View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Nebraska, Omaha

N qummw ]DF
e University of Nebraska at Omaha

Omaha Digital Commons@UNO

Computer Science Faculty Publications Department of Computer Science

9-2007

A three-tier knowledge management scheme for
software engineering support and innovation

Richard Corbin
Christopher B. Dunbar

Qiuming Zhu
University of Nebraska at Omaha, qzhu@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

b Part of the Computer Sciences Commons

Recommended Citation

Corbin, Richard; Dunbar, Christopher B.; and Zhu, Qiuming, "A three-tier knowledge management scheme for software engineering
support and innovation" (2007). Computer Science Faculty Publications. 34.
https://digitalcommons.unomaha.edu/compscifacpub/34

This Article is brought to you for free and open access by the Department
of Computer Science at Digital Commons@UNO. It has been accepted for

inclusion in Computer Science Faculty Publications by an authorized

administrator of Digital Commons@UNO. For more information, please

contact unodigitalcommons@unomaha.edu.


https://core.ac.uk/display/232756258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub/34?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages

A three-tier knowledge management scheme for software
engineering support and innovation
Richard D. Corbin ?, Christopher B. Dunbar °, Qiuming Zhu **

& Northrop Grumman, Defense Mission Systems, Bellevue, NE 68005, United States
> FGM Inc., Omaha, NE 68142, United States
¢ College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182, United States

Abstract

To ensure smooth and successful transition of software innovations to enterprise systems, it is critical to maintain proper levels of
knowledge about the system configuration, the operational environment, and the technology in both existing and new systems. We pres-
ent a three-tier knowledge management scheme through a systematic planning of actions spanning the transition processes in levels from
conceptual exploration to prototype development, experimentation, and product evaluation. The three-tier scheme is an integrated effort
for bridging the development and operation communities, maintaining stability to the operational performance, and adapting swiftly to
software technology innovations. The scheme combines experiences of academic researches and industrial practitioners to provide nec-
essary technical expertise and qualifications for knowledge management in software engineering support (SES) processes.

Keywords: Knowledge management; Software engineering process; Software system support; Technology innovation; Human and system interaction

1. Introduction

This paper addresses the problems and issues of knowl-
edge management (KM) in a software engineering support
(SES) process. The problems are discussed in the context of
how to maintain proper levels of knowledge in the process
of developing and transiting technology innovations into
enterprise software systems. The process typically includes

(1) insertion of new technology into existing software
systems to enhance the system’s operational
capabilities,

* An earlier version of this paper was presented at the 2006 Command
and Control Research and Technology Symposium (CCRTS), San Diego,
CA, June 20-22, 2006.

* Corresponding author. Tel.: +1 402 554 3685; fax: +1 402 554 3400.

E-mail addresses: Corbinr@stratcom.mil (R.D. Corbin), dun-
bar@fgm.com (C.B. Dunbar), qgzhu@mail.unomaha.edu (Q. Zhu).

0164-1212/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2007.01.013

(2) transformation of legacy systems to service-oriented,
net-centric integrative systems, and

(3) installation of new systems to replace outdated sys-
tems, add novel capabilities to systems, and support
closing the gaps in required capabilities of the
systems.

It is known that “Knowledge management is an
approach to discovering, capturing, and reusing both tacit
(in people’s heads) and explicit (digital- or paper-based)
knowledge as well as the cultural and technological means
of enabling the knowledge management process to be
successful (Russell Records, 2005).” However, what is
“Knowledge” remains to be an issue in some people’s mind,
especially referring to specific domains and situations (Alavi
and Leidner, 2001). Many knowledge management practi-
tioners and researchers considered information and knowl-
edge as synonymous constructs. In this perspective, both
these constructs can be expressed in the computational rule



based logic as well as in the form of data inputs and data
outputs that trigger pre-defined and pre-determined actions
in pre-programmed modes (Wigg, 1993). It is true, though,
in certain circumstances where a piece of knowledge to
one group of people could just be a piece of information
to other group of people. But this argument cannot be
generalized.

Information systems researchers (Churchman, 1971;
Mason and Mitroff, 1973; Malhotra, 1997) have discussed
various knowledge model, particularly for environments
characterized by complexity, uncertainty, and radical
changes. Churchman (1971), who developed five archetypal
models of inquiring systems in an effort to expand the field
of management information systems along a philosophical
path, has emphasized that: “To conceive knowledge as a
collection of information seems to rob the concept of all
of its life... Knowledge resides in the user and not in the
collection.” Similarly, Nonaka and Takeuchi (Nonaka
and Takeuchi, 1995) had proposed the conceptualization
of knowledge as justified belief in their argument that,
“knowledge, unlike information, is about beliefs and com-
mitment.” On a complementary note, Davenport and Pru-
sak (Davenport and Prusak, 1998) have defined knowledge
as deriving from minds at work: “Knowledge is a fluid mix
of framed experience, values, contextual information, and
expert insight that provides a framework for evaluating
and incorporating new experiences and information. It
originates in the minds of the knower. In organizations,
it often becomes embedded not only in documents or
repositories but also in organizational routines, processes,
practices, and norms.”

From the information technological point of view,
knowledge is an entity differentiated from the information
object in that there is an element of expert review and
distillation where knowledge is concerned (see Fig. 1 for
a denotation of data—information—knowledge hierarchy)
(Brown and Woodland, 1999). This view emphasizes that

1. Knowledge results from the fusion of key elements of
information which characterize the problem space and
includes explicit information (e.g. position of forces,
geography, and weather) that requires little interpreta-
tion and can be communicated quickly and easily.

2. Knowledge yields predictive ability based upon interpre-
tations that in consequence is based upon experience
and a priori knowledge that includes tacit information

Reasoning / Interpolation / Situation Assessment

Extrapolation “ Decision Support
Aggregation / : Situation Awareness
Integration Information
Acquisition / Object
Sensing Data Assessment

Fig. 1. Data-information-knowledge hierarchy.

(e.g., capabilities and tactics of an adversary, local cus-
toms, intents.) from which supporting facts can be easily
transferred while the underlying organizing logic can sel-
dom be transferred quickly and easily.

3. Knowledge is most likely distributed among people and
locations, often tailored to specific domain and prac-
tices, usually valid only at certain circumstances and
within certain period of time, and subject to individual’s
view for its value and usage.

Thus, the difference between information and knowl-
edge is the degree of understanding — a functionalism of
expertise and experience. It is seen that information results
from the collection and assembly of ““facts (data)” while
knowledge involves the human intelligence traits. From
this point of view, sharing information is easier because it
involves the transmission of “facts” which require rela-
tively little interpretation. Sharing knowledge is far more
difficult due to the fact that mind and reasoning must be
conveyed. Knowledge builds upon the foundation estab-
lished by information and is, by way of contrast, people-
oriented and mental work intensive. As an instance, one
could think of the handling of the former (information)
in an automated process of data aggregation, while the
handling of the latter (knowledge) in a process of concep-
tual pattern discrimination.

It has been said that the emergence of new technologies
are making software more and more powerful, but at the
same time problems and issues with new technologies are
“every project manager’s worst nightmare” (Brossler,
1999). The constant change and stream of new technolo-
gies makes it “very difficult to keep the organization
ahead in the competition” (Tiwana, 2000). While time
should be spent on actively searching for knowledge both
within the organization and outside, software organiza-
tions seem to have even less time than others to do that
because of the fast pace of the business (Basili et al.,
2001). To render successful transition and capability
improvement in software innovation, it is critical to main-
tain proper levels of knowledge within and around the
software engineering processes both inside and outside
an organization. These include the knowledge about the
software systems, the operating environment, the develop-
ment processes, and the technologies applied in both exist-
ing and new systems. The objectives of all the efforts of
such tasks are to ensure the efficiency and reliability of
the overall systems and product transitions, avoid un-
mature insertion of technology, and unnecessary interrup-
tions to the system’s operations (e.g., minimizing software
defect incidents).

Knowledge management for software technology inno-
vation includes processes of knowledge discovery, capture,
storage, retrieval, sharing, and understanding. It aims at
facilitating knowledge flow and utilization across every
phases of a software engineering process. To be more spe-
cific, knowledge management in software engineering sup-
port (SES) is important due to the following reasons:



(1) The software development environment is character-
ized by frequent technology changes, which calls for a
continuous stream of new knowledge.

(2) The transition of software innovation into practical
operations requires a relatively large effort in require-
ment specification, prototyping, design validation,
coding, and integration of various components. The
risk would be larger if incorrect assumptions or
approaches were discovered at the later stages of
implementation and test.

(3) The benefits from the software improvement are
often intangible and hard to assess. Managers and
software engineers need to assess the benefit and suit-
ability to mission enhancement and effectiveness at
proper levels and stages with necessary knowledge
from both sides in hand.

In other words, knowledge management in software
engineering support has the mission to enhance the stabil-
ity of the software system transition, ensure minimal
impact to the operational performance, and promote swift
adaptation of new technology to the system operations.

In the remainder of this paper, we discuss the major
issues of knowledge management in software engineering
support, innovation, and performance improvement pro-
cesses in Section 2. Section 3 presents the key concepts of
a three-tier knowledge management scheme for a typical
software innovation and transition process. Section 4 pre-
sents an exemplar software engineering support project
applying the three-tier scheme at an enterprise system inno-
vation level. We conclude the paper with a summary of the
scheme and approach in Section 5.

2. Knowledge management in software engineering support
and innovation

2.1. Knowledge management issues in software innovation

As we all understand that software engineering is a com-
plex, dynamic, and multi-phased knowledge intensive pro-
cess (Jeski, 2000; Basili et al., 2002). Knowledge in software
engineering process is distributed at different levels — from
individual, to project, to organization, to industry. No sin-
gle knowledge repository would be sufficient to cover the
knowledge necessary for all phases, stages, and the entire
life cycle of the software engineering process.

The tasks of maintaining appropriate levels of knowl-
edge in the software engineering process consist of many
facets. Most of these facets can be described as different
sub-problems. Examples of these sub-problems include:

(1) Liquidity of knowledge — Knowledge moves with peo-
ple. For example, when employees leave for other
opportunities or for retirement, they carry away cer-
tain knowledge (e.g., in the form of experiences) no
matter how well the knowledge has been documented.

(2) Latency of knowledge acquisition — To gain knowl-
edge requires time. For example, when new employ-
ees are hired they need to get up to speed by
acquiring technical and subject matter knowledge.

(3) Lack of knowledge sharing protocol — The power of
knowledge lies on its sharing. For example, domain
experts need to pass their knowledge to team players.
To do that they need to know exactly to where and to
whom the knowledge should be passed.

(4) Loss of knowledge locations, traces, and links — It is
known that knowledge must be properly kept in
places that are easily accessible. However, it is often
overlooked or misplaced, especially when under com-
plex conditions and heavy work load. For example,
when an urgent software fix was called upon, it was
not clearly documented with respect to who was
involved in a previous software fix and how it was done
(i.e., what/where is the authoritative knowledge base
for a specific software fix?).

A common problem in knowledge management is the
ability to easily and efficiently locate and access the right
knowledge at the right time to solve a particular problem
(Hoopes and Postrel, 1999; Huang et al., 2000). The
knowledge is probably already present in many forms
and organizations, potentially in hardcopy or some soft-
copy data management systems. The problem is to identify
where it is or who has it. Technology can help capture
some of the information but it is not the ultimate answer.
That is to say, technologies such as software tools alone
cannot solve the knowledge management problems in their
entirety (McDermot, 1999). To have an effective knowl-
edge management process, it is necessary to adopt a sys-
tematic scheme for planning, stipulating, and distributing
the tasks and activities comprehensively. A key concept
in this scheme is to take knowledge management as an
active, effective and dynamic component of the software
engineering processes. That is, consider knowledge
management as an inseparable dimension in the whole
software development, transition, and maintenance pro-
cesses. This leads to a scheme known as taking knowledge
representation as “‘information in action” (Malhotra,
1997).

2.2. Coupling of knowledge management and software
engineering processes

While knowledge management and process engineering
were being evolved in parallel practically, there was no seri-
ous effort to fuse them into a consistent, holistic architec-
ture. For example, knowledge management programs
over the past decade have focused on organizing employees
into communities of practice (COP) and building reposito-
ries of “best” or proven practices. There was (and still is) a
general lack of understanding of how valuable the coupling
of software engineering processes and the knowledge
management practices can be.



One of the problems for an effective knowledge manage-
ment practice is to understand the variants in different soft-
ware engineering processes and how best these processes
can be integrated with a knowledge management approach.
Engineering processes do not just exist as structured or
unstructured. They fill a range between the two extremes.
For example, software engineering processes are filled with
methods and metrics (e.g., CMMI). However, how a spe-
cific software fix was accomplished also depends on who
did it (a human factor), what knowledge the person has,
and how extensive the knowledge was applied. Knowledge
management schemes need to work adaptively in the whole
range of the tasks and the whole processes and situations.
That is to say, knowledge management must be closely
linked to a particular group of people and of processes.

In the context of incorporating engineering processes
with knowledge management practice, let us consider spe-
cifically a software innovation process, and take a look at
what processes it consists of. Namely, at a properly
abstracted level (Fig. 2), these processes are roughly
divided according to the activities involving

1. Exploration — Identifying novel ideas and promising
techniques for improvement to existing system capabil-
ity or a new capability for insertion to existing systems.

2. Evaluation — Putting together and acting on a plan for
assessing the ideas and opportunities, comparing and
assessing the cost, efficiency, and technical feasibility.

3. Execution — Placing the innovative idea into develop-
ment and operation stage upon the outcomes of evalua-
tion and planning stages using system engineering
techniques.

2.3. A systematic plan of action

Driven by a growing understanding that knowledge is
mostly intangible, difficult to hold on to, and usually a

product of collective thought, knowledge management sys-
tems (KMS) become an interest to many research groups
and organizations. Often, moderating and intervening vari-
ables play a significant role in KMS upon correlating them
with business performance outcomes. The dynamic, evolu-
tionary nature of knowledge management calls for a system
architecture that anticipates change and that fosters the
systematic injection of upgraded systems, sub-systems
and components. For example, one scheme of knowledge
management in software engineering support is to establish
an orderly combination of related parts and sub-systems,
and an outline of knowledge organizations.

We recognize that knowledge relevant in software engi-
neering and technology innovation “does not simply exist —
people create it (Malhotra, 2001).” A systematic plan of
knowledge management can help people do better through
its impact on knowledge acquisition and maintenance if it
necessarily addresses the following issues:

o A systematic account of existence of knowledge — “What
‘exists’ is that which can be represented (Malhotra,
2001).” When the knowledge about a domain is repre-
sented in a declarative language, the set of objects that
can be represented, called the universe of discourse,
must be clearly identified.

o An explicit and formal specification — This element con-
cerns how to represent the objects, concepts and entities
that are assumed to exist in area of interest and the rela-
tionships that forms the basis of knowledge representa-
tion. For example, we can describe knowledge in terms
of ontology by defining a set of representational terms
of processes. These definitions would associate the
names of entities in the universe of discourse, with for-
mal axioms for their interpretations.

o A hierarchical structure of knowledge — Suitable structures
of knowledge representation include those constructs
that organize relativities about data, information, and
knowledge by sub-categorizing them according to their

SES Processes Exploration Evaluation Execution
- Idea exploration, -Feasibility study - Detailed planning and
Key generation and - Risk definition and tracking
. . e . -Implementing, and
Actions capturing mitigation testing
- High level planning -Project planning -Maintaining and
and estimation upgrading
- Competitiveness -Cost, risk - Team capability and
Knowledge | - Technical trends - Technique feasibility, experiences
Features - State of Art a“d‘rﬂ‘ab‘l}ty -Technical supports,
—Fundmg, equ1pment, _ COntraCtS and
facility
procedures
Knowledge | O .. (o 6._— -—@" § ‘ €© O
Models ‘ M 'y.@——— —&> O

Fig. 2. Knowledge management in a multi-phased software innovation process.



1498

essential qualities in heterogeneous forms that accommo-
date both the static and dynamic features of knowledge
management in spatial and temporal domains.

o A set of agents that share the knowledge — A good knowl-
edge management scheme should be able to communi-
cate about a domain of discourse without necessarily
operating on a globally shared theory. For example,
an agent (a software entity) is committed to ontology
of a specific domain if its observable actions are consis-
tent with the definitions in the ontology. The idea of
ontological commitment is based on the clearly defined
knowledge-level perspective.

3. Three-tier scheme of knowledge management for SES
and innovation

3.1. A notion of continuous improvement process

We take the notion of continuous improvement and devel-
opment iterations as the main vehicle to carry out the plan-
ning, executing, evaluating, and improving cycles of an
software innovation process. Built on a collaborative orga-
nizational structure, the process for qualitative introduc-
tion of software innovations takes the following steps:

1. First, identify a set of theoretic concepts (containing
important innovations in principle) that is conducted
by an innovation exploration team according to their
knowledge level. An intellectual investigation of the
ideas and their trends in development is conducted.
The outcome will be a set of technology briefs or
research reports.

2. Second, a set of key concepts is chosen that represents
the topic area or issues that need to be evaluated. The
feasibility of the techniques and the theoretic founda-
tions of the innovation is studied for verifications of
the feasibility and potential applicability accordingly.

3. Third, experiments are conducted (including prototyp-
ing) to justify the applicability. The work will lead to a
new software package created to implement and test
the innovative idea and technological feasibility.

Tasks involved in these steps can be further decomposed
into functional blocks as shown in Fig. 3.

It is noted that knowledge required for these three steps
are quite distinction in terms of the related domain of
expertise. It is hard to have a common knowledge reposi-
tory (which may refer to human experts) to possess the
knowledge necessary for all these areas, for example, con-
sidering the knowledge gaps among the developers, sup-
porters, and operators of an enterprise software system.

3.2. A three-tier software engineering support structure

It is apparent that there is a requirement for a mixture of
technical expertise and qualifications for development and
transition of software innovations. Organizational models
are essential to knowledge management in these processes,
as it is well said, ““Organizational models set context (Mal-
hotra, 2001).” The characteristics of software engineering
support and innovation process calls for a strict and con-
servative scheme of knowledge management at different
levels of the technological domain and practice. By clearly
understanding the linkages between the process steps and
identifying critical knowledge sources helps to establish
an overall taxonomy for the required knowledge manage-
ment domain and levels.

Based on the above notion, we see a need for a three
level structure of knowledge management for software
engineering support and innovation in corresponding to
the three processes above. The three knowledge manage-
ment levels for software innovation thus can be defined as:

1. The Exploration Level
2. The Evaluation Level
3. The Execution Level

It is apparent that tasks for the three levels of knowledge
management are to be carried out in parallel to the three
processes of a software innovation process. That is to
say, the software engineering process and corresponding
knowledge management structure is organized in a three-
tier parallel structure as shown in Fig. 4. Naturally, all
these levels should keep close interactions with the

Theoretic Concep

Research Reports / ?echnolo

Briefs

]—’ Evaluation and Assessments |‘—| Proof-of-concept Prototypes

I

Specifications, Design, Development, and Integration I

miﬁgtance and Deploymenﬂ

-nance, Improvement, and Upd-
|

Fig. 3. Diagram of software system innovation processes.



7/ J”’»’ﬁ‘/:”

0TS

Exploration} Evaluation

Knowledge Manageme

Fig. 4. A parallel process of the three-tier knowledge management and
SES processes.

end-users (operators, systems engineers, and administra-
tors) at every stage of the software innovation and technol-
ogy transition processes.

Tasks of knowledge management at these levels can be
allocated as follows:

e The Exploration level is tasked to continually observe
the technological trends, develop plans for software
innovation and improvement, and provide subject mat-
ter expertise.

e The FEvaluation level is tasked to provide a feasibility
report and software product specifications for imple-
menting and demonstrating the technical innovations.

e The Execution level is tasked to develop the software
prototype, test and collect feedbacks from field opera-
tion, and conduct trouble shooting, version tracking,
and transition scheduling.

The three-tier knowledge management scheme allows
knowledge to be shared easily. It consequently enables more
collaborative software engineering support and executions.
The emergence of intelligent, agent-based, adaptive soft-
ware can greatly improve capabilities at the operational
level by providing decision support for both planning and
execution. Intelligent agents that continuously monitor
the events in the environment can assist SES operations
in providing information for planners to conduct market

Knowledae Manaaement

Design

Development est pdate

Software Development and Innovation processes

Fig. 5. Knowledge management efforts needed at different stages of
software development and innovation.

analysis, asset scheduling, logistics, communications, and
coordination with different departments within the organi-
zation. We emphasize the coupling of the software engineer-
ing processes and the knowledge management tasks, as well
as the roles of people in making the connections between
software innovation and operational stability. Knowledge
relevant to each of these steps are abstracted, structured,
and clustered in a suitable manner that facilitate its
understanding, verification, validation, maintenance, man-
agement, testing, and interoperability. Fig. 5 shows the
relative knowledge management effort needed at each level
of the software development and innovation process.

We discuss the practical aspects of the three-tier knowl-
edge management scheme for software engineering support
and innovation in next section.

4. Practice of three-tier knowledge management in SES
and innovation

4.1. Organizational structure of knowledge management
in SES

The Software Engineering and Support (SES) project
underway in our distributed cooperative setting is orga-
nized in line with the three-tier knowledge management
structure. The SES managerial team establishes the specifi-
cations to acquire and nurture knowledge necessary for
executing complex engineering functions and innovation
(Table 1).

The SES innovation team closely monitors activities
within the knowledge management domains and identify
changes in the underlying hardware and software infra-
structure which may impact the operation and perfor-
mance of the organization’s applications/tools under the
purview of the SES program. The team is committed to
proactively seeking out and recommending candidate soft-
ware engineering projects for research and demonstration
to the user community. As infrastructure changes are iden-
tified, the team reviews any impact assessments and formu-
lates a recommended test approach to minimize risk to the
program.

4.2. Coupling the SES processes and knowledge management
activities

4.2.1. Knowledge management at exploration level

As an enterprise’s business evolves and matures, it is
expected that the software applications and tools will also
evolve to sustain, enhance, and optimize the capabilities,
as well as effect disciplined changes supporting business
requirements. The SES team recognizes that an Evolution-
ary Life-Cycle Model (Fig. 6) fits well for these purposes.

The Evolutionary Life-Cycle Model is an iterative
approach and thus has multiple cycles from require-
ments through system deployment. The number of itera-
tions may vary based on schedule and operational needs
or based on the depth and understanding of system



Table 1

Roles, responsibilities, and authority in SES process

Role

Knowledge management responsibilities

Systems Engineering (SE)

Software Development (SW)

Test

Quality Assurance (QA)

Configuration Management

(CM)

Data Management (DM)

Process Group

Develops and/or manages system-level requirements, requirements analysis, interface identification, management, and

control, requirements traceability, Technical Performance Measures (TPMs), requirements allocation to hardware and
software, system architecture, concept of operations, interface engineering, performance analysis, specialty engineering,
integrated logistics support, models and simulations, and trade studies, and verification and validation

Establishes and maintains the architectural design, detailed design, implementation, and unit test of software components
per design and implementation standards. Develops or supports the development of user documentation. Establishes and
maintains Software Data Files (SDFs)

Establishes and maintains test plans, test cases, and test procedures, integrates components into an operational system,
conducts formal qualification tests, documents test results, and analyzes performance. Establishes and maintains Test
Data Files (TDFs)

Ensures activities are conducted and products are produced in accordance with the contract, organizational policies,
standards, and the defined process. Ensures quality products are delivered. QA retains an independent reporting chain to
the division. A SES Mission Assurance Plan (MAP) defines the approach for QA activities

Manages configuration identification, configuration control, change management, configuration status accounting, and
configuration audits of development artifacts. A SES Configuration Management Plan (CMP) defines the approach for
CM activities

Manages control, receipt, delivery, distribution, and tracking of both deliverable and non-deliverable documents and
records. A SES Data Management Plan (DMP) defines the approach for DM activities

Defines, oversees, and improves software development process assets, such as standards, procedures, templates, forms,
tools, and the defined process tailored from the organizations standard process. Responsible for interfacing with the
division Engineering Process Group (EPG)

requirements. As with any of the Life-Cycle Models, the
Evolutionary Model can be tailored to meet the needs of
the program, such as unique contractual requirements.
For example, the Evolutionary Life-Cycle Model can be
tailored to reflect the Spiral Model through the introduc-
tion of risk reduction measures such as fast prototyping.
This model is better suited for larger development activities
or where risk is inherent in the development.

The Evolutionary Life-Cycle Model calls for closely
monitoring activities within the software engineering pro-
cesses at the exploration level to identify changes in the
underlying hardware and software infrastructure, which
may impact the operation and performance of SES applica-
tions. As infrastructure changes are identified, the SES
team reviews any impact assessments and formulates a rec-
ommended test approach to include the amount of testing,
minimizing risk to the program. During the planning stages
of any significant software development effort, both system
and software engineering engage in a series of one or more
concept exploration cycles to identify system and software
level requirements. During concept exploration, risks are
analyzed to determine whether a plan-driven or an agile
development methodology will be implemented. When nec-
essary, information used for this analysis is derived from
prototyping, data collection, and other data analysis
activities.

4.2.2. Knowledge management at evaluation level

The SES process analyzes the system requirements
allocated to software to identify the necessary software
functional capabilities, performance requirements, control

requirements, design constraints, and interface require-
ments. Additional requirements, i.e., derived requirements,
are defined and documented as needed to complete the
software requirements level of abstraction, e.g., to address
topics such as user interfaces, safety, and security. Software
requirements analysis develops a comprehensive set of
specifications that serve as the basis for software develop-
ment.

Knowledge maintained and managed in the evaluation
level include

e Creating a Software Development Plan (SDP) to define
the approach for developing, integrating, maintaining,
and/or supporting software. This plan establishes the
common approach to be employed by all software devel-
opment groups in the program, including sub-contrac-
tors. This plan is used as the basis for managing
software development activities during all life cycle
phases of the program, and applies to newly developed,
modified, reused, and acquired software. This plan is
compliant with contract requirements, the Policy &
Requirements Manual (PRM), and the Quality Manage-
ment System (QMS).

e Updating the SDP due to changes in the contract, cus-
tomer direction, program scope, requirements, available
and estimated resources, organizational policies or pro-
cesses, or when actual measurements vary significantly
from the plan. Plans are reviewed for update at least
annually and revised as required, to ensure consistency
with the PRM and other program plans. More frequent
reviews and updates are performed as necessary to



920 Project Management

941

Configuration| Engineenng
Management| Environment

020
Integrabed
Team
Management
931 931
Requimments Requirements
Development Development Developmant
E 932 E 932 E 932
E Design Design £ Design
& o33 » g 933 P & o1
E implementation| & & | mplementation| | 3 E implementetion|  §| 3
Bx 94 [855E Bz 94 (8% B 94 [BFKE
2 inisgration Qﬁ S g‘g ntegration 2% 2% 2| inisgution ﬁg 3
£ > 8 £ > E > B
g 935 o g 935 d B Q35 a
S| Venfication® =| Verfication™ E_ Verflication™
& 951 & 951 & a51
Accaptance Accaptance Acceptanca
952 . 952 952
Deployment Deployment Deployment
-+ Number of cycles vanies with specific project needs -
*Yorificalion apphes across the entire Ii (]

942

Quality Praducts

Measﬂu.rgrlarﬂ Decision | Causal | Project Mol;rtging Nonconforming| Packaging,

949

Handling,
Storage, and

Transporization

Fig. 6. An adopted SES and innovation evolutionary life-cycle model.

ensure plans are current and useful. Updates are subject
to the configuration and change management process
defined in the SES Configuration Management Plan
(CMP).

e Evaluating the risks of performing an abbreviated test,
and provide appropriate software specification with a
recommended test approach.

e Developing an architectural design to implement the
approved software requirements and provide a sound
foundation for software product design.

The software requirements specifications and interface
requirements specifications are reviewed by all affected
organizations, including system engineering, test, and qual-
ity assurance. The specifications are reviewed for under-
standability, feasibility, consistency, completeness, and
testability. Reviews are also performed with customer
and user representatives to validate their needs and make
sure that expectations are clearly identified, understood,
and prioritized. Knowledge entities in the evaluation level
are present in the SES software development resources.
An excerption of the entries is shown in Table 2.

4.2.3. Knowledge management at execution level

The software development process should adhere to the
guidance provided in the specification document, and is exe-
cuted in conjunction with a variety of development activi-
ties in response to a range of events. The coupling of
software development processes and the knowledge man-
agement activities at the execution level includes documen-

tation of the software development and test results in the
Software Production Documents and Test Reports, and
place the data under configuration management control.

o The objective of Software Detailed Design activity is to
complete the design of each software product or com-
ponent identified in the approved software architecture.
There are two design activities for each product: com-
pleting the detailed design of the interfaces and parti-
tioning the product into software units. The software
product design is reviewed by all affected organizations,
typically in a series of incremental reviews. The design
is reviewed for understandability, feasibility, consis-
tency, completeness, correctness, and conformance to
standards. Software testing engineers enter any identi-
fied problems in requirements, architecture, or design
in the program’s problem reporting and tracking
system.

e The Software Implementation and Unit Test activity
establishes and maintains the software code baselines
in the approved software architecture and as defined
by the product design. The principal activities are: refin-
ing the partitioning the product design into units, devel-
oping the unit test plan, implementing the units in
accordance with the programming standards, and exe-
cuting the unit test plan. The responsible engineers
develop the code using the program-specified tools and
standards. When the code compiles correctly, the engi-
neers execute the unit test plan and verifies that the
expected results are obtained.



Table 2
SES software development resource management (excerpt)

Tool

Application

PCTR

e-Toolkit and PAL

Lessons Learned Database

Self Assessment Tool (SAT)

Risk Manager’s Assistant

Software Development Plan Template (SM 921.3)

Software Change Request Database

Wiki Repository

JDeveloper or Eclipse

Java 2 Standard Edition Java Development Kit (J2SE JDK) 1.3
Office of Cost Estimation and Risk Analysis (OCERA) Code Counter
McCabe

Policy Compliance and Tailoring for the Defined Process
Organizational Process Assets Repositories
Organizational Repository for Lessons Learned

SEI CMMI Self Assessment

Risk Management

Software Development Plan Development

Change Management

Requirements Traceability

Design Modeling, Debugger, Graphical User Interface (GUI) Builder
Compiler

Code Counter

Cyclomatic Complexity

e The Software Integration activity integrates software
units into builds to continue developmental software
testing. Software builds are typically modes or major
functional elements of the system. This activity results
in a sequence of distinct builds, each with defined capa-
bility to accomplish development life-cycle objectives.
The sequence and content of builds are chosen to miti-
gate risks and provide needed capability. The principal
objective of the first build is typically to expose any
problems or risk factors in the integration environment
and procedures. Subsequent builds are chosen to expose
any critical risks related to the software design. The final
build adds very little new functionality, but it is devoted
to any updates related to requirements changes and soft-
ware updates.

Knowledge management at the execution level also
involves the following tasks:

e Document software build and installation instructions
in each application Software Version Description
(SVD). These instructions will provide sufficient detail
so that system administrators will be able to build and
deploy the applications to the appropriate environment.
An SVD will be provided with each software delivery.

e Prepare and maintain operator trouble-shooting guide.
This guide will provide operators and helpdesk person-
nel with step-by-step instructions on resolving software
operation and connectivity problems.

e Work with the IPT (Integrated Product Teams) to pre-
pare training materials to aid users, testers, and other
organizational units in the proper use of software, iden-
tify additional training materials necessary to support
the installation, configuration, and monitoring the soft-
ware applications, and update these materials with each
major software release to reflect changes in application
features and functionality.

The right metrics for measuring the success need to be
carefully selected to ascertain a knowledge management
scheme accomplishes what the organization needs to accom-

plish. An important precursor to selecting right metrics for
measurement of success is to examine whether the goal is
reached. Success of knowledge management should be mea-
sured in combination of knowledge quantity (count of the
number of axioms or assertions entered and validated per
unit time) and knowledge quality (how accurate the error-
free of the axioms and assertions). The process includes
the adoption of commonly accepted software standards.

Depending upon the build content or customer direc-
tion, some technical reviews may be formal (i.e. a scheduled
meeting), informal (i.e., via email or Wiki), or not required
at all. Procedures for preparing and conducting Technical
Reviews are documented in the SPM. The Verification
and validation activities occur throughout the program
life-cycle to ensure the delivered product meets require-
ments and customer and user needs. Products to be verified
and the verification method to use are identified in Table 3.
The types and extent of validation to use ensures products
meet customer and end-user needs and requirements. The
detailed schedule for verifications and validations of major
product releases are documented at the same time.

The following software documents carry the contents
important to knowledge management at both the evalua-
tion and execution levels:

1. Technical Data Packages (TDPs) capture software
development and test artifacts in a centralized location.
TDPs are maintained electronically to the maximum
extent possible via the SES Electronic Project Folders.
TDPs provide customers, managers, and relevant stake-
holders with visibility into software development and
test status and are the principal working logs for soft-
ware developers and testers. Each Configuration Item
(CI) is required to have at least one TDP that may be
further decomposed into component and/or unit level
TDPs. For different builds or releases, create new TDPs
or expand existing TDPs. The TDPs are reviewed peri-
odically by project managers to ensure they are main-
tained and kept up-to-date. The TDPs are randomly
audited by QA to ensure compliance with policies,
plans, and the defined process.



Table 3
SES knowledge management for product validation (excerpt)

Product Knowledge management for validation

Requirements Technical reviews to ensure the customer and users review the requirements. Customer and user participation in technical working
groups and simulations and models. Requirements are also validated against the customer/user requirements to ensure they correctly
reflect the customer and users needs

Design Technical reviews to ensure the customer and users review the design. Incremental demonstrations of the prototype to the customer
and users to obtain feedback, including delivery of prototypes to the customer and users for more thorough review

Implementation Participation in code walkthroughs (not peer reviews, since the customer and user are not “peers’)

Test Peer reviews to ensure system-level tests are derived from customer needs (i.e., Concept of Operations (CONOPS)). Acceptance tests

User Documents

Delivery of draft versions to the customers and users for initial feedback

2. The Software Data File (SDF) is the software develop-
ment organization’s means of capturing software devel-
opment related knowledge artifacts in a centralized
repository. The SDF is established during the require-
ments phase and is maintained throughout the life of
the program. The SDF virtually or physically contains
the artifacts identified in Table 4.

3. The Test Data File (TDF) is the test organization’s
means of capturing test related artifacts (excluding unit
test) in a centralized repository. The TDF is established
during the test phase and is maintained throughout the
life of the program. The TDF virtually or physically
contains the artifacts identified.

4.3. Tools and mechanisms for three-tier knowledge
management in SES

The whole process of three-tier knowledge management
for software innovation can be benefit greatly from auto-
matic tool support (Lindvall et al., 2001). A trend in
knowledge management tools today is to enable distributed
teams of subject matter experts (SMEs) to enter and mod-

Table 4
Knowledge management in software data file (SDF) contents (excerpt)

ify knowledge directly, easily, and without the need for spe-
cialized training in knowledge representation, acquisition,
and manipulation.

Most of the tools useful for carrying out the knowledge
management tasks in SES can be categorized according to
the flows of information and knowledge, from one level of
management to the next, from one worker to the other, and
between the client and developer. Web-based collaborative
software tool suites are the most common products used to
support SES knowledge management. Fig. 7 illustrates the
linkage by a construct of knowledge map to disclose data,
information, and knowledge assets of the various roles
involved in the software engineering support and knowl-
edge management processes.

It is seen from the above structure that much knowledge
worker activities deal with keeping multiple instances of
similar (and different) processes with multiple sources of
active information in-flight at the same time. Effective man-
agement mechanisms need to be equally adapted at differ-
ent information and knowledge management levels as
well as process execution and performance measurement
phases. For example, a software requirement is developed
using the use case analysis methodology, a software

Section Purpose

Cover Sheet

A cover sheet for each build or release of software that includes a high level description of the CI, component, or unit name, the

responsible engineer, and due date and date complete columns for each section of the SDF. As each section of the SDF is
completed, the cover sheet is updated and signed off to indicate development progress

Requirements List of software requirements applicable to the CI, component, or unit name. Include either copies of the applicable requirements
or pointers to the applicable requirements. Requirements Traceability Matrix showing requirements applicable to the CI,
component, or unit name

Design Design diagrams, design documents, interface descriptions, and/or threads and use cases applicable to the CI, component, or unit
name

Implementation Location of the source code, make files, build scripts, and executables, preferably from a controlled CM library system, applicable
to the CI, component, or unit name

Test Unit test plans, test cases, procedures, and test results indicating pass or fail for the CI, component, or unit name. Integration test

and subsequent tests are stored in the TDF, not the SDF

Problem Reports

Copies of each PR may be included

Reviews and
Audits

conformances from audits

Notes

List of problem reports submitted against the CI, component, or unit name which includes the status of each problem report.

Review material (presentations) and review results (agendas, minutes, and action items) from requirements, design,
implementation, and test peer reviews, PDR and CDR technical reviews, management reviews, technical working groups, and non-

Additional information deemed relevant to the CI, component, or unit name which is useful to developers, maintainers, or

reviewers, such as trade studies, key design decisions, technical performance measurements, engineering notes, Interoffice
Correspondences (I0Cs), metrics reports, deviations and waivers, turnover memos, key e-mails, etc.




Operational Data Stores

Data Warehouse Tools

Web Portal

Analytical Tools

Software
Engineering

Knowledge
Management

Index and search

Collaboration Tools

Taxonomy & Classification

Document Authoring & Records

Fig. 7. Web-based knowledge management tools (conceptual).

requirement analysis is performed using a storyboarding
approach as a form of scenario-based requirements elicita-
tion, and a software design is performed using the object-
oriented design methodology. Each of these mechanisms
is associated with a rich set of knowledge management
tools and facilities.

5. Conclusion

Knowledge management is a sound field with real bene-
fits such as reduced training time for new employees,
improved decision making and better operational effi-
ciency. However, it is difficult to get it done right (Malho-
tra, 2004). One misconception about knowledge
management is that all it is needed is about technology.
What is the best method for capturing worker knowledge?
Usually people begin a knowledge management project by
focusing on the technology needs, whether they want a
database or a portal. Technology can help capture some
of the information but it is not the ultimate answer. The
key is the people and the process. The one-size-fits-all men-
tality, coupled with the tendency to focus on technology
rather than people and process, has obscured the real ben-
efits that a good knowledge management scheme can bring.
That is to say, technologies such as some software tools
alone cannot solve the knowledge acquisition problem
entirely. To have an effective knowledge management, it
is necessary to adopt a systematic scheme of planning, stip-
ulating, and distributing the knowledge management tasks
and activities. This is a reason that those who have success-
fully tackled knowledge management projects have taken a
systematic approach. The three-tier approach discussed in
this paper treats the people and process as central pieces
of the effort and addresses the relevant issues accordingly.

We presented a systematic plan for introducing technol-
ogy innovation to software systems in this paper. We rec-
ognize that knowledge is broader, deeper, and richer than
data or information. It is a mix of experience, value, con-
textual information, and expert insight that provides a
framework for evaluating and incorporating new experi-
ences and information. Our three-tier Knowledge Manage-
ment scheme for Software Innovation is a systematic plan
of action for bridging the technical and operational commu-
nities. The objectives of the approach is to keep a balance

among the factors of (1) smoothly and timely transforming
legacy systems to updated, innovative, and modern sys-
tems, (2) maintaining continual, un-interrupted operation
of the software system, (3) minimizing software defect inci-
dents, and (4) reducing cost or keeping software mainte-
nance and innovation at a controllable level of cost. By
identifying needs for layered knowledge management, the
SES team emphasizes the importance of using the three-tier
scheme to wring out potential new capabilities with thor-
oughly tested applications in a secured operational envi-
ronment prior to fielding. We believe that it is an
effective means, though not necessary the only means, for
timely introducing technology innovations into enterprise
software systems.

References

Alavi, M., Leidner, D.E., 2001. Review: Knowledge management and
knowledge management systems: Conceptual foundations and
research issues. MIS Quarterly 25 (1), 107-136.

Basili, V., Costa, P., Lindvall, M., 2001. An experience management
system for a software engineering research organization. Fraunhofer
Center for Experimental Software Engineering, Maryland.

Basili, V.R., Lindvall, M., Costa, P., 2002. Implementing the experience
factory concepts as a set of experience bases. In: Proceedings of 13th
International Conference on Software Engineering & Knowledge
Engineering, pp. 102-109.

Brossler, P., 1999. Knowledge management at a software engineering
company — an experience report. Workshop on Learning Software
Organizations, LSO’99, pp. 163-170.

Brown, R.B., Woodland, M.J., 1999. Managing knowledge wisely: A case
study in organizational behavior. Journal of Applied Management
Studies 8 (2), 175-198.

Churchman, C.W., 1971. The Design of Inquiring Systems: Basic Concepts
of Systems and Organizations. Basic Books, Inc., New York, NY.
Davenport, T., Prusak, L., 1998. Working Knowledge. Harvard Business

School Press, Boston, MA.

Hoopes, D.G., Postrel, S., 1999. Shared knowledge, glitches and product
development performance. Strategic Management Journal 20, 837-865.

Huang, C., Kuo, S., Lyu, M.R., Lo, J., 2000. Quantitative software
reliability modeling from testing to operation. Proceedings of the
Eleventh International Symposium on Software Reliability Engineer-
ing, October 8-10. IEEE Computer Society Press, pp. 72-82.

Jeski, D.R., 2000. Estimating the failure rate of evolving software systems.
Proceedings of the Eleventh International Symposium on Software
Reliability Engineering, October 8-10. IEEE Computer Society Press,
pp. 52-61.

Lindvall, M., Rus, 1., Jammalamadaka, R., Thakker, R., 2001. Software
tools for knowledge management. In: Proceedings of DACS State-of-
the-Art Report.



Malhotra, Y., 1997. Knowledge management in inquiring organizations.
In: Proceedings of the Americas Conference in Information Systems,
pp- 293-295.

Malhotra, Y. (Ed.), 2001. Knowledge Management and Business Model
Innovation. Idea Group Publishing, Hershey: PA.

Malhotra, Y., 2004. Why knowledge management systems fail? Enablers
and constraints of knowledge management in human enterprises. In:
Koenig, Michael E.D., Kanti Srikantaiah, T. (Eds.), Knowledge
Management Lessons Learned: What Works and What Doesn’t.
Information Today Inc., pp. 87-112.

Mason, R.O., Mitroff, L.I., 1973. A program for research on management
information systems. Management Science 19 (5), 475-487.

McDermot, R., 1999. Why information technology inspired but cannot
deliver knowledge management. Management Review 5 (1), 103-117.

Nonaka, I., Takeuchi, H., 1995. The Knowledge Creating Company.
Oxford University Press, New York.

Russell Records, L., 2005. The Fusion of Process and Knowledge
Management, BPTrends. September. www.bptrends.com (as of
December 22, 2005).

Tiwana, A., 2000. The Knowledge Management Toolkit: Orchestrating IT,
Strategy, and Knowledge Platforms, second ed. Prentice Hall, USA.

Wigg, K., 1993. Knowledge Management Foundations: Thinking About
Thinking — How People and Organizations Create, Represent, and Use
Knowledge. Schema Press, Arlington.



	University of Nebraska at Omaha
	DigitalCommons@UNO
	9-2007

	A three-tier knowledge management scheme for software engineering support and innovation
	Richard Corbin
	Christopher B. Dunbar
	Qiuming Zhu
	Recommended Citation


	tmp.1461880084.pdf.xKI4V

