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Quantitative object motion prediction by an ART2 

and Madaline combined neural network 
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2 Department of Computer Science, University of Saskatchewan 
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Abstract. An ART2 and a Madaline combined neural network is applied to predicting 
object motions in dynamic environments. The ART2 network extracts a set of coherent 
patterns of the object motion by its self-organizing and unsupervised learning features. The 
identified patterns are directed to the Madaline network to generate a quantitative prediction 
of the future motion states. The method does not require any presumption of the 
mathematical models, and is applicable to a variety of situations .. 

1. Introduction

The problem of predicting object motions in 
dynamic environments is a concern to many 
researchers in computer vision and robotics. For 
example, a cooperative mobile robot must find the 
future moving positions of the objects (maybe the 
other robots) in its operating space, so as to avoid 
collisions with each other [I]. The object motion 
prediction is generally a problem with a high degree 
of uncertainty because of the unknown dynamics of 
the objects encountered. 

Mathematical models were studied for describing, 
analyzing, and estimating the underlying 
characteristics of the object motions. A linear model 
took a weighted sum of the previous motion states to 
predict the future motions. Iterative algorithms were 
utilized to find the least-square-error solutions for 
the model [2]. A hidden Markov model viewed the 
object motion as a stochastic process and used state 
transition functions to predict the future states [l]. 
However, these models are often not justifiable to 
many complex situations in real world. 

Using artificial neural networks to predict the object 
motions was studied by Tawfik et al. [3]. Elsner and 
the others (4, 5, 6] have studied the use of artificial 
neural networks to predict time series, a problem 
very close to the motion prediction. A back 
propagation network was used by Gent [ 5) for the 
prediction of both deterministic and stochastic time 
series. Sorheim utilized an ART2 and back 
propagation combined network for the estimation of 
dynamic processes [6]. However, the slow speed of 

the back-propagation learning makes the networks 
not suitable to the motion prediction which requires 
a timely adaptation to abrupt and irregular changes 
of the object motion. 

By an analysis of many object motion profiles, we 
found that an object motion sequence can always be 
divided into a series of smaller segments. These 
segments fall into a limited number of categories. 
We call each of these categories an Elemental 
Motion Pattern (EMP). Relating each EMP to a 
motion segment, the entire motion sequence of an 
object can be described by a series of distinct motion 
functions. Based on this observation, an ART2 and 
Madaline combined neural network was utilized in 
our research. The ART2 network autonomously 
classifies the sequences of motion states into the 
EMPs with certain levels of coarseness. It also 
suppresses certain levels of input noises and 
provides a qualitative justification for the underlying 
characteristics of the object motions. The Madaline 
network generates quantitative predictions of the 
object motion states with respect to the EMPs 
identified by the ART2 network. The combined 
network differs from the Sorheim's ii! that: (1) a 
simple one-layered Madaline network is applied, 
rather than the back propagation, for achieving faster 
responses to the motion variations, (2) a learning 
operation is conducted in every cycle of the 
prediction, rather than as a separate process, for 
improving the accuracy of prediction incrementally. 



2. Modeling

Let X(k) denote a segment of object motion profile, 
X(k) = [x(k), x(k-I ), ... , x(k-n)], where n is a constant. 
Let Y(k+I) = [y(k+I),y(k+2), ... ,y(k+m)] be the 
prediction of X(k+I)= [x(k+I),x(k+2), ... ,x(k+m)]. 
The component of Y(k+ 1) can be expressed as 
y(k+I)=x(k+I) +e(k+I). The objective of motion 
prediction is to obtain a Y(k+ 1) such that 

(1) 

be minimized. 

The X(k) signal is stored in a push-forward shift 
register and fed to the ART2 and Madaline networks 
simultaneously. The connections of the two 
networks and the inputs/outputs are shown in figure 
1. When a prediction process starts, two successive
stages, a bottom-up and a top-down, take place
between the Fl and F2 nodes of the attentional
subsystem of the ART2 network [7]. In the bottom
up stage, sufficiently activated (by X(k)) Fl nodes
emit bottom-up signals to the F2 nodes. The
pathways between the Fl and F2 nodes multiply the
signals with the connecting weights. The multiplied
signals lead to a competitive activation among the
F2 nodes. Each F2 node is associated with a
specific EMP. Let the F2 output be denoted as
Y = CY1, Yi, ... , Yd), where only one y; should have a
non zero value which marks the winner of the
competition. This winner node signifies the
identification of a specific EMP in the motion input.
The Y is fed back to the Fl layer in the top-down
stage by passing through the connecting weights.
Three streams of data flow to the Fl nodes in this
stage. They are (i) the bottom-up input, X(k), (ii) the
top-down input, Y, and (iii) a gain control signal, G,
generated internally. The G switches the network
among the states of (i) pattern generation, (ii) pattern
matching, and (iii) network adjustment. An orienting
subsystem of ART2 is responsible for sensing
mismatches between the bottom-up and top-down
signals. A sufficient mismatch results in a reset,
which makes the current winning F2 node ineligible
in further competition. The network enters into a
stable state when no disagreement between the FI
and F2 activation is found.

The activations developed in the Fl and F2 nodes 
are called short-term memory (STM) traces. The 
STM traces exist only in association with a single 
application of an input. The weights associated with 
the bottom-up and top-down connections between 
the Fl and F2 nodes are called long term memory 
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Fig. I. Data flow within the combined net for object 
motion prediction. 

(L TM) traces. The L TM traces actually encode the 
EMP patterns that remain a part of the network for 
an extended period. The EMPs are generated in the 
AR T2 in an autonomous fashion. When no existing 
EMP sufficiently matches the current input, a new 
neuron node is added to the F2 layer, plus the 
connections to the Fl and other F2 nodes. When an 
X(k) matches with an existing EMP, the network 
generates an activation Y at the F2 layer almost 
immediately. In this way, the network responds 
quickly to previously learned patterns, meanwhile 
remaining able to learn novel patterns. When the 
network enters a stable state, i.e., a pattern matching 
occurs, learning takes place on the connections 
between the Fl nodes and the activated F2 node. 
After the weights are up-dated, all the nodes of the 
FI and F2 layers are restored and ready to respond 
to a new X(k). 

Once an EMP is identified by the ART2 net, the 
activated F2 output is channeled to a one-layer 
Madaline network. The structure of a Madaline 
network can be viewed as a collection of Adalines 
[8]. Only one Adaline responds to the identified 
EMP by receiving an excitatory input from the 
activated F2 node. All other Adalines receive 
inhibitory inputs from the deactivated F2 nodes. 
Quantitative computation is made in the excited 
Adaline by taking an inner product of the X(k) and 
the network weights. The output of the Adaline is 
gated by an analog OR circuit to produce the 
Madaline output y(k+l). When a new EMP is 
generated by the ART2, a new Adaline is also added 
to the Madaline. Leaming takes place at the excited 
Adaline when the signal x(k+ 1) is received. The 
overall process of object motion prediction is thus 
conducted in two steps: (1) EMP identification by 
the ART2 network, and (2) quantitative y(k+ I) 
generation by the Madaline network. 



3. Simulations

Computer simulation was conducted for evaluating 
the performance of the ART2 and Madaline 
combined network 1 for object motion prediction. 
Experiments were done on both artificially generated 
motion data and real object motion profiles. In the 
first case, a set of mathematical functions are used to 
generate the testing data. These functions facilitate 
the evaluation of the prediction errors. By changing 
the parameters of these functions, object motions 
with different characteristics of swiftness and 
abruptness are tested. 

The mean-squared error (disparity), EMSE, between 
the predicted states and the actual states of the object 
motions are computed. The simulation results of the 
combined network are compared to a feed forward 
network using a back propagation learning [6] 2

• 

Table 1 lists the EMSE values for the test cases, where 
cases SI to S4 use artificially generated data and 
case AA uses actual object motion profile. It shows 
that the combined network improved the prediction 
precision over the back propagation network in all 
testing cases. The improvement is especially 
significant in the cases where the object motion 
exhibits strong irregular and swift variations. 

An AR T2 neural network can adapt to the 
environment changes by developing its own set of 
connection weights in computing the matches 
between the input signals and the outputs. This 
makes it very suitable for object motion predictions. 
Even though the feed-forward neural networks of 
today often have many layers, we believe that a 

1 The implementation details of the combined network is 
the following. 
The ART2 network has the following parameters: 

vigilance (p) = 0.9 
threshold (0) = 0.3 
integrator step size (h) = 0.1 
max. number of integration steps = 100 
convergence criteria for dynamic activation = 0.001 
convergence criteria for the weights = 0.0 l 

The parameters of the Madaline are the following: 
number of input neurons = 8 
number of output neurons = I 
convergence criteria (e) = 0.01 
momentum factor (a) = 0.9 

2 The B-P network has the following parameters: 
number of input neurons = 8 
number of output neurons = I 
number of hidden neurons = 8 
learning rate (e) = O.Ql
momentum factor (a) = 0.9 
convergence criteria (e) = 0.001 
activation function = linear 

single layer Madaline network is appropriate to 
compromise the real time speed and the adaptive 
functioning requirements, especially when it is 
incorporated with the pattern recognition feature of 
the AR T2 network. 

Test cases 

Sl 

S2 
S3 
84 

AA 

References 

B-P ART2- Madaline 
Network Network 
0.01958 0.00596 
0.096518 0.009593 
0.018583 0.009810 
0.85709 0.734878 
0.004204 0.003028 

Table 1. EMsE of the test cases. 
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