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Minimum Cross-Entropy Approximation
for Modeling of Highly Intertwining Data Sets
at Subclass Levels

QIUMING ZHU zhug@unomaha.edu
Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0050

Abstract. We study the problem of how to accurately model the data sets that contain a number of highly
intertwining sets in terms of their spatial distributions. Applying the Minimum Cross-Entropy minimization
technique, the data sets are placed into a minimum number of subclass clusters according to their high intracle
and low interclass similarities. The method leads to a derivation of the probability density functions for the date
sets at the subclass levels. These functions then, in combination, serve as an approximation to the underlyi
functions that describe the statistical features of each data set.

Keywords: cross-entropy, intertwining data sets, probability distribution, subclasses, cross-entropy minimiza-
tion

1. Introduction

One of the problems often encountered in a data analysis system is to derive an intrins
model description on a set (or sets) of data in terms of their inherent properties, such as the
membership categories and/or their statistical distribution characteristics. For example, |
a database mining process it is necessary to extract the information from a large set of de
points (records) and model the data in terms of their uniformity and regularities. This is
often done by first obtaining the statistical distributions of the data sets that are groupe
in terms of one or more designated key fields, regarded as labels, of the data points, a
then mapping them to a set of objective functions. A speech recognition system also nee
to have a data model be developed from a large set of experimental data before it ce
distinguish words and phrases spoken by different people. In these modeling processe
the system typically deals with the problems of (1) the relations between a set of knowr

labels (also named as categories or classes), denofed=ago;, wy, ..., wc}, and a set of
data points, denoted &= {X1, Xo, ..., X;}; and (2) the derivation of a set of descriptive
functions, often statistical distributions, denotedaéX, w;),i = 1,2, ..., c}, thatdepicts

the membership characteristics for each of the extracted (or recognized) data-label, denot
asX-w, relations.

The problem can also be expressed in this way: Given a dafa=sdX1, Xo, ..., X}, it
forms a multidimensional spa¢&X), whereX represents a member 8f A categorization
made according to the labels of thés partitions theR(X) into a humber of subspaces
R(wi),i =1,2,...,c, where usually we have

R(wi) € R(X), U R(wi) = R(X), andR(wi) N R(wj) =0; V] #i.



The R(wj)’s represent the data setaX6§ with high intraclass and low interclass similarities
based on the characteristics specified in each oftlee It is typical in such a system to
assume the existence of a set of functieneX, wi),i = 1,2, ..., c} that makes:

R(wi) = {X|V(j # DT (X, w1) > 71X, )]}

We call ther (X, wj)’s the objective functions of the data modeling. In the statistics domain,
ther (X, wj) is expressed as

(X, o) = p(X | @) p(wi)

wherep(X | wj), aconditional densitfunction of X, specifies the probability for the data
point X being in category (labekp;, and p(wj), the a priori probability, represents the
likelihood for the appearance of the lalaglin the data set.

Then (X, wj)’s are in linear or piece-wise linear functions (Nath et al., 1992; Juang and
Katagiri, 1992; Ney, 1995) when tHe(w;) subspaces are in convex and continual regions.
However, there are cases that tRév;)'s do not possess the linearity feature because of
the irregular and complex natures on e relations of the data sets. Figure 1 shows an
example where the labeled data set 01 has a concave distribution region and 02 has t
discontinuous distribution regions. The data points of these two data sets together form e
intertwining distribution in theR(X) space. For the description of the data sets as shown in
figure 1, ther (X, w;)’s are to be in high-order nonlinear functions. These functions, while
not impossible, are often complex to describe and computationally expensive to obtain.

A data analysis system is usually built upon two paradigms. (1) A set of mathematica
functions is acquired first by utilization of the statistical distributions of the data sets or
an algorithmic computation of the data sets (Nath et al., 1992; Juang and Katagiri, 199:
Ney, 1995). The mathematical functions are then used to partition the data into group
such that each corresponds to a data category. This approach is generally referred to
“discriminant analysis.” (2) A data space is first partitioned into a number of subspace:
based on algorithmic computation of certain relational or statistical properties of the dat:
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Figure 1. Data points in intertwining distribution.



sets.These subspaces are then modeled in mathematical functions that distinguish the dz
groups according to their intrinsic properties (Chan and Cheung, 1992; Ishibuchi et al.
1993). This process is generally referred to as “clustering analysis.” In both of these
approaches, distributions of the data sets are modeled, continuously or discontinuously,
the class level determined by the associated labels of the data sets (Banfield and Rafte
1993; Bennett and Mangasarian, 1992; Man and Gath, 1994).

In this paper a different approach from the above is taken. We model each data set &
a minimum number of subspaces and seek the description of the data set at the subcl:
levels. The overall description of the data set will then be derived as a combination o
the descriptions at the subclass levels. In this approach, the spaces for each data groug
a whole may be discontinuous. However, the subspaces within each data group will b
continual. Section 2 presents the principles of the cross-entropy minimization techniqu
for the data modeling. Section 3 discusses the foundation of the minimum-set subclas
modeling approach. Section 4 describes a computational model by applying the minimur
cross-entropy approach to the data modeling at the subclass level. Section 5 presents
algorithms for the construction of subclasses for given data sets. In Section 6, we prese
the experiment results of applying the minimum-set subclass modeling technique to sorr
intertwining data sets. Section 7 contains concluding remarks.

2. Cross-entropy minimization

The principle of cross-entropy minimization has been a subject of study by Shore and Gra
(1982), Rao and Nayak (1985), and Jones and Byrne (1990). Derived from a set of axioms
consistent inference, the technique considered generally a minimum distance approach 1
the reconstruction of a real function from finitely many linear function values. The problem
is expressed as a reconstruction of the positive function), #(X) = {x (X, wj),i =
1,2,...,c}, defined on the measurable Eebf positive measures, subject to the constraints

re =/n(X)gk(X)dX, k=0,1...,M; (2.1)

where the integral is ovdi. M is the dimension of the data point (vect¥r)The constraint
set{ry} consists of known measurable, locally bounded and linearly independent functior
valuegk (X)'s that could be the data point itself or certain transformations of the data points.
In the context of data analysis, tfrg} correspond to the expected values of the data points,
andx (X) the unknown probability density functions of the data sets.

Let{Q} be the collection of all admissible functions defined on the dateSset$X}, that
is, 7 (X) is amember of Q}. For the given sets of data, the problem of reconstruetifX)
isto find, as output of the system, an admissible data-consistent reconstrutipa {Q},
that is “optimal” in some appropriate sense.

Let P(X) be an a prior estimate af(X) and Q(X) be a posterior estimation af(X),
both P (X) andQ(X) are members dfQ}. The general approach of optimizationis to select
the posterior estimat®(X) such that a distortion (discrepancy, or distance) measurement



of the form
DIQ(X), P(X)] = / £(QUX), P(X)) dX, (2.2)

is minimum.

A careful study of the various conditions for ti¢., -) function leads to one measurement
that holds the property of directed orthogonality. This measurement, known as cross-entroy
between two functionQ(X) and P (X), is expressed as

HIQE0. POd] = Qo0 tog( 337 ) dx 23)

which is also called Kullback distortion (Jones, 1992). The principle states that, of all the
distributions that satisfy the constraints, the poste€gK) with the least cross-entropy
with respect to the prioP (X) should be chosen to properly approximate #iX).

An important fact that makes the abo@X) the best estimate of (X) rests on the
cross-entropy’s well-known and unique property as an information measure. For exampls
cross-entropy satisfield [Q(X), P(X)] > 0 with equality only if Q(X) = P(X) almost
everywhere. The general concept of cross-entropy minimization can be stated as the fc
lowing: Given a positive prior probability density (X), if there exists a posterior that
satisfies the constraints (2.1) and

/Q(X) dX =1, (2.4)

and minimizes the cross-entropy (1.3), then it has the form

M
QX) = P(X) exp(—x - B gk<X>), (2.5)
k=0

where A and B¢ are Lagrangian multipliers whose values are determined by the con-
straints (2.1) and (2.4). The cross-entropy at the minimum, therefore, can be express
in terms of the Lagrangian multipliers and theas follows:

M
HIQ(X), POX)] = =2 — > Bcr. (2.6)
k=0

It is necessary to chooseand gk so that the constraints are satisfied. Conversely, if one
can find the values for andg in (2.5) such that the constraints (2.1) and (2.4) are satisfied,
then the solution for the objective function exists and is given by (2.5). Unfortunately, it
is usually impossible to obtain a closed-form solution expressed directly in terms of the
known expected valueg rather than in terms of the Lagrangian multipliers. Computational
methods for finding approximate solutions are, however, available (Shore, 1982).

The minimum cross-entropy method fits nicely into the paradigm of data clustering
problems. When a mathematical function, thati€X), of a data set distribution is sought,



it can be readily modeled as &(X) function in the cross-entropy minimization. A positive

a prior functionP (X) for the description ofr (X) could be always assumed in this process.
Informally speaking,H[Q(X), P(X)] is a measure of the “information divergence” or
“information dissimilarity” betweerQ(X) and P(X). Shore and Gray (1982) showed the
application of this approach to the problems of classifying an input vector of measurement
to a fixed set of data centers by a nearest neighbor rule. However, the application of th
method to multiple subclass modeling of the data sets is a new attempt.

3. Subclass modeling of intertwining data sets

We consider a paradigm in which a complexly distributed data set can be models as consi
ing of a number of subsets, each with a relatively simple distribution. Under this modeling
approach, for example, the labeled data sets of figure 1 would be reconstructed in fol
subsets as shown in figure 2, where each subset of the data point is enclosed in a con\
distribution region.

A question often asked about is, what constraints should be applied to these subsets
make the data model a valid and accurate one. By investigating the data set clusterir
technigues and their relationship with the cross-entropy minimization approach, it reveal
that it is necessary to construct a minimum set of these subgroups to properly represe
the intrinsic properties of the data set. We therefore introduce the minimum-set subclas
modeling technique that is to be used to make an accurate description of the distribution «
a complex intertwining data set.

To describe the minimum-set subclass modeling, let's start from the description of the
data sef, in which each data poirX is associated with a specific lahgl, w; € Q. Let§
be used to denote the set of the data points that have been labeled lay,

s=Js. sng=0, Vvi#]j

i=1

2

Figure 2. Subclass model on data sets of figure 1.



Thatis, for eaclX € S, thereexistsani =1,2,...,c,suchthat(X € §) = X xwj)].
Here, X xw; stands forX being labeled byw;. We then have the following definiti-
ons.

Definition (Subclass clusters (SC)). L®&tbe a set of data points labeleg, § € Sand

w; € Q. Letegjk be thekth subset of§. Thatis,sik € §, wherek = 1,2, ...,d;, andd

is the number of subset i§. Let p(X | ¢ix) be a probability density function for the data
point X’s in gix. Thesubclass clustersf § are defined as the sétj} that satisfies the
following conditions:

d;

Ugik =5, (3.1)
k=1

VI £ ke Ney = 9], 3.2)
VI #K[(X € &) = (P(X | &ik) > PX | &in))], (3.3
V(j #DIX € &) = (PX | &) = pX | &))]. (3.4)

Definition (Minimum-set subclass clusters (MSSC))etejx ands; be two subclass clusters
of the data points itg, k = 1 andsj # @. Letgj = gk Ugy andp(X | &) be the probability
density function defined o5. We say that the subclass clusterfggt k = 1,2, ...,d}

is aminimum-set subclass clusta&s, if for any & = ik U ¢; we would have:

A #DIMIAX € &) [(p(X | &) < pX | &jm)]; (3.5)

or
A(J # 1D IMIAX € gm) [(PX | &) > PX | &jm)], (3.6)

wheregjn is themth subclass cluster for a data point gt The above definition means
that a subclass cluster of a data set must be large enough such that any joint set of the
would then violate the subclass definition (condition (3.4)).

We consider the construction of the subclass clustgras a step-by-step process that
determines the members of the subset by a sequential examination of the data gfints in
We willthen consider the determination of the probability density functipts, | sik)’s, for
the subclasses constructed. As the formation of subclass clusters may rely on the utilizatic
of p(X | ei) (according to the conditions (3.3) and (3.4)), we give a general assumption
that it is to be a positive function. A computational process that applies the cross-entrop
minimization technique to construct the subclass clusters and the associated probabili
density functions of the data sets is described in following section.

4. Cross-entropy minimization for the subclass clusters

The process associated with the subclass modeling involves (1) the selection of data poir
from S into a particular subclass clustgg, and (2) the determination of the probability



densityfunction p(X | eix), and thus ther (X, w;), for each data set. Let's consider the
construction of the subclasses as a sequential process of cross-entropy minimization, whe
each data point in the data set adds a constraint taQ¥) function to be obtained.
Shore and Gray (1982) illustrated that it is useful and convenient to view cross-entrop
minimization as one implementation of an abstract information operatoiThe operator
takes two arguments—the a prior functi®(X) and new informationiy—and yields a
posterior functionQ(X), that is Q(X) = P(X) o Ik, wherely also stands for the known
constraints on expected values:

Iw/@mwmﬁ=m (4.1)

By requiring the operatar satisfy a set of axioms, the principle of minimum cross-entropy
follows. The axioms o0b are informally phrased by Shore and Gray (1982) as the following:

(1) Uniqueness: The results of taking new information into account should be unique.

(2) Invariance: It should not matter with respect to the coordinate system the data poin
accounts for new information.

(3) System independence: It should not matter whether information about systems is a
counted separately in terms of different probability densities or together in terms of &
joint density.

(4) Subset independence: It should not matter whether information about system stat
is accounted in terms of a separate conditional density or in terms of the full systen
density.

Thus, given a prior probability densif(X) and new information in the form of constraint
I on expected valug, there is essentially one posterior density function that can be choser
in a manner as the axioms stated above.

Considering two constrainig and|, associated with the data modeling expressed as:

|ﬂ/mmmamxzﬁl 4.2)

Iy f Q20050 dX = r?; 4.3)

whereQ1(X) and Q,(X) are the density function estimations at two different times. The

rP andr® represent the expected values of the function in the consideration of differen

data points irf5, that is, in terms of the new information abdQtX) contained in the data
points{X}. Taking count of these constraints, we have (Shore and Gray, 1982)
(PX)olpola=Qi(X)ol2 (4.4)
and
M
H[Q2(X), P(X)] = H[Q2(X), Qa(X)] + H[Q1(X), POX)] + > B (re” —r?);
k=0

(4.5)



where,Q1(X) = P(X) 0 I3, Q2(X) = P(X) 0 I, and thes{"’s are the Lagrangian multi-
pliers associated wit,(X). From (4.5) it follows that

H[Q(X). Q;(X)] = H[Q(X), P(X)] — H[Q;(X), P(X)] — Zﬂ“’ (e —ry):
(4.6)
SubstituteH[Q; (X), P(X)] by Eq. (2.6) we have

M .
H[Q(X). Q;(X)] = H[QX). POO] + 4D + )" gl r. 4.7)
k=0

The minimumH[Q(X), Q;(X)] is computed by taking the counts of, ] = 1,...,n
(wheren is the total number of data points) and a vajusuch thatH[Q(X), Q;(X)] <
H[Q(X), Qi(X)] for i # j. The process would take count of the data points one at a time,
and choose th@®; (X) with respect to the selected data point that hagriimémum distance
(nearest neighbor) from the existing functions.

Applying the cross-entropy minimization technique to the construction of the probability
density functiong(X | wj) for a given data set, the technique calls for an approximation of
the functions under the constraints of the expected values of the data clusters. Expressec
a computational model for the classification of data points, Shore and Gray (1982) showe
that the technique resulted in taking the arithmetic mean of the member comporfepis in
as the representation of the data set. The same result was presented by Jones and By
(1990). According to Jones, the best set of data to represent thig;gkets given by{ ik},
where

MHik = Z XJ: (4-8)

Ik Xjeeik

where N is the number of data points in the clustgy, i.e., Nik = |leik]|. We callui a
moving centroid of the cluster. That means, when data points are examined one by one a
added into the subclass clusters in the construction process, the cluster centroid are adjus
to the new expectation values constantly. The covariance paramgt@fthe clusters can

be estimated by extending the results of the moving centroid and expressed as:

== Z Xj = i) X — i) (4.9)

Ik XJ EEik

The parameters are to be continuously updated also upon the examination of additional de
pointsX’s and the addition of them into the selected subclass clusters.

5. Subclass clustering and the functional approximation algorithms

The following definitions are made as a preparation for the algorithms to be described. Not
that they are defined on the conceptlta clusters(DC) which is a collection of data



point X's such that they all having the same labgl A data cluster becomes a subclass
cluster when it satisfies the conditions (3.1)—(3.4).

Definition (Distance between two data clusters). peX | gi) ~ G(pik, Zik) andp(X | &)

~ G(uj, %j) be the approximations of the probability density functions for two data clus-
terseix ands;i, respectively; whered(X | ei) ~ G(pik, Zik)] meansp(X | ei) is a Gaussian
density function with parametersx and . Thedistancebetween the two data clusters
eik andg; is defined as

ik — wajill

_ 51
| Zi| + 1 Z1] 1)

A function Distance(g, ¢,) will return a value of the above for two data clusteyandes.

Definition (Merge of two data clusters) Let e ande; be two data clusters in the data
setS. TheMergeof ¢ andeg; is defined as a data clustesuch that

e =c¢ikJei,
and

pP(X|&) ~ G(u, X)), (5.2)

whereu =.”71H Yoxee X T = ”71H Yo e Xj =) (X — w7, and| ¢|| is the total number
of data points in the cluster.

A functionMerge(a, &) will do the above computation and returiand p(X | €) which is
the approximation of the probability density function on the merged data cluster.

Definition (Intersection of two data clusters)Let ¢ ande; be two data clusters. Let
p(X | eik) andp(X | )] be two approximations of the probability density functions defined
onejx ande;j, respectively. We say that the two data clusters intersect if

IX e ex[p(X | &) < pX | ]V #1, (5.3)
or
IX e g [pX | &) < pX | ew)] Vj #1i. (5.4

A function Intersect(g, ;) will return true if ¢; ande, intersect; otherwise the function
will return false.

The subclass clustering algorithm to be described inherits the basic control mechanis
from the agglomerative hierarchical clustering of Duda and Hart (1973). The major differ-
ence of our algorithm from the original one is the embedding of the cross-entropy minimiza
tion technique in the processes of assigning data point to clusters and the computation



the parameters of the clusters. The algorithm computes an approximation of the probabili
density function (PDF) for each cluster and uses it to rectify and adjust the clusters. Th
PDFs are updated constantly as new data points are examined, in applying the cross-entrc
minimization principle to explore the data set characteristics. To describe the algorithm
we first make (or restate) a set of specifications of the symbolic notations:

c The total number of classes in data Set

S A subset of data s&¥; § contains the data pointsinclasgi = 1,2, ...,c.
X A data point inn-dimensional spacé € S.

£ A subclass cluster; when subscripts are usgdneans thédkth cluster ofS.
E; The subclass clusters for data Set

IEill The number of subclass clusters in Egt
Wi The expectation vector for the PDF of a subclass cluster
i The covariance matrix for the PDF of a subclass cluster

Algorithm. Minimum set subclass clustering and PDF estimation

Input. {§},i=1,2,...,c
Output. {E;j},i=1,2,...,c.

Step 1: for each S (i =1, 2, ..., ¢) do /* Initialize subclass clusters */
Step 1.1: Ei < 0, ||Eill < 0;
Step 1.2: for each X € § do

Step 1.2.1: kK < ||Eill; eik < X; initialize(uik, Zik),
Step 1.2.2: Ei < B U{ex}; IEilI++;
Step 2: Repeat: /* form minimum number, nonintersecting clusters */

Step 2.1: find a pair (gik, &) such that (e, & € Ej) and (k # |) and
Distance(ei, €i)) is the minimum among all pairs of (g, ;) in E;,
i=1,2,...,C

Step 2.2: e < Merge(sik, &),

Step 2.3: if NOT(Intersect(e, &m) ¥j # i and Ym) then

Step 2.3.1: gik < &; compute (uik, Zik); remove gj from E;
Step 2.3.2: Ei < Ej U{ei}, remove g from E;, || Ei|--;
Step 2.4: Until no change is made on every | E;||.

Step 3: Return {E},i=1,2,...,c.

This algorithm converges in a finite number of operations. Without loss of generality,
we assume that the number of data poifi§) = n,i = 1,2,...,c. Atthe Step 1 of
the algorithm, the assignment of each data point to a trivial cluster tak€x@m) time
complexity. In Step 2.1, the selection and merge of clusters takes aOodtcomputation
for every data sef . That is a total ofd(cr?) computation for the entire data s®tStep 2.2
takes a maximum ofO(n) time complexity. The operation of intersection checking at
Step 2.30(cr?) computation at the worst case. Considering the entire Step 2 is to be done



in the maximum of times, the overall computation in Step 2 then takeé®(@?n?) time
complexity. LetN be the total number of data points in the training SeN = cn, the
worst case time complexity of this algorithm can then be expresséd Ms/c).

Since the subclass clusters are already labeled by their belonging classes, the mappinc
the data points from their subclasses to their parent classes is straightforward. Therefor
after the execution of the algorithm, we have the data clusiees {ex},i = 1,2,...,cC,
constructed from the original data s&twith a PDF functionp(X | sjk) associated with

eache.

6. Experimental results

We conducted the experiment on the data clustering and the functional approximation c
the data sets by simulation. The simulation uses randomly generated data sets that exhi
complex and intertwining distributions. Some of the experimental data sets are shown i
figure 3, where figures in (a) show the plots of the data sets and (b) show the subclass clustt

constructed on the data sets. Symbols “x”,

“o”and “A” are used to indicate data points of

T3

Figure 3. Data sets and their subclass clusters of the test cases.

(b)

T3
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Figure 4. Thep(X | ¢i) functions of the subclass data models of the test cases.

different classes. For the illustration purpose, only two-dimensional data are shown in th
examples. Every data point in the example is correctly categorized into its labeled grouy
as the technique being designed for, though the points may be in different subclass cluste
A description of the data sets is obtained by the combination of the probability density
functions resulted from the subclass clusters. These functions are shown in figure 4, whe

we show the functional descriptions of theX | ¢i)’s for the data points in the same label
category.



7. Conclusions

One of the tasks of data analysis is to describe the partitions of a multidimensional space
given data sets in a number of separated subspaces, each corresponding to a specific ¢
category. Many data analysis techniques attempted a linear or piece-wise linear solutiol
for approximating nonlinearly distributed data sets, thus sacrificed certain degree of th
nonlinear precision. In this research, we developed a data clustering technique based ol
subclass modeling that is able to provide a solution for modeling the highly intertwining
data sets. The process is conducted in terms of the minimization of the cross-entropy of tf
resulting data models in a multiple subclass space. The technique derives an approximati
of the probability density functions of the data sets in the subspace partitions by considerin
both the interclass and intraclass properties of the data points. Though the distributions
the subclasses are in simple convex form, which renders to simplicity of computation, the
overall distribution of the data sets remain the properties of a nonlinear, complex spatic
distribution. The technique does not require human interaction to predetermine or tun
up the system parameters, thus can be conveniently applied, with adequate generality a
accuracy, to many practical data analysis problems.
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