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A trend pattern assessment approach to microarray gene
expression profiling data analysis
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a

b
Department of Computer Science, University of Nebraska at Omaha, United States
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Abstract

We study the problem of how to assess the reliability of a statistical measurement on data set containing unknown quantity of noises,
inconsistencies, and outliers. A practical approach that analyzes the dynamical patterns (trends) of the statistical measurements through
a sequential extreme-boundary-points (EBP) weed-out process is explored. We categorize the weed-out trend patterns (WOTP) and
examine their relation to the reliability of the measurement. The approach is applied to the processes of extracting genes that are pre-
dictive to BCL2 translocations and to clinical survival outcomes of diffuse large B-cell lymphoma (DLBCL) from DNA Microarray gene
expression profiling data sets. Fisher’s Discriminate Criterion (FDC) is used as a statistical measurement in the processes. It is found that
the weed-out trend analysis (WOTA) approach is effective for qualitatively assessing the statistics-based measurements in the experimen-
tations conducted.

Keywords: Gene expression profiling; Microarray data analysis; Boundary points; Dynamical patterns; Trend evaluations; Fisher’s discriminate criterion

1. Introduction

The accuracy and reliability of the statistics extracted
from multidimensional datasets possibly contaminated
with noises, uncertainties, outliers, and measurement errors
is an important issue in pattern analysis and data mining
researches (Arning et al., 1996; Knorr and Ng, 1999;
Yu et al., 1999; Knorr et al., 2000; Breunig et al., 2000;
Ramaswamy et al., 2000). Here, ‘‘accuracy’’ means that
the statistical measurement fits to (or reveals) the underly-
ing distribution of the dataset, and ‘‘reliability’’ means that
the measurement is not significantly affected by small per-

turbations (adding, changing, or removing small percent
of measurements) of samples to the dataset.

Most work on this subject has been conducted in the
field of robust statistics previously (Huber, 1981). The
methods usually make assumptions about the data distri-
butions, the statistical distribution parameters, and the
types or numbers of the irregularly distributed boundary
points (Huber, 1981). Robust estimates are consistent esti-
mates of the unknown parameters at the idealized model.
Because of robustness, they will not drift too far away if
the model is approximately true. However, the incongru-
ence between the relatively small number of data samples
collected in many practice problems and the high dimen-
sions of the data set, such as the Microarray gene expres-
sion profiles, often makes the robust statistics models
hard to be justified (the so-called curse of dimension).
Moreover, the robust statistical measurements are easily
biased and distorted by the uncertainty and inaccuracy of

Abbreviations: extreme-boundary-points, EBP; weed-out trend pattern,
WOTP; weed-out trend analysis, WOTA; diffuse large B-cell lymphoma,
DLBCL; Fisher’s discriminate criterion, FDC.
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the sample values, the inexact categorization of the speci-
men, and irregularity of the sample distributions.

While robust statistics and error-cleaning techniques
have been in the main streams of study in statistics, the
assessment of the accuracy and reliability of statistical mea-
surement has always been a popular problem of explora-
tion (Yu et al., 1999; Maddala and Yin, 1997). There are
many evaluation methods that have been suggested and
applied in practice. The ‘‘t-test’’ and ‘‘p-value’’ computa-
tion are two most conventional, meanwhile computation-
ally expensive, quantitative measurements (Dudoit et al.,
2000; Sellke et al., 2001). Though the t-test and p-value
approaches have high computational cost, no other quicker
and more effective methods were seen yet.

Methods that try to clean up the dataset before applying
the statistical measurement have been explored extensively.
For example, many outlier detection methods and algo-
rithms have been proposed and studied (Brown et al.,
2000; Knorr et al., 2000; Yang and Zhang, 2002). The
majority of these methods are based on certain discrimi-
nant approaches that calculate the distances (Euclidean
distance, Mahalanobis distance, or some others) of the
data points to their cluster means and eliminate the points
that are nr (often n = 3) from the means, where r is the
standard deviation. The method has an essential fault
because it bases its evaluation on the statistical measures
(means and variances) that are the objects of the verifica-
tion themselves. Moreover, it was pointed out by Huber
that a two-step procedure (first clean the data by applying
some rule for outlier rejection, then use classical estimation
and testing procedures on the remainder) may be more dif-
ficult to work out than that of a straight robust procedure
(Huber, 1981).

In this paper, we study an approach that evaluates the
dynamical trends of the statistical measurements through
a sequential extreme-boundary-point (EBP) weeding-out
process. We found that an analysis of the trend of the sta-
tistical measurements via a focus on the changes of the
EBPs of a dataset can provide a simple and quick assess-
ment of the accuracy and reliability of the measurement
to certain extend. Specifically, we analyze the perturbations
of the statistical measurements and the trend patterns with
respect to the variations of the boundary settings to assess
the reliability of the measurement. We apply the Fisher’s
Discriminate Criterion to the processes of identifying genes
that are predictive to BCL2 translocations and to clinical
survival outcomes for diffuse large B-cell lymphoma from
the DNA Microarray gene expression profiling datasets.
The reliability of the FDC measurement on the data set
is then evaluated using our weed-out trend analysis
(WOTA) approach. Genes with higher reliability measure-
ment according to the weed-out trend pattern analysis are
extracted as the outcome predictors. The results are
compared with gene set extracted using other methods.
It is seen that the WOTA approach is effective in identify-
ing a more accurate set of genes in the experiments
conducted.

The paper is organized as follows. In Section 2, the
sequential EBP weed-out and dynamical trend pattern
analysis approach for qualitative evaluation of statistical
measurement is described. Section 3 presents the applica-
tion of the approach to Microarray data analysis using
FDC measurement. The results of the experimentation on
WOTA are presented and examined in Section 4. Section
5 gives conclusion remarks.

2. The WOTA approach

2.1. Measurement reliability qm(X)

Let Wt(X) be the underlying (real) statistical distribution
(the model) of a dataset X (where the subscript ‘‘t’’ means
‘‘true’’). Assuming X 0 is a dataset that fits exactly to the
Wt(X) and letting X be a set of data points within the data-
set of X 0 which may or may not fit into the distribution
Wt(X), we have

X ¼ X 0 [ X or X ¼ X 0 \ X;

where the cardinality jXj < jX 0j.
An ideal statistical measurement is a function Wi(X),

for i = 1,2, . . . , such that limX!U Wi(X) = Wt(X), where U
denotes a null set (the subscript ‘‘i’’ means the ith ideal mea-
surement on X). Based on our assumption, we will then
have Wi(X

0) = Wt(X).
Let q(Æ) be a reliability measurement function. A sample

reliability of dataset X is defined as

qsðX Þ ¼ #½WiðX Þ;WtðX Þ�

where # is a distance operator applied to Wi(X) and Wt(X).
Obviously, qs(X) is dependent on the dataset X within X.

Let m(X) be a statistical measurement performed on the
dataset X, and simultaneously, Wm(X) be the distribution
obtained from applying the m(X), a measurement reliabil-
ity of the m(X) can be defined as

qmðX Þ ¼ #½WmðX Þ;WtðX Þ�

The qm(X) is related to both the statistical measurement
m(X), and the sample reliability qs(X), which relates
qm(X) indirectly to the existence of set X. That is, there
are two main factors affecting the reliability of a statisti-
cal measurement, namely, (1) the fault of the measure-
ment technique itself, and (2) the fault of the sample data
set.

In this paper we focus on the measurement reliability
factor sourced on sample data set and try to assess the mea-
surement reliability through rectifications of the sample
reliability, i.e., the influence of set X. Note that the
definition of ‘‘reliability’’ is different from the definition
of ‘‘robustness.’’ As it was defined in (Huber, 1981),
‘‘robustness’’ signifies insensitivity to deviations from the
assumptions, e.g., about randomness, independence, and
distribution models, etc. The ‘‘reliability’’ signifies how
the statistical measurement is insensitive to deviations of
the sample distributions (due to the influences of outliers



and noises), i.e., the quality of the dataset. Correspond-
ingly, we deal with the problem of how the reliability of
a statistical measurement can be evaluated with respect to
the sample reliability, that is, in terms of how the set X is
deviating from the true model defined on X 0.

It is noted that the sample reliability of the dataset
is associated with a number of different factors. Some of
the factors that affect the sample reliability include:

(i) Sampling noise which is often inevitable. However,
we want to (1) assess how much and how serious
the noise affects the measurement; and (2) constrain
or limit the effect of noises to the measurement.

(ii) Data acquisition errors that include, for example,
the mislabeling of data category (labeling mistake)
and wrong placement or inclusion of irrelevant data
points.

(iii) Outliers which are a serious kind of uncertainty in
statistical measurement. An outlier could be a legiti-
mate data point – reflecting the essential nature of
the problem domain. There is no absolutely effective
way to detect and remove outliers from a dataset
without a known model of the dataset.

In general, it is hard to find one computational method
that can attenuate all these factors and result in a reliable
statistical measurement. Therefore, our intension of
research described in this paper is not to find a method that
gives a reliable statistical measurement, but to assess the
reliability of a statistical measurement by applying an ana-
lytical approach on the measurement results. Our study is
conducted on the external view rather than the internal
mechanism, of the statistical measurement.

2.2. Extreme-boundary-points (EBPs)

Let l(X) be the sample mean computed on the dataset
X, an EBP is defined as the data point xi such that

xi 2 X

and

8j; ðxj 2 X Þ ^ ðj 6¼ iÞ ) ½dðxi; lÞP dðxj; lÞ�
That is, an EBP is a sample point in dataset X such that its
distance to the mean l of X is maximum. It is also true that
the EBPs are often the noises, outliers, or sampling errors.
That is, they are more likely belonging to the members in
the perturbation set X, though it is impossible to make a
firm claim of this in many situations.

While the data points come with randomness, the EBP
usually plays a much more significant role in deviating
the statistic parameters of the data set. The proper treat-
ment of these boundary points can improve the accuracy
of statistics. Meanwhile, an analysis and assessment of
the effect of these EBPs provide means to assess the reliabil-
ity (and accuracy) of the statistics derived from the data set
externally.

The effect of EBPs on the sample mean l and sample
variance r2, two fundamental statistical measurements, of
dataset X = [x1,x2, . . . ,xn], can be quantitatively evaluated.
Let

l ¼ 1

n

Xn

i¼1

xi and r2 ¼ 1

n

Xn

i¼1

ðxi � lÞ2:

Let xk be an EBP that is dk distance away from the mean l
that is, kxk � lk = dk. The sample mean, l 0, and sample
variance, r2 0, for the dataset X 0 = X � [x1,x2, . . . ,xk�1,
xk+1, . . . ,xn], which is the dataset X with the removal of
xk, can be calculated as: (taking xk = l + dk)

l0 ¼ 1

n� 1

Xn

i¼1

xi � xk

!
¼ 1

n� 1

Xn

i¼1

xi �
1

n� 1
xk

¼ 1

n� 1

Xn

i¼1

xi �
1

n� 1
ðlþ dkÞ

¼ 1

n� 1
n

1

n

Xn

i¼1

xi

!
� 1

n� 1
ðlþ dkÞ

¼ n
n� 1

l� 1

n� 1
ðlþ dkÞ ¼ l� 1

n� 1
dk

r20 ¼ 1

n� 1

Xn

i¼1

ðxi � lÞ2 � ðxk � lÞ2
!

¼ 1

n� 1

X
ðxi � lÞ2 � 1

n� 1
ðxk � lÞ2

¼ 1

n� 1

Xn

i¼1

ðxi � lÞ2 � 1

n� 1
ðlþ dk � lÞ2

¼ 1

n� 1
n

1

n

Xn

i¼1

ðxi � lÞ2
 !

� 1

n� 1
d2

k

¼ n
n� 1

r2 � 1

n� 1
d2

k ¼ r2 � 1

n� 1
½d2

k � r2�

That is, the variations of the mean and variance with re-
spect to the removal of an EBP xk are the (n � 1)th factor
of dk and d2

k � r2, respectively. However, these quantities
neither reveal the sample reliability of the dataset X, nor
the reliability of the statistical measurements l and r2 on
the dataset X directly. It tells that the number of data
points, n, is an important factor to the magnitude of vari-
ations of the measurement with respect to the removal of
certain data points from the set.

2.3. EBP weed-out trend patterns (WOTP)

To see how a statistical measurement is less variant (i.e,
more reliable) with respect to the presence of a perturba-
tion set X in dataset X, we adopt a method that sequen-
tially weeds out some EBPs from the dataset, and assess
the trend pattern of the resulting statistical measurements.
The method is based on the principle that if a statistical
model assumption accurately reflects the true distribution
parameters of the data set, and the size of the data set is



reasonably big, then the elimination of one or a few (a
small percentage) data point should not significantly alter
the overall value of the measurement.

The WOTP approach concentrates on distinguishing
four basic pattern types (in terms of the shapes and slopes
of the curve) with respect to the measurement variations
under the varying EBP weed-out conditions (the number
of EBPs weeded out). These four basic pattern types are
defined in our research as follows:

(1) Steady patterns – The variations of the measurements
over all weed-out points are all within a certain range
that are relatively small.

(2) Monotony patterns – The variations of the measure-
ment are either positive or negative over all weed-out
cases.

(3) Conic (convex or concave) patterns – The variations
of the measurement show an up-and-down (or a
down-and-up) trend, such as a conic section, over
the process.

(4) Oscillation (wave) patterns – The variations of the
measurement show more than two up-and-down
(or down-and-up) trends over the process.

The reason that we categorize these patterns into different
types is that these mathematically disciplinary curves can
help us to better understand the weed-out trends and their
effects to statistical measurement reliability. It is also possi-
ble to define a trend coefficient j which can be used as
a threshold for further categorization of the above four
basic pattern types. More specifically, a coefficient j can
be applied to measure the swinging variations along the
sequence of data points that forming the patterns. The dif-
ference between two consequent measurement values under
the varying weed-out conditions, for example, from weed-
ing out i EBPs to i + 1 EBPs is considered in this measure-
ment, as presented in Section 3.3.

With the use of the j, the four pattern types of above
can be further divided into 11 WOTPs for a qualitative
assessment of the reliability of the corresponding statistical
measurement. These WOTPs are:

A. Under j Steady pattern – There presents as a
straight line that can be drawn in parallel to the
number of weed-out EBP axis such that no any vari-
ation of the measurements is j distance away from
this line.

B. Under j Monotonic rising pattern – If the variation
of the measurement over each case of weed-out test
is less than or equal to j, and the j is always positive
in each case, we call the pattern ‘‘Under j monotonic
rising’’.

C. Under j Monotonic dropping pattern – If the varia-
tion of the measurement over each case of weed-out
test is less than or equal to j, and the j is always neg-
ative in each case, the pattern is ‘‘Under j monoton-
ically dropping’’.

D. Under j Conic-Valley pattern – The variations of the
measurement show a down-and-up trend but no var-
iation has a magnitude greater than j in any of the
variations.

E. Under j Conic-Mountain pattern – The variations of
the measurement show an up-and-down trend but no
variation has a magnitude greater than j in any of the
variations.

F. Under j Oscillation pattern – The variations of the
measurement show more than two up-and-down (or
down-and-up) trends but no single variation is
greater than j.

G. Over j Monotonic rising pattern – If the variation of
the measurements in some cases of weed-out tests
exceed the j, and the j is always positive in each case,
we call the pattern ‘‘Over j monotonic rising’’.

H. Over j Monotonic dropping pattern – If the varia-
tions of the measurement in some cases of weed-out
tests exceed the j, and the j is always negative
in each case, the pattern is ‘‘Over j monotonically
dropping’’.

I. Over j Conic-Valley pattern – The variations of the
measurement show a down-and-up trend with some
variations having magnitude greater than j.

J. Over j Conic-Mountain pattern – The variations of
the measurement show an up-and-down trend with
some variations having magnitude greater than j.

K. Over j Oscillation pattern – The variations of the
measurement show more than two up-and-down (or
down-and-up) trends with some variations having
magnitude greater than j.

The above pattern categories give a qualitative indication
of the reliability of an associated statistical measurement
in the order from A to K. A score can be assigned to each
of these pattern categories, from A to K, with A having the
highest score and K the lowest. That is, a statistical mea-
surement showing a WOTP of category A is considered
to be a most reliable measurement. The reliability of the
measurement decreases when the resulting WOTP category
falls down the list from pattern A towards the pattern K.
Note that in many cases, only the four basic WOTPs are
needed to a rough assessment of the reliability of the statis-
tical measurement. The more detailed categorization of the
WOTP can be considered as a way to provide a more quan-
titative assessment of the statistical measurement.

Some examples of these patterns can be seen in Fig. 2. In
our research, algorithms are developed for analyzing the
EBP weed-out trend, extracting the WOTPs, and recogniz-
ing the pattern categories. The statistical measurements of
target data sets are then assessed in terms of these patterns
and the pattern parameters.

2.4. WOTA algorithm

Let m(X) be a statistical measurement function applied
to a dataset X = [x1,x2, . . . ,xn]k. Let kX denote the dataset



that has k extreme-boundary-points weeded out, that is
jkXj = n � k. The WOTA algorithm we use in our research
can be described as the following.

Algorithm – WOTA

// This algorithm extracts a WOTP from applying m(X)
on dataset X multiple times, and classifies the WOTP
into one of the 11 categories.//

Inputs:
X: Sample data set;
d: Maximum number of EBPs to be weeded out;

Outputs:
WOTP[ ]: An array that holds the WOTP values of
the m(X) measurements;
CX: A score according to the WOTP category on
dataset X.

Uses:
m(X): A statistical measurement function applied to
X;
EBP(X): A function that finds the EBP of X;
CX(P): A function that calculates according to the
WOTP patterns with the trend coefficient j.

Process:
1. WOTP[0] m(X),
2. For (k = 1 to d) do

2.1 Compute the mean lk of data set (k�1)X; // When
k = 1, k�1X = X.

2.2 EBPk EBP(k�1X); // find the EBP of k�1X and
assign it to EBPk

2.3 kX k�1X � EBPk; // kX is a dataset from k�1X

with EBPk removed.
2.4 WOTP[k] m(X � k);

3. WOTP[ ] WOTP[ ] with an application of moving
average computation;

4. CX CX(WOTP[ ]).

The WOTA algorithm of the above is only intended to give
an objective assessment of the reliability of the measure-
ment externally, with respect to the given dataset by assign-
ing the WOTP to one of the 11 categories. As pointed out
before, it is by no means intended to improve the efficiency,
accuracy, or robustness of the statistical measurement
internally. However, it can be used to complement to the
statistical measurements for selecting a better data analysis
process. We applied the method to a number of Microarray
data analyses tasks, to help make decisions on the selection
of genes that are statistically significant to the given crite-
ria. The problems, experiments, and results are presented
in the next two sections.

3. Application of WOTA to FDC for microarray data

analysis

In the following we present the application of the
WOTA approach to Fisher’s Discriminate Criterion
(FDC) for Microarray gene expression profiling data ana-

lysis. FDC (Fisher, 1936) is a well-known parametric
method for identifying data attributes and their projections
that are most likely to be separable among different classes.
It has been popularly used in recent years for identifying
genes predictive to certain biological phenomena from
DNA Microarray gene expression profiling datasets that
are differentially expressed (Brown et al., 2000). The
approach described in this paper is an attempt to find
out how to attenuate the effects of measurement
uncertainties.

3.1. On the microarray data analysis

DNA Microarray as a rapidly developing technique in
biology and biomedicine provides an effective means for
monitoring the expression levels of thousands of genes
simultaneously (Granjeaud et al., 1999; Alizadeh and Sta-
udt, 2000; Saluz et al., 2002). DNA Microarrays are used
to identify a molecular predictor of a specific translocation
and survival outcome after chemotherapy for diffuse large
B-cell lymphoma (DLBCL) (Rosenwald et al., 2002; Shipp
et al., 2002; Iqbal et al., 2004).

There were many ways discussed in literatures for iden-
tifying genes that are indicative to certain diseases or health
disorders (Zhu et al., 2004). Most methods focused on
the scoring of genes for relevance detections. General
approaches include (1) parametric methods, such as the
principal component analysis (PCA) (Oja, 1992), indepen-
dent component analysis (ICA), and separation correlation
metric (SCM), or known as the Fisher’s discrimination cri-
terion (FDC) (Fisher, 1936); and (2) non-parametric meth-
ods, such as the threshold number of misclassification
(TNoM) (Ben-Dor et al., 2000), projection pursuit regres-
sion (PPR) (Friedman and Tukey, 1974), support vector
machines (SVM) (Brown et al., 2000), neural networks,
expectation maximization (EM), etc.

However, there are number of issues that compromise
the accuracy and reliability of the statistical measurements
and analysis of the Microarray gene expression profiling
data. These issues include: (1) the existence of noise, out-
lier, and uncertainties in the sample data, (2) the imbalance
of the available number of cases in each of the disease cat-
egories, (3) the incongruence of the number of cases (data
points) versus the number of genes (the data dimensions)
to be analyzed, and (4) the inaccuracy and uncertainty of
the clinical/pathologic diagnostic characterization of the
cases.

The parametric methods make use of a set of statistical
metrics derived from the gene expression profiling dataset
under the assumption of certain statistical models. Statisti-
cal methods are usually reliable and accurate in large data
set analysis. However, the incongruence between the rela-
tively small number of data samples collected in current
practice and the large dimensions of the genes profiled
often makes the statistical models not justifiable. More-
over, the statistical measurements are easily biased and dis-
torted by the outliers resulted from noise corruptions



taking place in the data acquisition processes. Examination
of our experimentation dataset showed that those outliers
often value at a magnitude of 4–10 times away from the
normal values. These values severely deviate from the
major statistical parameters (the mean and variance values)
on the dataset that has a count of 20–40 samples.

The non-parametric methods do not rely on the assump-
tions of the statistical models and parameters. Rather, they
work toward the objectives (such as discrimination or
prediction) by applying certain non-statistical metrics or
protocols directly on the individual data samples. The
methods would be advantageous at constraining and atten-
uating the effects of outliers. However, the diversity of mea-
surement metrics and the uncertainty (which includes the
imprecision and incompleteness) of the individual data
samples often make them hard to get a consistent result
in different experimentations.

It is noted that different algorithms/evaluations often
result in different set of genes in the gene expression profile
analyses. It is therefore desirable to establish a way of
assessment of the reliability of the measurements for the
varying approaches, so that the merit of the resulting gene
sets can be better assured.

3.2. FDC for DLBCL data analysis

3.2.1. The FDC measurement
The FDC can be expressed as the following. Let x1 and

x2 be the labels of two different sample classes (e.g., surviv-
ing vs. fatal cases like in the DLBCL data set of our study).
The method is aimed at maximizing a criterion

JðW Þ ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

ð3:1Þ

where li, i = 1, 2, is the mean vector of the projection of the
data samples of classes xi in a direction W, respectively.
That is

li ¼
1

ni

X
X ewi

W T X ð3:2Þ

where X = [x1,x2, . . . ,xn] represents the gene expression
vector (expression values of an individual gene over all
sampling cases). The ni is the number of data samples in
class xi. The r2

i , i = 1, 2 is the scatter (or variance) matrix
for the projected samples of class xi in direction W,
respectively.

r2
i ¼

1

ni

X
x2xi

ðW T X � liÞ
2 ð3:3Þ

When limiting the projection vector W to the form of
[1 0 . . .], [0 1 . . .], . . . (i.e., axes of the Euclidean coordi-
nates), the criterion represents a measurement of individual
genes according to its mean and variance parameters with
respect to the original class designations. Let FDCk de-

notes such a measurement on gene gk, i.e, on vector
xk = [xk1,xk2, . . .], the criterion can then be expressed as

FDCk ¼
ðlk1 � lk2Þ

2Pn1

j¼1ðx
ð1Þ
kj � lk1Þ

2
� �.

n1 þ
Pn2

j¼1ðx
ð2Þ
kj � lk2Þ

2
� �.

n2

ð3:4Þ

where the xð1Þkj and xð2Þkj are gene expression values corre-
sponding to classes x1 and x2 respectively. The separability
of the genes with respect to the tumor outcome classes thus
can be ranked by these FDCk values. We denote the FDCk

as the FDC measurement of the gene numbered k in this
paper.

3.2.2. The measurement reliability of FDC

It was mentioned by Zhu et al. that the FDC measure-
ment alone does not provide an overall good indication
of the genes in relation to the clinic outcomes (Zhu et al.,
2004). According to the studies of Yang and Zhang
(2002), FDC is not an absolute criterion for yielding accu-
rate classifications. They pointed out that the method
should be combined with other statistical or non-statistical
correlation analyses to diminish some parametric side
effects. In Zhu et al.’s paper, a set of methods called
Cross-projection (CP) and Discrete Partition (DP) are pro-
posed to fuse with the FDC in order to diminish the side
effects of the outliers on FDC (Zhu et al., 2004). The algo-
rithmic fusion approach provides an overall better mea-
surement on the gene analysis in the experiments.

The situation with respect to the FDC measurement can
be illustrated by the following examples. The dataset we
use here comes from ‘‘The Leukemia/ Lymphoma Molecu-
lar Profiling Project’’ (LLMPP) (it is represented in Section
4.1). The data set includes 7399 genes and 240 cases, but
only 65 cases are studied here. We take a look at the gene
#2967 and #6641, and give their respective FDC measure-
ments in terms of the ranks of the measurements over a
total of 7399 genes in Table 1. It is seen that the gene
#2967 has a relative high rank (= 17) in its original FDC
measurement, while gene #6641 has a relative low rank
(=147) in its original FDC measurement. However, the
ranks change significantly when some EBPs are weeded
out of the data set. In the table, the columns of FDC-1,
FDC-2, and FDC-3 indicate the FDC measurement with
1, 2, and 3 EBPs taken out. The overall expression values
of these two genes are shown in Fig. 1. It is obvious that
the original FDC measurements do not properly reflect
the statistical characteristics of the gene expressions, that
is, the measurements are not reliable.

Table 1
FDC measurements of gene #2967 and #6641 in different test cases

Gene # FDC rank FDC-1 rank FDC-2 rank FDC-3 rank

2967 17 118 665 1322
6641 147 19 4 10



3.3. Applying WOTA to FDC measurement – algorithm

To find that how FDC is sensitive to the unreliable val-
ues in the dataset and to extract genes that are both mean-
ingful and reliable to the objectives, we experimented on
the dataset applying WOTP. The process of the computa-
tion is described as follows.

1. Preprocessing the Microarray gene expression profiling
dataset.

2. For each gene gk

Compute FDC value by using formula (3.4), where xð1Þkj

and xð2Þkj are gene expression values corresponding to
Group 0 and Group 1 respectively; and lk1, lk2 can be
calculated by using formula (3.2)
Calculate the Euclidean distance between xkj and lk by

dðxki; lkÞ ¼ ðxki � lkÞ
2 ð3:5Þ

Sort the distance in a descending order, choose first e
(e is a small number of the whole samples) cases, i.e.,
the e cases with farthest distances to the mean lk.
Re-compute the FDC values on the data set with the
removal of the e cases of EBPs, one at a time, by using
the formula (3.4), where lk1, lk2 are the new means after
the possible elimination of extreme values. Note that e
FDC values are obtained on eliminating 0,1,2,3, . . . , e
EBPs respectively. These FDC values are recorded as
elements of WOTP and kept in an array WOTP[ ].
Following the steps 2.1–2.4, we obtain the WOTP for
every gene gk.

3. Sorting the genes according to the highest FDC values
obtained in step 2, and then choose the first N genes
with both highest FDC values and WOTA score.

4. Take the cross-over fusion on the lists of the e FDC
measurement results and select a set of genes that have
high ranks on combination of the results.

In our experiment, we choose e = 15, because 15 cases is
the number about 20% of the total case of number 65,
which is close to a quarter of the dataset such that we
can have plenty of FDCs to look for WOTPs. Some typical
WOTPs of the gene sets are shows in Fig. 2a–k below. A
moving average of the FDC measurements is also show
in the figures. The j for categorize the measurements is
selected through try- and error experimentations. In the

results presented in Fig. 2, we had the value set to 0.1
which, we believe, gives us a reasonable categorization of
the trend patterns. Other j may also be selected, which will
lead to certain variations of the assessment results.

4. Experiment results and analysis

4.1. BCL2 translocation correlative gene extraction

The data set used in our experiment was derived from
‘‘The Leukemia/Lymphoma Molecular Profiling Project’’
(LLMPP) which was also used by Iqbal et al. (2004).
Among the 240 cases of DLBCL measured in gene expres-
sion profiling, 129 cases were studied for the presence of a
specific translocation involving a gene called BCL2. Iqbal
et al. mapped the BCL2 translocation data into the gene
expression defined subgroups of DLBCL. From a specific
subgroup (GCB) that was positive (+) for BCL2 transloca-
tion was combined into Group 1 as BCL2 translocation
positive cases. The negative (�) cases formed Group 0.
Group 1 contains 29 cases, whereas Group 0 has 36 cases.
These 65 cases have gene expression profiling data with
7399 clones for each case. These cases of DLBCL have
gene expression profiles determined by complementary
DNA (cDNA) Microarray technology (Rosenwald et al.,
2002). All the values in the data set are based on the value
of the expression ratio R/G (Cy3/Cy5) i.e., tumor sample to
reference standard. According to the suggestion of Yang
et al. for avoiding the data normality assumption (Dudoit
et al., 2000), we preprocessed the data set by Box-Cox
transformation and zero mean normalization (z-score).
The method transforms the response y! tk(y) where the
family of transformations indexed by k is

tkðyÞ ¼
ðyk�1Þ

k when k 6¼ 0

logðyÞ when k ¼ 0

(

For fixed y > 0, tk(y) is continuous in k. The k is chosen
by using maximum likelihood. Here, we choose to use
tkðyÞ ¼ R

G, and k = 0. After the transformation, the distribu-
tion of the data set is approximately normal distributed
(Dudoit et al., 2000).

Applying the WOTA method to the DLBCL data set,
and evaluating the trend patterns of the FDC values
through weeding out 15 EBPs, we obtained a set of 35
genes that are most reliably correlated with the BCL2

Fig. 1. Overall gene expression values of (a) Gene #2967 and (b) Gene #6641.
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Fig. 2. Selected examples of WOTP in FDC measurements of Microarray DLBCL gene expression dataset: (a) example of WOTP category A, (b) example
of WOTP category B, (c) example of WOTP category C, (d) example of WOTP category D, (e) example of WOTP category E, (f) example of WOTP
category F, (g) example of WOTP category G, (h) example of WOTP category H, (i) example of WOTP category I, (j) example of WOTP category J and
(k) example of WOTP category K.



translocation. Fig. 3 gives the visual pattern of the selected
genes, with the t(14;18) negative cases on the left and
t(14;18) positive cases on the right. To give a comparison
we also show in Fig. 4 the visual pattern of 35 genes that
have high FDC values without going through the WOTA
processes.

From both of the figures, we can clearly see that selected
genes are well divided into two groups, one performs high
(red1) to the BCL2 translocation positive cases while the

other group performs high to the BCL2 translocation neg-
ative cases. the result gene sets in two experiments are dif-
ferent, 37% of them are overlapped. This means that these
37% of the genes are more reliable than the others in terms
of the FDC measurement with respect to out WOTA. In
another study, a more quantitative result was obtained,
as described in the section below.

4.2. Results on clinical outcome prediction

Two gene expression profiling studies of DLBCL for
identifying genes predictive of clinical outcomes have been

Fig. 3. Expression profile of genes extracted using FDC measurement WOTA.

Fig. 4. Expression profile of genes having highest FDC values without WOTA.

1 For interpretation of color in figures, the reader is referred to the Web
version of this article.



reported (Shipp et al., 2002; Rosenwald et al., 2002).
Rosenwald et al. identified four functional groups of genes
that are predictive of survival and one of the groups con-
sists of genes that divide the tumor into distinct biologic
subtypes (Rosenwald et al., 2002). Shipp et al. applied
supervised learning method on an entire expression profil-
ing dataset and identified 13 individual genes that are
highly predictive to the survival outcomes (Shipp et al.,
2002). We conducted the WOTA experiments by applying
the FDC measurement on the same dataset which contains
58 DLBCL samples used by Shipp’s group (www.genome.-
wi.mit.edu/MPR/lymphoma). First, a total of 17 individual
genes were identified by applying the FDC measurement
(Fig. 5). Then, the WOTP patterns of these genes were fur-
ther studied, which leads to the selection of 9 genes in the
list that show relatively more acceptable patterns under
weed-out situations. Table 2 shows these genes along with
their WOTP category notations.

To further evaluate the quality of the result we obtained,
a simple linear discrimination as well as a quadratic dis-
crimination process (Zhu et al., 2004), is applied to the 9
genes with respect to the original dataset. Table 3 gives
the number of correctly identified clinical cases, versus
the result reported in (Zhu et al., 2004; Shipp et al.,
2002). The result shows an improvement to the previous
approach: the total number of predicted genes is 46 in lin-
ear classifier which is better than result of Shipp’s gene list,
while 50 predicted genes in quadratic classifier which is vis-

ibly improved than Zhu’s previous results. The survival
prediction results show that not only the nine genes
explored in the WOTA can give a more reliable prediction,
but also is in a reduction to the number of genes needed to
examine for determining the survivability.

5. Conclusion

We studied the problem of how to assess the reliability
of a statistical measurement on a dataset contaminated
with noises, uncertainties, and outliers. The EBP based
WOTA approach is a practical way for gaining a qualita-
tive assessment of the measurements and providing useful
hints to the selection and acceptance of the measurement
under given circumstances. Particularly, we applied the

Fig. 5. Genes indicative for survival outcome extracted by applying FDC.

Table 2
Genes extracted for DLBCL outcome prediction applying FDC with WOTA

Index Gene# Description WOTP category

1 6991 Dystrobrevin-alpha mRNA F – under j Oscillation pattern
2 3889 P120E4F transcription factor mRNA E – under j Conic pattern
3 4097 (clones lambda-hPKC-beta[15,802]) protein kinase C-beta-1 (PRKCB1) mRNA B – under j Monotony pattern
4 5849 IGF2 Insulin-like growth factor 2 (somatomedin A) F – under j Oscillation pattern
5 2241 Peptidyl-prolyl CIS-TRANS isomerase mitochondrial precursor E – under j Conic pattern
6 5177 mRNA (non-coding; clone h2A) E – under j Conic pattern
7 4721 Splicing factor SF3a120 F – under j Conic pattern
8 6641 Butyrophilin (BTF1) mRNA E – under j Conic pattern
9 2279 BETA-1,4 N-acetylgalac to saminyl transferase B – under j Monotony pattern

Table 3
Comparison of classification results on different gene sets for survival
prediction in DLBCL Microarray gene expression profiling

Linear classifier Quadratic classifier

Survival Fatal Total Survival Fatal Total

1 The result in
(Zhu et al., 2004)

27 19 46 30 18 48

2 With Shipp’s
gene (Zhu et al.,
2004)

26 19 45 26 19 45

3 New result using
our 9 genes

26 20 46 28 22 50



approach to the FDC measurements for selections of
indicative genes in Microarray DLBCL gene expression
profiling data analysis. The approach resulted in the extrac-
tion of genes that are more meaningful than the results
obtained without the reliability assessment in both experi-
ments. We must point out that the WOTA is not an
approach of improving the FDC measurement internally.
It is an approach for improving the results obtained from
applying the FDC measurement by providing an additional
selection process that is external to the FDC measurement.
In this sense, the WOTA is a complementary process to a
statistical measurement for improving the results derived
from the measurements. We hope this assessment approach
can be applied to more statistical evaluation processes
and data analysis problems as we continue our research
work.
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