same class. In case the number of points is less than the dimension plus one, we choose the mean
of these objects as the center, find the farthest point to the center, and calculate the radius; otherwise, we need to
solve a linear system to find the smallest enclosing ball. The running time to solve this system is directly related to
dimension, it is O(D3) for each data point, so the total running time is O(ND3). In the step three, we need to check
whether the newly formed hyper-ball intersects with other hyper-balls of different classes, and whether data
points of another class are included in this hyper-ball as well, in each iteration. The running time is O(ND)
for each data point, and the total time thus is O(N2D). In conclusion, the total running time of this algorithm
is O(C1N + ND3 + N2D). Because the number of data points N grows much faster than the number of dimen-
sion D in most applications, the worst running time of this algorithm is O(N2D).

We then present the move-to-front multi-hyper-ellipsoid procedure for multi-class data clustering.

4.2. Move-to-front multi-hyper-ellipsoid-clustering algorithm (MFMHEC)

Like the MFMHBC above, we use the following notations for the MFMHEC algorithm.

t – the number of different classes in a given data set.
ni – the number of data points in class i, i 2 [1, t].
N – the total number of data points in a given data set (i.e. N ¼

Pt
i¼1niÞ.

c – the center of a hyper-ellipsoid in D-dimension space.
rk – the kth principle axis of the hyper-ellipsoid in D-dimension space, k 2 [1,D].
E – the set of hyper-ellipsoids.
Ei – the set of hyper-ellipsoids of class i, i 2 [1, t].
e – a hyper-ellipsoid in the set of hyper-ellipsoids E.
etemp – a temporary hyper-ellipsoid in D-dimension space.
kEk – the number of hyper-ellipsoids in E.
kEik – the number of hyper-ellipsoids in Ei, i 2 [1, t].
Pi – a subset of data set P, which contains the data points in class i, i 2 [1, t].
pi – a vector in D-dimensional space, pi = [pi1,pi2, . . . ,pij, . . . ,piD], pij is the jth value in vector pi.

The following functions are called in the algorithm.

1. Preprocessing (Pi) is a function to (1) calculate the mean point of the data point in the same class set i, (2) find a
data point such that the distance between the mean point and the data point is minimal among the distances
between the mean point and any of other data points in the same class set, and (3) find two data points such that
the distance between the mean point and each of these two data points is smaller than that between theses two
data points, but bigger than that between the mean point and any of other data points in the same class set.



2. IsInsideEllipsoid (pi,e) is a function to test whether a vector pi is inside a hyper-ellipsoid e; it returns a Boolean
value. If it is true, the vector is inside the hyper-ellipsoid e; if it is false, the vector is outside the hyper-ellipsoid e.

3. Merge_Ellipsoids (E) is a function to merge the hyper-ellipsoids with data points of the same class to keep
the number of hyper-ellipsoids to a minimum under the conditions that the resulting hyper-ellipsoid will not
intersect with other hyper-ellipsoids of data points of different classes.

Algorithm 4.2. Move-to-front multi-hyper-ellipsoid clustering algorithm (MFMHEC)7

Input: t, ni (i = 1,2, . . . , t), Pi (i = 1,2, . . . , t).
Output: {E}.
For each class i (i = 1,2, . . . , t) do

Ei Preprocessing(Pi);
For each example pij 2 Pi (1 6 j 6 D) AND (pij not processed) do

//step One.
For each e 2 Ei do

If (IsInsideEllipsoid(pij,e)) then done.
Else Find an ellipsoid e 2 Ei such that kpij � ck is minimal.

End for;
//step Two.

If pij is not included any existing hyper-ellipsoid in Ei then

{etemp e [ pij;
//step Three.

If NOT((etemp intersect with any e 0 2 E, e 0 5 e)
AND (p � etemp, p 2 P0i, i 0 5 i)) then e etemp;

Else

//step four
{settle_flag = false;

For every (e00 2 Ei) AND (e00 5 e) do begin

etemp e00 [ pij;
If NOT((etemp intersect with any e 0 2 E, e 0 5 e00)

AND (p � etemp, p 2 Pi0, i 0 5 i)) then

{e etemp; settle_flag = true; break;}
End for;
If settle_flag = = false then {etemp {pij}; E E [ etemp;}

}

Mark pij be processed;
End for;

End for;
Merge_Ellipsoids(E);

Return {E}

Like the MFMHBC algorithm, the MFMHEC algorithm goes through data points of each class in the
datasets one by one. For each class set, three points are selected to form an initial hyper-ellipsoid. For each
of the rest data points in the set, we test it against the existing hyper-ellipsoid in step one. If this data point is
included in one of existing hyper-ellipsoids of the same class, tested by using function IsInsideEllipsoid (pij, e),
we are done with this data point. Otherwise, we need to find a hyper-ellipsoid such that the distance between
the data point pij and the center of the hyper-ellipsoid c is minimal among the distances between the data point
and the center of any other hyper-ellipsoid in the same class. In the step two, we form a new hyper-ellipsoid,
which is called a temporary hyper-ellipsoid covering the data point and the hyper-ellipsoid found in step one.



In the step three, we have to check whether this temporary hyper-ellipsoid intersects with any other existing
hyper-ellipsoid, and whether data points in another class are included in this hyper-ellipsoid. If the hyper-ellip-
soid passes above check, we update the previous hyper-ellipsoid with this newly formed hyper-ellipsoid; other-
wise, we go to the step four. In the step four, we try to join the data point with the other hyper-ellipsoids of the
same class, and check the results against the non-intersection criteria. If such a hyper-ellipsoid can be formed,
we just update it; otherwise, a new hyper-ellipsoid is produced with the center being at the position of this data
point, and with all its principle axes being equal to zero. After iterating all the data points in the set, we get a
set of hyper-ellipsoids that cover all the data points. A post-processing step tries to merge the hyper-ellipsoids
with data points of the same class to maintain a minimum number of hyper-ellipsoids.

The MFMHEC algorithm has the properties similar to those of MFMHBC. An extra pre-processing step is
included in MFMHEC for producing evenly distributed hyper-ellipsoids in the resulting set. In order to main-
tain the min–max feature at the termination of the algorithm, the Merge-Ellipsoids function is utilized to serve
as the post-processing step.

The time complexity analysis of MFMHEC is as follows. The preprocessing step takes O(ni) time to calcu-
late the mean point for each data set Si that contains data points of the same class. It then takes O(ni) time to
find three data points to initiate the ellipsoid set Ei. So, the total running time is Oð

Pk
i¼1niÞ ¼ OðNÞ. In the

Step One, the check of whether the current data point is inside one of the existing hyper-ellipsoids of the same
class takes a running time O(C1N). In the Step Two, the computation of the new center and a set of principle
axes takes Oðn3

i Dþ D3Þ for each hyper-ellipsoid, therefore the total time complexity is O(t((N/t)3

D + D3)) = O(N3D/t2 + tD3). In the step three, we check whether the newly formed hyper-ellipsoid intersects
with other hyper-ellipsoids of different classes, and whether data points of other classes are included in this
hyper-ellipsoid. The running time is O(ND) for every data point, and the total time is O(N2D). In step four,
we basically repeat step two and step three, so, the time complexity is O(kEik(N3D/t2 + tD3 + N2D)). Since
kEik is relatively small compared to the total number of data points in the given set, the worst case requires
a running time of O(C2(N3D/t2+ tD3 + N2D)). In the post-processing step, we perform merging and checking

Fig. 2. Data point set of case one.
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Fig. 3. Clustering result of MFMHBC.

Fig. 4. Clustering result of MFMHEC.



for each hyper-ellipsoid. So, the time complexity is O(kEik2). In conclusion, the total running time of MFM-
HEC is O(N + C1N + N3D/t2 + tD3 + C2(N3D/t2 + tD3 + N2D) + kEik2) = O(N3D/t2 + tD3). Because the
number of data points grows much faster than the number of dimensions in a data mining context, the worst
running time of this algorithm is dominated by O(N3D/t2).

5. Experiment results

Since the scalability is one critical problem to most geometrical computation algorithms, the MFMHBC
and MFMHEC algorithms are tested with experimental datasets of two, three, and multiple (up to 20) dimen-
sions with the number of classes in the datasets ranging from 2 to 20. In the graphical display of data sets in
the subsequent case studies of this section, we use ‘‘�’’ to represent the data point of the first class, ‘‘n’’ the
data point of the second class, and ‘‘·’’ the data point of the third class. Data sets and results with higher
dimensions are only shown in summarization tables without graphical display.

5.1. Case one moderately intermixed data set of two classes in two-dimensional space

In this example, the data points in each class are in Gaussian distributions. In order to achieve the goal of
no intersection between any two hyper-balls or hyper-ellipsoids of different classes, both MFMHBC and

Table 1
Clustering results on moderately intermixed data set of two classes in two-dimension

Type of class # of Data points # of Clusters with MFMHBC # of Clusters with MFMHEC

A 11 3 3
B 12 4 2
C 10 4 3

Total 33 11 8

Fig. 5. Data point set of case two.



Fig. 6. Clustering result of MFMHBC.

Fig. 7. Clustering result of MFMHEC.



MFMHEC use more than one hyper-balls or hyper-ellipsoids to cluster the data points of each class. As
expected, the MFMHEC generates a smaller number of hyper-ellipsoids than the hyper-balls generated by
the MFMHBC. The data distribution and the clustering results are shown in Figs. 2–4, respectively. In these
figures some of the points seem not in any cluster because these are clusters with only a single data point in
each of them (the radius of the hyper-ball or hyper-ellipsoid equals to zero). Table 1 summarizes the clustering
results in terms of the number of clusters generated by each algorithm. Generally speaking, the smaller num-
ber of clusters means a better approximation of the underlying distribution of the dataset because the original
data were generated in single Gaussian distribution for each class.

5.2. Case two – three highly intermixed classes in two-dimensional space

Fig. 5 is an example with data points in three classes, with each class in a single Gaussian distribution. How-
ever, the data points of different classes are highly mixed up in this example. The clustering results using
MFMHBC and MFMHEC are presented in Figs. 6 and 7, respectively.

The clustering results are summarized in Table 2. In this example, we can see that MFMHEC is again more
effective than MFMHBC in terms of the (smaller) number of the clusters needed to partition the dataset.

Fig. 8. Data in two 2D views.

Table 2
Clustering results on data set of three highly intermixed classes in two-dimension

Type of class # of Data points # of Clusters with MFMHBC # of Clusters with MFMHEC

A 14 9 7
B 15 7 5
C 14 8 6

Total 43 24 18



Fig. 10. Clustering result of MFMHEC in 3D view.

Fig. 9. Clustering result of MFMHBC in 3D view.



5.3. Case three – Intermixed data set of three classes in three-dimensional space

In this example, the data points in each class are Gaussian distributed in a three-dimensional space. We
plotted the dataset in the X–Y and X–Z feature space, respectively, in Fig. 8 to show that the data points
are intermixed in the space. Figs. 9 and 10 show the clustering results of the MHMHBC and MHMHEC algo-
rithms, respectively. The clustering results on the data set are summarized in Table 3.

5.4. Comparison of MFMHBC with MFMHEC in multiple dimensions

Three series of experiments were conducted to observe the behavior and compare the performance of the
MFMHBC and MFMHEC in multi-dimension spaces. In the first experiment, we changed the number of data
points in the data sets with the dimension but with the number of classes fixed. In the second experiment, we
set different dimensions for the data sets with the fixed number of data points and the distribution density. In
the third experiment, we change the density of the data distributions so the level of intermixing increases.

Fig. 11. Number of clusters resulted with different size of data sets in 20 dimensions.

Table 3
Clustering results on intermixed data set of three classes in three-dimension

Type of class # of Data points # of Clusters with MFMHBC # of Clusters with MFMHEC

A 11 5 2
B 11 6 5
C 11 6 4

Total 33 17 11

Table 4
Clustering result associated with different size of data sets in 20 dimensions

# of Data point # of Data dimension # of Data classes # of Clusters MFMHBC # of Clusters MFMHEC

100 20 10 11 10
200 20 10 10 10
500 20 10 17 10

1000 20 10 11 11
2000 20 10 47 12
5000 20 10 26 12

10,000 20 10 54 15
25,000 20 10 454 17



5.4.1. Experiments with respect to number of data points in multiple dimensional space

In this experiment, we compared MFMHBC with MFMHEC on a group of data sets that range from small
size to large size with 20 dimensions. We applied both algorithms to data sets that have 100, 200, 500, 1000,
2000, 5000, 10,000, and 25,000 points in 10 classes. In each experiment on the data set, we recorded the run-
ning time and the resulting number of clusters produced by each algorithm. The results are shown in Table 4,
Figs. 11 and 12.

As described in Section 4, both MFMHBC and MFMHEC algorithms prevent the resulting hyper-balls
and hyper-ellipsoids to contain data points of different classes. As the penalty of this restriction, the number
of clusters accordingly increases as the number of data points goes up. It is possible that the increase of cluster

Fig. 12. Running time with different size of data sets in 20 dimensions.

Table 5
Clustering result associated with different dimensions of data sets with 5000 points

# of Data point # of Data dimension # of Data classes # of Clusters MFMHBC # of Clusters MFMHEC

5000 4 10 477 18
5000 8 10 445 16
5000 12 10 503 10
5000 16 10 694 12
5000 20 10 542 13

Fig. 13. Number of clusters resulted with different dimensions of data sets with 5000 points.



numbers is also attributable to the increased mix-up degree associated with the increase of the number of data
points. However, the difference between the numbers of clusters generated by the algorithms is significant in
these high-dimensional cases. Fig. 11 shows that the MFMHEC generates fewer clusters than MFMHBC. By
contrast, Fig. 12 shows that MFMHBC requires less running time than MFMHEC. As a matter of fact, these
results do not surprise us as that discussed in the algorithm analyses of Section 4.

5.4.2. Experiments with respect to different dimensions of the data sets

In this case, we compared MFMHBC with MFMHEC on a data set of 5000 points in different dimensions.
We applied both algorithms to data sets that have 4, 8, 12, 16, 20 dimensions in 10 classes. The results are
shown in Table 5, Figs. 13 and 14.

The results show again that the resulting number of clusters of the MFMHBC algorithm is significantly
larger than that of the MFMHEC algorithm, while the computation time of the MFMHEC increases more
rapidly than the MFMHBC.

5.4.3. Experiment with respect to data sets of different distribution densities

In this case, we compared MFMHBC with MFMHEC on a group of data sets in varying distribution den-
sities. This is done by increasing the variance parameters of the Gaussian random number generator. The
effect is the increased level of the mix-up of the data points between different classes. We applied both algo-
rithms to data sets that have 5000 points in 20-dimensions with 10 classes. The data points in a specific class
are dispersed in Gaussian distribution with different variances. The results are shown in Table 6, Figs. 15, and
16. The results follow the general trend of the above two experiments. It clearly indicates that hyper-ellipsoidal
clustering is a viable model for partitioning large datasets intermixed with different classes in high-dimensional
spaces, at the expanses of computational cost.

We must admit that all experiments were performed with synthetic data. The dimensions of the data are
also not very high in these experiments (except the last) but in practical applications they would grow expo-

Fig. 14. Running time with respect to dimensionality on dataset of 5000 points.

Table 6
Clustering result with different densities of data sets with 5000 points in 20 dimensions

# of Data point # of Data dimension # of Data classes Density (variance) # of Clusters MFMHBC # of Clusters MFMHEC

5000 20 10 3 10 10
5000 20 10 4.5 26 12
5000 20 10 5 542 13
5000 20 10 6 1856 22
5000 20 10 8 2854 33



nentially. Experiments with real data at this point will be a topic of future work. It would also be desirable to
have an empirical evaluation with other algorithms such as DBSCAN, with a range of parameters.

6. Summary and conclusions

Geometrical clustering is to identify clusters embedded in the dataset using a set of geometrical entities to
partition or group the data points in subsets. The technique has emerged as a key for business applications to
make the huge amount of data stored in databases more meaningful and valuable [7]. The existing clustering
methods such as partitioning methods, hierarchical methods, density-based methods, grid-based methods, and
model-based methods all use certain kinds of geometrical primitives or structures. These algorithms shed some
light on our new developed clustering algorithms. Geometric clustering utilizes proper spherical or ellipsoidal
body to group similar objects in some high-dimensional space, with a metric defined appropriately for the sim-
ilarity, and provides a concrete technique for these applications. There are still many interesting topics and
challenging aspects that are worth to continue the research in this area, such as the association of the geomet-
rical methods with statistical estimation and interpretations, the assessment of the clustering errors with
respect to the different geometric models, and the application of the methods to real world situations.

Fig. 15. Number of clusters resulted with different densities on data sets in 20 dimensions.

Fig. 16. Running time with different densities on data set in 20 dimensions.
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