
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

8-2006

Min–Max Hyperellipsoidal Clustering for
Anomaly Detection in Network Security
Suseela T. Sarasamma
University of Nebraska at Omaha

Qiuming Zhu
University of Nebraska at Omaha, qzhu@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Department
of Computer Science at DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized
administrator of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

Recommended Citation
Sarasamma, Suseela T. and Zhu, Qiuming, "Min–Max Hyperellipsoidal Clustering for Anomaly Detection in Network Security"
(2006). Computer Science Faculty Publications. 31.
https://digitalcommons.unomaha.edu/compscifacpub/31

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compscifacpub/31?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages

Min–Max Hyperellipsoidal Clustering for
Anomaly Detection in Network Security

Suseela T. Sarasamma and Qiuming A. Zhu, Senior Member, IEEE

Abstract—A novel hyperellipsoidal clustering technique is pre-
sented for an intrusion-detection system in network security.
Hyperellipsoidal clusters toward maximum intracluster similarity
and minimum intercluster similarity are generated from training
data sets. The novelty of the technique lies in the fact that the
parameters needed to construct higher order data models in
general multivariate Gaussian functions are incrementally derived
from the data sets using accretive processes. The technique is im-
plemented in a feedforward neural network that uses a Gaussian
radial basis function as the model generator. An evaluation based
on the inclusiveness and exclusiveness of samples with respect to
specific criteria is applied to accretively learn the output clusters of
the neural network. One significant advantage of this is its ability
to detect individual anomaly types that are hard to detect with
other anomaly-detection schemes. Applying this technique, several
feature subsets of the tcptrace network-connection records that
give above 95% detection at false-positive rates below 5% were
identified.

Index Terms—Accretive construction, anomaly detection, confi-
dence measurement, hyperellipsoidal clustering, neural networks,
self-organizing map (SOM).

I. INTRODUCTION

W ITH the advent of high-speed interconnection net-
works, it has become easier to share information

between organizations, within organizations, and between in-
dividuals. What used to take tons of paper to store information
is now stored on high-speed storage devices such as compact
disk recordable/rewriteable (CD-R/RW), digital versatile disc
(DVD), storage arrays, etc. The availability of such high-speed
mass-storage devices and reliable interconnection networks for
information sharing has transformed modern offices and busi-
nesses. Uninterrupted communication networks and computing
facilities have become a necessity of modern life. With its
increasing importance in day-to-day life, network-based com-
puting systems have become a frequent target for attackers,
hobbyists, and criminals alike. These attacks are often costly
in terms of lost time and financial loss.

Early detection and possible preventive measures are crucial
in thwarting costly network intrusions. Research on techniques

Manuscript received March 30, 2005; revised August 27, 2005 and De-
cember 1, 2005. This work was supported in part by the Air Force Research
Laboratory, Rome, New York and in part by the Advanced Research Develop-
ment Agency under Grant F30602-03-C-0247. This paper was recommended
by Associate Editor M. Obaidat.

S. T. Sarasamma is with the Northrop Grumman Mission Systems, Bellevue,
NE 68023 USA (e-mail: suseela_ts@yahoo.com).

Q. A. Zhu is with the College of Information Science and Technology,
University of Nebraska at Omaha, Omaha, NE 68182 USA (e-mail: qzhu@
mail.unomaha.edu).

to identify intrusions in network-based computer systems
has contributed to some intrusion-detection systems (IDSs).
These IDS fall into three categories: signature-based intrusion-
detection systems, anomaly-based intrusion-detection systems,
and specifications-based intrusion-detection systems.

Signature-based intrusion-detection systems are normally
known as misuse-detection systems. Misuse-detection systems
apply a rule-based approach that uses stored signatures of
known intrusion instances to detect attacks. The Snort system
is an example of a signature-based IDS [34]. These IDSs are
highly successful in accurately detecting previously known
attacks. However, they fail to detect variants of known attacks
whose signatures are not stored. They also fail in detecting new
attacks, whose signatures are not known. When new attacks are
discovered, the signature database has to be manually updated.
The network will be vulnerable to the newly discovered attacks
until the updated signature database is in effect. Another ap-
proach used for the intrusion-detection systems is the anomaly-
detection approach. Anomaly-detection techniques are also
known as novelty-detection techniques. Some of the earlier
research in anomaly detection evolved from statistical outlier-
detection techniques. A survey of various outlier-detection
techniques from statistical techniques to machine-learning ap-
proaches can be found in [31]. Marsland provides a com-
prehensive survey of the various novelty (anomaly)-detection
techniques including those using self-organizing maps (SOMs)
in [33].

In the anomaly-based detection approach, a profile of what
is perceived as normal behavior is first established. Deviants
from the normal profile are considered as anomalies or po-
tential attacks. In some cases, normal operations that exhibit
behavior adherent to unseen mode of operation are detected as
anomalies. Such cases of false detection of normal operations
as anomalous operations are termed false positives. Unlike
signature-based detection systems, there are no exact templates
to match an unknown event. The merit of an anomaly-detection
scheme is the absence of an enormous signature database. The
hallmark of a good anomaly-based approach is a very high de-
tection rate at a very low false-positive rate. Anomaly-detection
techniques can be further broadly classified into two categories:
1) supervised anomaly detection and 2) unsupervised anomaly
detection.

Supervised anomaly-detection approaches usually need a set
of purely normal data with which a model is trained [14].
New data is checked to see how well it fits into the trained
model. Presence of anomalies in the training data can hamper
the detection of such events in future. The need for purely
normal training data is somewhat restrictive. Some techniques

used in supervised anomaly-detection schemes are support-
vector machine (SVM) classification, statistical methods to
determine sequences that occur more frequently in intrusion
data, decision trees, ensemble-based approaches, and machine-
learning approaches. Lane and Brodley addressed the problem
of anomaly detection as one of learning to characterize the
behaviors of an individual, a system, or a network in terms
of temporal sequences of discrete data [18]. Barbara et al.
at George Mason University developed the ADAM IDS, a
supervised anomaly-detection system. To enhance the system’s
capability of detecting new attacks and to reduce the false-
alarm rate as much as possible, they applied a pseudo-Bayes
estimator method according to the prior and posterior probabil-
ities of new attacks [15]. Another well-known product in this
category is the event monitoring enabling responses to anom-
alous live disturbances (EMERALD) system developed at SRI,
which combines signature-based analysis using production-
based expert system toolset (PBEST) rules for misuse detec-
tion and statistical-profile-based anomaly detection [27]–[29].
Supervised anomaly-detection tasks can use unsupervised al-
gorithms, especially when only normal data are available, as
demonstrated in [35].

Unsupervised anomaly-detection schemes are less restrictive
in terms of training data. The training data contain both normal
and anomalous data. In its purest form, unsupervised anomaly-
detection schemes use unlabeled data for training. Eskin et al.
provided a geometric framework to realize an unsupervised
anomaly-detection scheme [14]. In their work, raw input data
are mapped to a feature space. They labeled points that are
in sparse regions of the feature space as anomalies. They
used three different algorithms: a fixed-width clustering-based
algorithm, an optimized K-nearest-neighbor algorithm, and an
unsupervised variant of the SVM algorithm. Two assumptions
are made about the data. The first assumption is that the number
of normal instances far outnumbers the anomalous instances.
The second assumption is that the anomalies are qualitatively
different from the normal instances. Both these assumptions are
not necessarily valid in all cases. For instance, assumption 1
will not hold for detection of certain denial of service (DOS)
attacks. Oldmeadow et al. did further work on the clustering
method used in [14] and obtained an improvement in accuracy
when the clusters are adaptive to changing traffic patterns [19].
Leung and Leckie achieved a more computationally efficient
algorithm based on hybrid clustering techniques such as clus-
tering in Quest (CLIQUE) and parallelized merging of adaptive
finite intervals (pMAFIA) [20]. The hybrid clustering methods
they employed combine the ideas of grid-based and density-
based clustering. They evaluated the algorithm using the KDD
Cup 1999 data set after filtering out much of the attack records
so that the assumption that majority of the network connections
are normal traffic is valid for both training and test data. Though
it is true that unsupervised anomaly-detection schemes, as
described in [14], [19], and [20], do not need labeled training
data, they also have the restriction that the percentage of attacks
should be much less compared to that of normal instances.
Besides this, the data records, when mapped to a feature space,
does not give enough separation of normal records and attack
instances, thus resulting in false identification of attacks as

normal and vice versa. Other published results on anomaly-
detection schemes for IDS include those that use various data-
mining techniques such as clustering, variations of SVMs, and
neural-network models [11], [16], [17], [22], [26], and [32].
A cost-efficient implementation of a multilayer hierarchical
Kohonen network is presented in [13]. The above paper also
gives a more comprehensive survey of intrusion-detection
schemes.

The specification-based approach of intrusion detection is
relatively new. Like anomaly detection, specification-based
techniques detect attacks as deviants from a norm. The differ-
ence is that the specification-based techniques depend on man-
ually developed specifications that capture legitimate system
behavior. No machine-learning techniques are used here. Such
systems are said to avoid the high false-alarm rates caused by
legitimate but unseen behavior [23]. However, specification-
based techniques need a considerable effort in the develop-
ment of detailed specifications. Insufficient and poorly defined
specifications can lead to a low detection rate.

In this paper, we concentrate on the anomaly-based approach
for a system of feature-based intrusion detection. The devel-
opment of the approach is based on a systematical analysis of
higher order modeling functions of the input data sets. It is
known that one drawback of most anomaly-based approaches
is the problem of accurately classifying data sets that consist of
a number of highly intertwining (mixed) data points of different
categorical nature in a multidimensional space. Such inaccurate
classification leads to a reduced detection rate and/or increased
false-positive rate. Sarasamma et al. addressed this problem to
a certain extent by using a high-order nonlinear classifier model
[13]. The approach creates clusters that model the intersection
of hypercylinders in a computationally efficient way.

Anomaly detection in network packet header data can be for-
mulated as a computational-model reconstruction process. To
be more precise, we use nonlinear functions to model network-
connection records by applying a geometric-reconstruction
process that reveals the underlying properties of the data set.
Geometric reconstruction has been popularly applied in engi-
neering as a process of discovering the original structure that
generated the data set. The K-means clustering is a typical
example of geometric reconstruction, which can be stated as
follows: Given a set of data points in Rd space, find a set of
k functions that best approximate the underlying functions that
produced the data. Partitioning a set of data objects into homo-
geneous groups or clusters with certain intrarelations is a fun-
damental operation in geometric reconstruction. In K-means
clustering, the functions to be reconstructed are formulated in
terms of a set of parameters representing the centers and diam-
eters of K isometric geometries—the clusters. When Euclidean
distance is used as the metric, the geometries are hyperspheres.
If the metric used is Mahalanobis distance, the geometries are
hyperellipsoids.

We present a new approach for building ellipsoidal clusters
for multidimensional data. The novelty of the technique lies
in the fact that the parameters needed to construct general
multivariate Gaussian functions of the higher order data are
incrementally derived using accretive functions. We use a
feedforward neural network that has an input layer, a single

competitive layer, and an output layer to achieve this. A radial
basis function is used as the generator. An evaluation based on
the inclusiveness and exclusiveness of samples with respect to
specific criteria is used to accretively build the output clusters
of the neural network. We apply this technique to realize an
anomaly-detection system for network-based intrusion detec-
tion. This anomaly-detection system uses unsupervised learn-
ing. The training data are not restricted to just normal data.
First, we use feature vectors extracted from the KDD Cup 1999
data set as the training and testing data. Detailed description of
the KDD Cup 1999 data can be found in [2], [3], [11], and [12].
The goal is to detect as many different attack types as possible.
Next, we use preprocessed network dump data to evaluate the
capability of the system.

The rest of this paper is organized as follows. In Section II-A,
we first present a more formal description of the accretive
building process of the hyperellipsoidal clusters. We present
the training algorithm and detection algorithm for a neural-
network-based realization of this computational model in
Section II-B. Section II-C covers some implementation aspects
and discusses test data and results for the KDD Cup 1999 data.
In Section II-D, we compare the results of the ellipsoidal SOM
(ESOM) with that of other neural-network-based classifiers
such as adaptive resonance theory (ART), radial basis function
(RBF), and hierarchical K-Map. Results for tests conducted
on actual network data that were processed using tcptrace are
presented in Section II-E. Finally, in Section III, we discuss
related work and conclude with our results.

II. ANOMALY DETECTION USING MIN–MAX

HYPERELLIPSOIDAL CLUSTERS

A. Clustering by Geometric Reconstruction

Geometric reconstruction deals with the algorithmic prob-
lems of combining the results of one or more measurements
of some aspect of a physical or mathematical object to obtain
certain desired information about the object [30]. A simple form
of reconstruction is static reconstruction, where we consider
inverse problems of the following type. Let U be a geomet-
ric structure and T a transformation such that T (U)→ V ,
where V is a different geometric structure. Now, given T and
V , construct a structure U ′ such that T (U ′)→ V . If T is a
one-to-one mapping, then U = U ′. The essence of geometric
reconstruction is that of modeling a data set by single or
multiple linear or nonlinear function(s) that reflect or reveal the
underlying properties of the data collection. In other words, it is
the process of discovering the original geometric structure that
generated the data set. A typical example is the K-means clus-
tering problem. It is well known that function reconstruction in
general is an ill-posed inverse problem [5] since:

1) existence criterion may be violated because a distinct
output function may not exist for every input data point;

2) uniqueness criterion may be violated because there might
be multiple possible mappings from the data points to the
function sets;

3) continuity (stability) criterion may be violated because
of the unavoidable presence of noise or imprecision in
the data set introduced in the direct mapping process (in

the process of generating the data set from the physical
world).

Knowing that geometric-reconstruction problems are ill
posed, the next question is, under what conditions are the result-
ing functions exact or close to the exact solutions with respect
to the physical world’s originality. Often, the existence criterion
can be forced by enlarging or reducing the solution space (the
space of “models”) and by formulating the objective functions
in positive and symmetrical, though possibly discontinuous,
distributions [30]. Questions on the solutions for uniqueness
and stability still remain. With additional a priori information
on the solutions such as smoothness and bounds on the deriv-
atives, it is possible to restore stability and construct efficient
numerical algorithms for approximate solutions with sufficient
accuracy [5]. These methods would follow the fundamental
regularization theory established in the 1960s [4]. A compre-
hensive review of regularization theory can be found in [36].
The basic idea of regularization is to stabilize the solution set
by means of some auxiliary nonnegative function that embeds
prior information about the solution. The most common form of
prior information involves the assumption that the input–output
mapping function (solution to the reconstruction problem)
is smooth, in the sense that similar inputs correspond to
similar outputs.

In our paper, we apply geometric reconstruction to do dis-
criminatory data analysis. Here, we deal with the relations be-
tween a set of known classes denoted as Ω = {ω1, ω2, . . . , ωc}
and a set of known data points in an n-dimensional space
denoted as x = [x1, x2, . . . , xn]. The total possible occurrences
of these points form the n-dimensional space R(x). Collec-
tions of x partition R(x) into regions R(ωi)i = 1, 2, . . . , c;
where R(ωi) ⊆ R(x),∪R(ωi) = R(x), and R(ωj) ∩R(ωi) =
∅, ∀j
= i. The R(ωi) represent clusters of x based on the
characteristics of class ωi. The surfaces known as decision
boundaries that separate these R(ωi) regions are described
by discriminant functions denoted as πi(x). This formulation
can also be described as R(ωi) = {x|∀j
= i, πi(x) > πj(x)}.
Often, the R(ωi) regions are convex and continual, which
renders πi(x) to be linear or piecewise-linear functions [25].
However, there are cases where these functions are nonlinear
due to irregular and complex distributions of the feature vec-
tors. Methods of applying linear or piecewise-linear approx-
imations tend to have less statistical precision embedded in
the pattern class distributions. That is, to form precise R(ωi)
regions, the πi(x) functions are required to be in high-order
nonlinear forms. Such functions, if not totally impossible,
are computationally expensive to realize. Methods based on
machine learning and fuzzy clustering help the model adapt
to nonlinearity, but they lack precision due to the restric-
tion of data classes to a single distribution function. Separate
efforts by Avi-Itzhak et al. [1], Kudo [6], and Zhu et al. [30]
modeled complexly distributed data sets as a number of subsets,
each with a relatively simple distribution. In this modeling,
subset regions are constructed within a multidimensional data
space. Data collections in such subspaces have high intrasub-
class and low intersubclass similarities. The overall distribu-
tion of the data class is a combining set of the distributions
of the subclasses (not necessarily additive). In that sense,

subclasses of one data class are the component clusters of the
data set.

To facilitate the understanding, we represent the fundamen-
tals of the technique from [30] as follows. Let S be a set
of data points xk in which each data point xk is associated
with a specific class Sj ; that is, S =

⋃c
i=1 Si, Si ∩ Sj = ∅ ;

∀i
= j, where Si is a set of data points that are labeled by ωi,
ωi ∈ Ω = {ωi; i = 1, 2, . . . , c}. That is, for each xk ∈ S, there
exists an i such that [(xk ∈ Si)⇒ (xk ∈ ωi)].

Definition 1: Let Si be a set of data points of type (category)
ωi, Si ⊆ S, and ωi ∈ Ω. Let εik be the kth subset of Si. That is,
εik ⊆ Si, where k = 1, 2, . . . di, and di is the number of subsets
in Si. Let P (x|εik) be a distribution function of the data point
x included in εik. The subclass clusters of Si are defined as the
set {εik} that satisfies the following conditions:

1)
⋃di

k=1 εik = Si;
2) εik ∩ εil = ∅,∀l
= k;
3) (x ∈ εik)⇒ P (x|εik) > P (x|εil), ∀l
= k;
4) (x ∈ εik)⇒ P (x|εik) ≥ P (x|εjl),∀j
= i

where P (x|εjl) is a distribution function of the lth subclass
cluster for the data points in category set Sj , i.e., data points
of class ωj . In the above definition, condition 3) describes the
intraclass property and condition 4) describes the interclass
property of the subclasses. Condition 4) is logically equivalent
to (x ∈ εjl)⇒ P (x|εjl) > P (x|εik),∀j
= i, where P (x|εik)
is the distribution function of the kth subclass cluster for the
data points in category Si. Note that the above definition does
not exclude a trivial case where each εik contains only one
data point. It is known that a classifier built on this case
degenerates to a classical one-nearest-neighbor classifier. How-
ever, considering the efficiency of the classifier to be built,
it is more desirable to divide Si into a minimum number of
subclass clusters. This leads to the introduction of the following
definition.
Definition 2: Let εik and εil be two subclass clusters of the

data points in Si, k
= l, and εil
= ∅. Let εi = εik ∩ εil and
P (x|εi) be the distribution function defined on εi. The set
{εik; k = 1, 2, . . . , di} is a minimum-set subclass-cluster set of
Si if, for any εi = εik ∪ εil, we would have

∃(j
= i)∃(x ∈ εjm) [P (x|εi) > P (x|εjm)]

or

∃(j
= i)∃(x ∈ εi) [P (x|εi) < P (x|εjm)] .

The above definition means that every subclass cluster
must be large enough such that any joint set of them would
then violate the subclass definition [condition 4)]. According
to condition 3) of the subclass definition, a subclass region
R(ωik) corresponding to the subclass εik can be defined as
R(ωik) = {x|P (x|εik) > P (x|εil),∀l
= k}. Thus, P (x|εik)
can be viewed as a distribution function defined on the feature
vectors x in R(ωik). Combining this with condition 2) of the
subclass-cluster definition, we have

R(ωik) ∩R(ωil) = ∅, ∀l
= k

R(ωik) ∩R(ωjl) = ∅, ∀j
= i.

The subclass clusters, thus, can be viewed as partitions
of the decision region R(ωi) into a number of subregions
R(ωik), k = 1, 2, . . . , di, such that R(ωik) ⊆ R(ωi), and⋃

k R(ωik) = R(ωi).
Observing the fact that R(ωik) ∩R(ωjl) = ∅,∀j
= i,

we have R(ωi) ∩R(ωj) = ∅,∀j
= i. When a multivariate
Gaussian distribution function is assumed for the data
distribution, the probability that a data point x lies within a
cluster region ωi is given by

P (x|ωi) =
1

(2π)
n
2 |Σi|

1
2
e[−

1
2 (x−µi)

TΣ−1
i

(x−µi)].

Geometrically, samples drawn from a Gaussian population
tend to fall in a single cluster region. In this cluster, the mean
vector µi determines the center of the cluster and the covariance
matrix σi determines the shape of the region and x, a column
vector, represents the input data point. The locus of points
of constant density for a multivariate Gaussian distribution
forms a hyperellipsoid in which the quadratic form r = (x−
µi)TΣ−1

i (x− µi) is equal to a constant. The eigen vectors of
σi give the principal axes of the hyperellipsoid and the eigen
values determine the lengths of these axes. The scalar [(x−
µi)TΣ−1

i (x− µi)]1/2 is the Mahalanobis distance. Thus, the
contour of constant density of a multivariate Gaussian distribu-
tion is a hyperellipsoid with a constant Mahalanobis distance to
the mean vector µi. The volume of the hyperellipsoid measures
the scatter of the samples around the point µi [7]. Given a
set of data samples of class ωi in a multivariate Gaussian
distribution, the determination of the function P (x|ωi) can be
viewed approximately as a process of clustering the samples
into a hyperellipsoidal subspace described by r ≤ C,C > 0.
The value of C is a constant that determines the scale of
the hyperellipsoid. The parameter C should be chosen such
that hyperellipsoids properly cover the data points in the set.
This leads us to the topic of min–max hyperellipsoidal data
characterization.

B. Min–Max Hyperellipsoidal Clustering

We apply an accretive approach to characterize the hyperel-
lipsoidal clusters and use an artificial neural network (ANN)
model to incrementally learn the parameters µ and covariance
Σ of the data samples that are to be classified. This ANN has
an input layer, a single competitive layer, and an output layer
(see Fig. 1 for a graphical illustration). The data samples are
presented to the input layer. The output layer represents the
classification of hyperellipsoidal clusters. We use multivariate
Gaussian function as the input–output (transfer) function at
the middle layer of the neural network. The uniqueness of
our approach is in the fact that the parameters for the transfer
function are not predetermined by examining the data samples.
Instead, we use an accretion approach to process each data
sample one by one through the following steps.

1) Find the hyperellipsoid whose center has the shortest
distance from the data sample. Call it the winner.

2) Merge this sample with that hyperellipsoid if the smallest
hyperellipsoid that contains the samples is the winner and

Fig. 1. ANN for the hyperellipsoidal SOM, where xi represents custom
column vectors, nodes marked by letter Gi are neurons with Gaussian radial
basis function, and Ci are output clusters resulting from a winner-take-all
strategy.

the new sample does not intersect with any other existing
hyperellipsoid. Update µ and Σ.

3) If the merger in step 2) is not possible, then create a new
hyperellipsoid with the data vector as its mean µ and the
identity matrix as its Σ.

We use the winner-take-all SOM shown in Fig. 1 to generate
min–max hyperellipsoidal clusters with high intracluster and
low intercluster similarities (please refer to [24] for a detailed
description of SOMs). Feature vectors extracted from network-
connection records form the input data space. Each feature
vector is passed to the column of neurons in the input layer.
The transfer function G is applied on the input vector. The
competitive layer builds the hyperellipsoidal clusters based on
the mean and covariance of the data vectors seen so far. A single
neuron is selected as the winner and the data vector is mapped
to the output cluster corresponding to the winner neuron. The
winner is chosen as the neuron that has the least Mahalanobis
distance between its mean and the data vector. To reduce the
computational cost, we use the square of the Mahalanobis
distance as the metric. The goal is to train the neural network
with data that contain normal as well as attack records and
then use the trained neural network as the min–max ellipsoidal
classifier for new data. We utilize the classification capability
of this ESOM to detect new anomalies in network header data.
In the training phase, as each new data vector is fed to the
input layer, the hidden layer updates the necessary parameters
such as number of samples mapped to the winner neuron, the
winner’s current moving mean and current moving covariance.
Note that the classifier architecture is that of the classical
“minimum Mahalanobis distance” classifier. The novelty lies in
the incremental procedure applied to compute the parameters of
the Mahalanobis distance.

We use an unsupervised learning algorithm for training the
hyperellipsoidal SOM. The training algorithm is given in the
pseudocode algorithm TRAIN_ELLIPSOIDAL_SOM. First,
we define some symbols and variables that are used in the
algorithm. The column vector x represents an input feature
vector. The mean of the data vectors mapped to the cluster

associated with neuron i is denoted as µi. Ki denotes the
covariance matrix for neuron i. K−1

i denotes the inverse of
the covariance matrix for neuron i. Gi(x) denotes the Gaussian
transfer function for neuron i. The minimum threshold that de-
termines whether a data sample is within the ellipsoidal cluster
corresponding to neuron i is identified as tmin. I represents the
identity matrix. In the context of this algorithm, N denotes the
initial number of neurons. The number of neurons at any stage
of training is represented by the variable numNeurons. Let ni

denote the number of data samples clustered on to neuron i.
Let the variable loopCount denote the current iteration. We
will stop the training iterations when the number of changes in
neuron mapping from cluster to cluster is within a preset value.
This preset value is computed as the product of a threshold
identified as changeThreshold and the number of training
samples (numV ectors). In rare cases, the Ki resulting from
the merger step 2) may not have an inverse, though we did not
observe such a case in the experiments that we tracked. To avoid
any potential program crash in such cases, we added a provision
to use the identity matrix instead of the inverse in such cases.
In some cases, the stabilization may take a large number of
iterations. To restrict such overly long training sessions, we also
use a parameter known as maxIterations to end the training.
The variable numChanges denotes the number of changes in
neuron mapping within program iterations.

Algorithm TRAIN_ELLIPSOIDAL_SOM
Step 1: Get the necessary inputs from the user.

1 Number of initial neurons, N
2 Size of an input vector, p
3 Feature subset to be used
4 Minimum threshold to spawn a new neuron, tmin

5 Threshold to determine the number of training iterations,
changeThreshold

6 Maximum number of training iterations allowed,
maxIterations

7 Names of input and state files
Step 2: Set up the initial N neurons.

numNeurons← N ;
for i = 1 to N , do

set µi as a randomly selected data vector
Ki ← I;ni ← 1

end for
Step 3: Initialize iteration control parameters

maxChanges← changeThreshold ∗ numV ectors
loopCount← 0

Step 4: repeat
loopCount← loopCount+ 1;
numChanges← 0
for each training vector x, do

choose the winner as neuron j such that
[x− µj]

TK−1
j [x− µj] is the least

compute Gj(x), Gj(x)← e
−1/2[(x−µj)

TK−1
j

(x−µj)]

if (Gj(x) < tmin), then
create a new neuron u
numNeurons← numNeurons+ 1
µu ← x;Ku ← I;nu ← 1

else
find the neuron k on which x was previously clustered

if (j
= k), then

nj ← nj + 1;

µj ←
nj − 1

nj

µj +
1

nj

x;

Kj ←
nj − 1

nj

Kj +
1

nj

[x− µj][x− µj]
T;

nk ← nk − 1;

µk ←
nk + 1

nk

µk −
1

nk

x;

Kk ←
nk + 1

nk

Kk −
1

nk

[x− µk][x− µk]T

numChanges← numChanges+ 1
end if

end else
end for

until (numChanges < maxChanges) or
(maxIterations < loopCount)

The trained ESOM could be used as a pure anomaly de-
tector or as a classifier. Currently, our goal is to apply the
excellent classification capability of the hyperellipsoidal SOM
in detecting as many different types of attacks as possible.
Therefore, once the unsupervised training is completed, we
label the clusters thus created. We examine the composition of
each ellipsoidal cluster created. Records in some clusters will
correspond to a unique label. However, there will be clusters
that contain records that correspond to different labels. We
use the term homogeneous clusters to denote the clusters of a
specific label. The homogeneous clusters are labeled with the
specific label of its member records. For the nonhomogeneous
clusters, we apply the following labeling strategy.

1) Let Xi denote the number of records of type X in cluster
i, and Xtotal the total number of records with label X in
the training set. Then, the probability of a record of type
X mapping to cluster i is taken as Xi/Xtotal.

2) Let Ni denote the total number of records in cluster i. The
probability of a record mapped to cluster i being of type
X is taken as Xi/Ni.

3) We define a favorable factor for label X as the joint
probability of a record of type X from the set of inputs
mapping to cluster i and a record that is mapped to i being
of type X

Fi(x) =
(

Xi

Xtotal

) (
Xi

Ni

)
.

Let A = {a1, a2, . . . , ar} denote the set of labels identifying
all the records that mapped to neuron i. We define label of i
as L(i) = a, where Fi(a) = maxx∈A Fi(x). We also define a
confidence factor to indicate the level of confidence with which
we choose the type of record that dominates the cluster. The
confidence factor of cluster i is computed as

Ci =
maxFi(x)∑
x∈A

Fi(x)
.

These steps of labeling and computing confidence can be
formalized as follows.

Algorithm Finalize Training
for each cluster i, do

if cluster i is homogeneous
Label cluster i with the unique label of the records in

this cluster
Set confidence factor for i, Ci ← 1.0

else begin
Compute A, the set of labels that mapped to i.
for each label X in cluster i, compute

Fi(x) =
(

Xi

Xtotal

)(
Xi

Ni

)

Set the label for cluster i, L(i)← α, where Fi (α) =
maxx∈A Fi (x).

Set confidence factor

Ci ←
maxFi(x)∑
x∈A

Fi(x)

end else
end for

The trained state of the neurons is stored in files called state
files. In addition to the parameters such as µ and K−1, we also
save the label and confidence of each neuron. The detection
phase consists of loading a trained state in the ESOM and
feeding each feature vector corresponding to the test set to the
input layer. Now, to improve the computational efficiency of the
detection phase, we computed the inverses of the covariances
after the training and stored the K−1

i in the trained-state file.
The neuron that yields the smallest Mahalanobis distance be-
tween the test data vector and the mean of the samples clustered
to that neuron is selected as the winner. The detection algorithm
may be formalized as follows.

Algorithm Detect Events
Step 1: Initialize the ESOM with the parameters stored in a

state file. Let C denote the total number of clusters
in the state file.

Step 2: for each test record r, do
Construct the feature vectors using the user-
supplied feature subspace.

for each cluster i = 1 to C, do
Compute Distance(i)←

[x− µi]
TK−1

i [x− µi].
end for

winner(r)← miniDistance(i)
end for

Step 3: Compute the false positives and detected
anomalies.

C. Implementation Aspects of Min–Max
Hyperellipsoidal SOM

From our experiments in earlier studies [13], it became
clear that feature vectors that include every single feature of
a network-connection record need not give the best classifica-
tion of the feature space. Furthermore, usage of large feature

TABLE I
COMPOSITION OF KDD-CUP-1999-BASED TRAINING AND TEST SETS

vectors increases the computational cost. Attacks that exploit
the flaws and weaknesses in certain aspects of a protocol tend
to leave their mark on a small subset of specific features of
the network-connection record. One of our goals is to identify
the specific subsets of features that are capable of detecting
each attack category. Another goal is to find the subset (s) of
features that detects the maximum number of attacks (both
previously seen and novel) at the least possible false-positive
rate. We chose the KDD 1999 data set as our first set of
data for training and testing experiments. We chose this data
set for four reasons. First, it has been used popularly as a
standard for comparing the performance of intrusion-detection
systems. Hence, we can judge the performance of the hy-
perellipsoidal clustering technique. Second, since the data is
labeled, we can verify the accuracy of our detection scheme.
Third, the test set contains 17 additional attack types that
are not present in the training data. Lastly, the test data and
training data set have no common elements. In the context of

the KDD Cup 1999 data, each connection record encapsulates
the information such as basic traffic features, features derived
from observations in the past 100 connections, features derived
from observations in the past 2 s, and content features. The
KDD Cup 1999 data are organized in files as connection
records in American standard code for information interchange
(ASCII) format. Each connection record consists of a comma-
delimited set of 41 features and a label that indicates whether
the record is normal or an attack. To measure the effects
of feature subsets and the minimum threshold for spawning
new clusters, we designed a menu-driven interactive graphical
user interface.

The metrics for evaluating the performance of the algorithms
are as follows. If a data record labeled as normal is detected
as an anomaly, then we consider it as one instance of false
positive. If an anomaly record is identified as normal, then
we consider it as a case of missed detection. Let Nfalse de-
note the total number of false positives and Nmissed denote

TABLE II
COMPOSITION OF FEATURE SUBSETS

the number of missed instances encountered in the detec-
tion phase. Let Nnormal and Nattack denote, respectively, the
number of normal records detected and the number of attack
records detected in the test set. The percentage of false posi-
tives is computed as %FalsePositive = (Nfalse/Nnormal) ∗ 100.
The percentage of detected anomalies is computed as
%Detected = (Nattack −Nmissed)/Nattack ∗ 100.

For the experiments on KDD Cup 1999 data, we used two
subsets of the 10% labeled training data. Training set 1 consists
of 1441 records and training set 2 consists of 169 000 records.
Training set 2 contains all the attack types with an adequate
representation of all the service types, flags, and protocol types.
For the detection phase, we used the labeled data set identified
as “corrected” in the KDD Cup 1999 suit as one test set and a

smaller subset of the 10% training set as the second test set. The
composition of the two training sets and the test sets are listed in
Table I. For first-level training and testing, we used “training set
1” and “test set 1,” respectively. To study the effect of feature
subsets on the detection rate and false-positive rate, we created
20 feature subsets. The composition of these feature subsets is
listed in Table II.
1) Test Results on KDD Cup 1999 Data Training Set 1 and

Test Set 1: We tested our algorithm on the training set 1 and
test set 1 of the KDD Cup 1999 data. For the first 16 test cases
with respect to the feature subsets, we used a tmin threshold of
0.75. The results are listed in Tables III and IV. Table III lists
the results for experiments with feature subsets labeled sets 1–5
and sets 8–11.

TABLE III
RESULTS OBTAINED BY APPLYING NINE FEATURE SUBSETS TO TRAINING SET 1 AND TEST SET 1

TABLE IV
RESULTS OBTAINED BY APPLYING DIFFERENT FEATURE

SUBSETS TO TRAINING SET 1 AND TEST SET 1

Table IV summarizes the results for sets 12–14, 16, 18, 20,
and lastly for the set that contains the entire 41 features. Each
row with the exception of the last two rows in Tables III and IV
gives the percentage of anomaly detection for a specific type
of attack in the test data. Each column represents a subset of
features used for training the ESOM. For instance, the first row
in Table III indicates the percentage of normal records detected
as normal by the hyperellipsoidal SOMs trained using the fea-
ture subsets listed as sets 1–5 and sets 8–11, respectively. The
row identified as %Overall detection indicates the percentage of
total anomalies detected in the test set when each feature subset
is used. The last row gives the percentage of false positive for
each feature subset. The test set contains two instances of an
attack type, buffer_overflow, which is not present in the training
set. It can be seen that sets 2, 5, 8, 11–14, 16, and 20 detected
100% of this new anomalous events. Sets 9, 18, and “ALL”
detected 50% of the new anomaly. Sets 1, 3, 5, 10, 18, and 20
gave a detection rate above 97.5% at false-positive rates below
4.7%. The set “ALL” had a detection rate of 99.01% at a false-
positive rate of 8.80%. Therefore, we observe that using the
entire feature set to realize the ellipsoidal clustering, though
computationally costly, does not yield the best clustering. We
also note that though the overall detection rate for set 11 is
only 42.86% at a false-positive rate of 0.18%, it detects 99.82%
of the normal records as normal. Thus, employing a min–max
hyperellipsoidal clustering based on the features identified in
set 11 to filter out the normal records and then applying another

ESOM trained using set 1 or 20 might yield better performance
and good results. However, it should be noted that the training
set and test set used for these 16 test cases are quite limited in
scope. In the next suit of test cases, we use a more comprehen-
sive set of training and test data.
2) Test Results for KDD Cup 1999 Data on Larger

Training Set and Test Set: For the test cases in this section,
we use training set 2, which is a more representative subset
of the 10% KDD Cup 1999 training data. Besides the normal
records, this training set contains 22 different attack types.
Approximately 58% of records in this training set belong to
the normal category. We use test set 2 for the detection phase
in these test cases. The composition of the training set and
test set are given in Table I. The results of 20 test cases are
summarized in Tables V and VI. A tmin threshold of 0.45
was used for these test cases. At most, 100 training iterations
were allowed. Table V contains the results for the first ten
subsets of features and Table VI contains that of the remaining
ten subsets. The overall percentage of detection is represented
by the row labeled as “%Overall.” The number of neurons
generated and the percentage of false positives, respectively,
are indicated in the last two rows. Each of the remaining rows
shows the percentage detection of a specific event type in the
test set. Anomaly event types not present in the training sets are
highlighted in bold face. Note that all the 17 anomaly types not
present in the training sets were detected, though by different
feature sets with a different detection rate, in the test cases.

An examination of the results shows that 15 out of the 20
subsets yielded detection rates above 81%. Of these subsets,
the results from sets 1, 16, 17, and 20 have false-positive rates
below 7%. Subset 17 achieved a detection rate of 91.55% at
a 2.68% false-positive rate and set 20 achieved a detection
rate of 91.71% at a 4.84% false-positive rate. Subset 14 had
the highest detection rate of 99.65% for normal records and,
consequently, the least false-positive rate of 0.35%. However,
the overall detection rate for subset 14 is extremely low for
anomalous events. Another aspect that we looked at is the
number of different attack types with above 80% detection
rate for each feature subset. We also examined the number of
new attack types with better than 80% detection rate for all
subsets. These two results are summarized in Table VII. From
Table VII, it can be seen that the feature subset 8 gives better
than 80% detection rate for 32 different attack types. It can also

TABLE V
RESULTS FOR FEATURE SUBSETS 1–10 WITH TRAINING SET 2 AND TEST SET 2

be seen that this subset gives above 80% detection rate for 14
out of the 17 new attack types. For the remaining three attack
types, mscan, xterm, and apache2 have the detection rates of
66.38%, 76.92%, and 79.22%, respectively. Attack types such
as buffer_overflow, guess_passwd, and xsnoop had detection
rates of 77.27%, 95.83%, and 100%, respectively.

D. Comparison of KDD Cup 99 Test Results
With Other Algorithms

In this section, we compare the performance of ESOM with
some of the other neural-network-based approaches such as
multilayer perceptron (MLP), ART, RBF, hierarchical Kohonen
network (HSOM), and other traditional algorithms such as
maximum-likelihood Gaussian classifier (GAU), nearest cluster
algorithm (NEA), K-means clustering algorithm (K-M), and
hypersphere algorithm (HYP). For this purpose, we use the

published results in [13], [26], and [32]. We compare the
percentage detection rates and percentage false-positive rates
for the basic four categories, namely PROBE, DOS, user-to-
root (U2R), and remote-to-local (R2L), of attacks in Table VIII.
The comparison is based on the test results we obtained for the
KDD Cup 99 test set using instances of ESOM that were trained
using training set 2 at a tmin threshold value of 0.45. The first
column identifies the specific algorithm used. For the studies in
[26] and [32], the effect of the feature subset is not considered.
Judging the effect of feature subsets on the detection rate and
false-positive rate is another goal in our paper and in [13].
Therefore, for ESOM and HSOM, we provide the results for
several feature subsets. We have only a single value of %FP for
each test case, whereas in [26], they have four different values
of false-positive rates. Therefore, for the results of Sabhnani
and Serpen, we list all four values for %FP. We also indicate
the number of neurons used, where applicable.

TABLE VI
RESULTS FOR FEATURE SUBSETS 11–20 WITH TRAINING SET 2 AND TEST SET 2

E. Tests and Results for Network Dump Data

Here, we describe the tests conducted on actual network
dump data collected in our own experimentation, and the results
obtained for those tests. We used a closed network of computers
to create the training and test data for the experiments. Different
attack events were created using standard software tools. The
packets were captured using Ethereal software and dumped into
designated files. These network dump data were then processed
using the tcptrace software. Tcptrace provides the capabilities
to process the individual packets into connection records, where
a connection record refers to all the packets that are transmitted
from the initiation of a network connection to the graceful,
or otherwise, termination of the connection. Besides the basic
features of the connection such as number of bytes transmitted
from the source to the destination and vice versa, service used,
the protocol, the times, and so on, tcptrace also allows us
to gather detailed statistics on each connection. At this time,

TABLE VII
NUMBER OF ATTACK EVENTS WITH ABOVE 80% DETECTION RATES

TABLE VIII
COMPARISON OF ESOM RESULTS WITH OTHER QUALIFIERS

tcptrace can be used to process transmission control protocol
(TCP) and user datagram protocol (UDP) records only. Internet
control message protocol (ICMP) traffic embedded in IP pack-
ets cannot be parsed into connection records. More details on
tcptrace can be found in [21].

For our training and test purposes, we created connection
records by extracting a subset of the basic and detailed statistics
derived by tcptrace for that connection. These features are listed
in Table IX. Next, we selected subsets from the features thus
extracted. These feature subsets were created by taking features
pertaining to handshake in one group (handshake), features
related to data transfer in another group (transfer), and general
aspects of the connection in another group (general). Then, we
created two subsets, one that combines feature sets general and
handshake (GH), and the other that combines all three of the
above subsets (GHT). The composition of these feature subsets
is given in Table X. The test set and training set were disjoint.
In addition to that, the test set contained anomaly events that
were not present in the training set. The results are shown
in Table XI. New anomalies not present in the training set

are shown in boldface. The first column represents the event
type. Each subsequent column indicates the results obtained
for a specific combination of features used. The percentage
of detection by event type is shown for each event type. The
overall detection rate, the number of neurons generated, and the
percentage of false positives are shown in the last three rows in
that order. Again, in these test cases, our algorithm successfully
detected seven new anomaly types that were not present in the
training set.

An analysis of the results contained in Table XI shows that
the overall detection rate is above 94% for each test case. The
false-positive rate is below 5.7% for all test cases. The highest
detection rate of 99.26% at a false-positive rate 5.68% was
obtained for the subset general using 166 neurons. The feature
subset GT gave a 98.69% detection rate at a false-positive rate
of 2.32%. The transfer features yielded 98.32% detection for
normal events, and hence, the best false-positive rate of 1.68%.
The sets general and GH had above 80% detection for each
of the 21 event types. GT is close behind with above 80%
detection for 20 event types.

TABLE IX
FIELDS IN A CONNECTION RECORD

III. DISCUSSION AND CONCLUSION

Rhodes et al. [8] analyzed the potential of K-Map to narrow
the envelope of intrusion behavior that would not be caught by
a detection system. Jirapummin et al. [9] used a hybrid neural-
network model that employed the output weight information
from a K-Map fed to a resilient propagation neural network
(RPROP) to detect TCP SYN flooding and port-scan attacks.
They used a Gaussian neighborhood function and a cluster
matching function to realize the K-Map, and also used the
KDD Cup 1999 data for training and testing. The hybrid model
was made up of a 1234-unit K-Map followed by a three-layer
RPROP network of 70, 12, and 4 neurons, respectively. Sigmoid
functions were used for each level of the RPROP network.
The focus was only on three different attacks, the Neptune (an
SYN flood attack), the satan probe, and the port-scan probe.

They achieved a 90% detection rate for satan attacks at a 4.5%
false-positive rate, a 97.9% detection rate for portsweep at
a 4.19% false-positive rate, and a 99.72% detection rate for
Neptune attacks at a 0.06% false-positive rate.

At Dalhousie University, Heywood and co-workers used
SOMs to perform host-based intrusion detection and network-
based intrusion detection [10]. In both cases, they used the
K-Map toolbox from MATLAB in realizing the SOMs. The
network-based IDS prototype used the preprocessed KDD Cup
99 data for training and testing. They used a hierarchical neural-
network approach based on K-Map and potential function clus-
tering [10]. Six basic features from the KDD 99 Cup records,
namely duration, protocol, service, flag, destination and source,
were used. At level 1, separate K-Maps were used for each
of these six features. The second-level K-Map combined the

TABLE X
FEATURE SUBSETS FOR EXPERIMENTS WITH NETWORK DUMP DATA

features detected by the first level into a single view. Potential
function clustering was used to quantize the number of inputs
seen by the second layer. A Gaussian hexagonal neighborhood
is used. They achieved an 89% detection rate at a false-positive
rate of 4.6%.

Sarasamma et al. used a multilevel hierarchical Kohonen net-
work to detect anomalous events in network data [13]. A cost-
effective hierarchical extension of the simple Kohonen network
was used to detect maximal number of attack types at low false-
positive rates. They also evaluated the effects of various feature
subsets on the detection rate and false-positive rate. Another
motivation of the work in [13] was to achieve a high-order
nonlinear classifier model to create clusters that model the in-
tersection of hypercylinders in a computationally efficient way.
Using a three-level hierarchical Kohonen net, they achieved
detection rates between 90.94% and 93.46% at false-positive
rates between 2.19% and 3.99% for three feature combinations.
Three of these results were achieved using 72 neurons in each
level, another three using 48 neurons in each level, and two
cases using 36 neurons in each level. When the attack types
were limited to Neptune, satan, and portsweep, they achieved
a 99.63% detection rate at a 0.34% false-positive rate. How-
ever, detection rates for attack types such as buffer_overflow,
guess_passwd, and xsnoop in KDD Cup 1999 data were poor.
One of the reasons for this was identified as the closely in-
tertwined nature of the feature vectors of anomaly and normal
events. Another reason was the fact that the feature vectors of
some anomalous events closely matched the normal events.

In this paper, we create hyperellipsoidal clusters of maximum
intra-cluster similarity and minimum intercluster similarity to
more accurately classify data points of a highly intertwining
nature, as seen in the KDD Cup 1999 data sets. We addressed
this problem by accretively building hyperellipsoidal clusters
at a slightly higher cost than that in [13]. We were able to get
detection rates of 77.27%, 95.83%, and 100%, respectively, for
the attack types buffer_overflow, guess_passwd, and xsnoop,
which is a significant improvement over that in [13]. We
achieved overall detection rates between 91.55% and 91.71%
at false-positive rates between 2.68% and 4.84% when used
for the entire attack range of the KDD Cup 1999 data. We

TABLE XI
RESULTS FOR NETWORK DUMP DATA

were able to obtain above 80% detection for 32 of the different
attack events using the feature subset 8. More importantly, the
min–max hyperellipsoidal clusters were able to detect from the
test set those anomalies that were not present in the training set.

We conducted experiments to evaluate the effect of feature
subsets on the detection rates and false-positive rates for KDD
99 as well as on actual network dump data. Feature subsets 7,
8, and 12 gave excellent detection rates four each of the four
categories, namely PROBE, DOS, R2L, and U2R. However, the
false-positive rate for the three sets is quite high. Set 14 yields a
99.65% detection rate for normal. Therefore, using an instance
of ESOM trained using set 14 to filter out the normal records,
followed by an ESOM trained with feature set 8, will yield both
a low false-positive rate below 0.5% at above 90% detection
rate for all four categories in the KDD-99 context.

We also applied the hyperellipsoidal clustering technique to
detect events in network dump data, where the header data were
processed by tcptrace to extract basic and derived features of
network connections. Using subsets of features from that, we
were able to get detection rates between 94.05% and 99.26% at
false-positive rates between 1.68% and 5.68%. Two feature sub-
sets gave detection rates between 80% and 100% for unknown
anomalous events. In this case, a detection strategy of applying
an ESOM trained on the transfer feature subset followed by
another ESOM trained using either the general or GH subset
gives excellent results.

ACKNOWLEDGMENT

The authors would like to thank J. Huff, R. Kimbrell,
and Northrop Grumman Mission Systems for facilitating this
research.

REFERENCES

[1] H. I. Avi-Itzhak, J. A. Van Mieghem, and L. Rubin, “Multiple subclass
pattern recognition: A maximum correlation approach,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 17, no. 4, pp. 418–431, Apr. 1995.

[2] A. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan, “Cost-based
modeling and evaluation for fraud and intrusion detection: Results from
the JAM project,” in Proc. DARPA Information Survivability Conf. and
Expo., Hilton Head, SC, 2000, vol. II, pp. 130–144.

[3] S. Stolfo et al. (2002, May). The Third International Knowledge Discov-
ery and Data Mining Tools Competition. [Online]. Available: http://kdd.
ics.uci.edu/databases/kddCup99/kddCup99.html

[4] A. Tikhonov and V. Arsenim, Solutions for Ill-Posed Problems. Wash-
ington, DC: W. H. Winston & Sons, 1977.

[5] A. Kirsch, An Introduction to the Mathematical Theory of Inverse
Problems. New York: Springer-Verlag, 1996.

[6] M. Kudo et al., “Construction of class regions by a randomized algo-
rithm: A randomized subclass method,” Pattern Recognit., vol. 29, no. 4,
pp. 581–588, Apr. 1996.

[7] Y. Nakamori and M. Ryoke, “Identification of fuzzy prediction models
through hyper ellipsoidal clustering,” IEEE Trans. Syst., Man, Cybern.,
vol. 24, no. 8, pp. 1153–1173, Aug. 1998.

[8] B. Rhodes, J. Mahaffey, and J. Cannady. (2000, Oct.). “Multiple self-
organizing maps for intrusion detection,” Proc. 23rd Nat. Information Sys-
tems Security Conf., Baltimore, MD. [Online]. Available: http://dbvis.fmi.
uni-konstanz.de/members/panse/seminar_ws0203/pdf/045.pdf

[9] C. Jirapummin, N. Wattanapongsakorn, and P. Kanthamanon. Hybrid
Neural Networks for Intrusion Detection Systems. [Online]. Available:
http://dbvis.fmi.uni-konstanz-de/members/panse/seminar_ws0203/

[10] H. Kayacik, A. Zincir-Heywood, and M. Heywood, “On the capability of
an SOM based intrusion detection system,” in Proc. IEEE Int. Joint Conf.
Neural Networks (IJCNN), Portland, OR, 2003, pp. 1808–1813.

[11] W. Lee, S. Stolfo, and K. Mok, “A data mining framework for building
intrusion detection models,” in Proc. IEEE Symp. Security and Privacy,
Oakland, CA, 1999, pp. 120–132.

[12] R. P. LippMann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall,
D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K.
Cunningham, and M. A. Zissman, “Evaluating intrusion detection sys-
tems: The 1998 DARPA off-line intrusion detection evaluation,” in Proc.
DARPA Information Survivability Conf. and Expo., Hilton Head, SC,
2000, vol. 2, pp. 12–26.

[13] S. Sarasamma, Q. Zhu, and J. Huff, “Hierarchical Kohonen net for anom-
aly detection in network security,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 35, no. 2, pp. 302–312, Apr. 2005.

[14] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. (2002). “A
geometric framework for unsupervised anomaly detection: Detecting in-
trusions in unlabeled data,” in Data Mining for Security Applications,
Boston, MA. [Online]. Available: http://www1.cs.columbia.edu/ids/

[15] D. Barbara, N. Wu, and S. Jajodia. (2001). “Detecting novel network
intrusions using Bayes estimators,” in Proc. 1st SIAM Int. Conf. Data
Mining (SDM), Chicago, IL. [Online]. Available: http://ifsc.ualr.edu/wu/
Paper/paper.html

[16] R. A. Maxion and K. M. C. Tan, “Anomaly detection in embedded sys-
tems,” IEEE Trans. Comput., vol. 51, no. 2, pp. 108–120, Feb. 2002.

[17] K. M. C. Tan and R. A. Maxion, “Determining the operational limits of an
anomaly-based intrusion detector,” IEEE J. Sel. Areas Commun., vol. 21,
no. 1, pp. 96–110, Jan. 2003.

[18] T. Lane and C. E. Brodley, “Sequence matching and learning in anomaly
detection for computer security,” in Proc. AAAI Workshop: AI Approaches
Fraud Detection and Risk Management, Providence, RI, 1997, pp. 43–49.

[19] J. Oldmeadow, S. Ravinutala, and C. Leckie, “Adaptive clustering for
network intrusion detection,” in Proc. 3rd Int. Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining (PAKDD), Sydney, Australia, 2004,
pp. 255–259.

[20] K. Leung and C. Leckie. (2005, Jan.). “Unsupervised anomaly detection
in network intrusion detection using clusters,” in Proc. 28th Australian
Computer Science Conf., Newcastle, Australia, pp. 333–342. [Online].
Available: http://crpit.com/confpapers/CRPITV38Leung.pdf

[21] S. Ostermann. tcptrace. [Online]. Available: http://www.tcptrace.org/
new.html

[22] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. (2003,
May). “A comparative study of anomaly detection schemes in net-
work intrusion detection,” in Proc. 3rd SIAM Conf. Data Mining, San
Francisco, CA. [Online]. Available: http://www.cs.umn.edu/research/
minds/MINDS_papers.htm

[23] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou, “Specification-based anomaly detection: A new approach for de-

tecting network intrusions,” in Proc. ACM Conf. Computer and Commu-
nications Security Session: Intrusion Detection, Washington, DC, 2002,
pp. 265–274.

[24] T. Kohonen, Self-Organizing Maps, 3rd ed, vol. 30. Berlin, Germany:
Springer-Verlag, 2001.

[25] R. Nath, W. Jackson, and T. Jones, “A comparison of the classical and the
linear programming approaches to the classification problem in discrimi-
nant analysis,” J. Stat. Comput. Simul., vol. 41, no. 1, pp. 73–93, 1992.

[26] M. Sabhnani and G. Serpen, “Application of machine learning algorithms
to KDD intrusion detection dataset within misuse detection context,” in
Proc. Int. Conf. Machine Learning Models, Technologies and Applica-
tions, Las Vegas, NV, Jun. 2003, pp. 209–215.

[27] P. A. Porras and P. G. Neumann, “EMERALD: Event monitoring enabling
responses to anomalous live disturbances,” in Proc. Nat. Information
Systems Security Conf., Baltimore, MD, Oct. 1997, pp. 353–365.

[28] P. G. Neumann and P. A. Porras, “Experience with EMERALD to date,”
in Proc. 1st USENIX Workshop Intrusion Detection and Network Moni-
toring, Santa Clara, CA, Apr. 1999, pp. 73–80.

[29] U. Lindqvist and P. A. Porras, “Detecting computer and network
misuse through the production-based expert system toolset (P-BEST),”
in Proc. IEEE Symp. Security and Privacy, Oakland, CA, May 1999,
pp. 146–161.

[30] Q. Zhu, Y. Cai, and L. Liu, “A multiple hyper-ellipsoidal subclass model
for an evolutionary classifier,” Pattern Recognit., vol. 34, no. 3, pp. 547–
560, Mar. 2001.

[31] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, Oct. 2004.

[32] M. Amini and R. Jalili, “Network-based intrusion detection using unsu-
pervised adaptive resonance theory (ART),” in Proc. 4th Int. ICSC Symp.
Engineering Intelligent Systems (EIS), Island of Madeira, Portugal, 2004.
[Online]. Available: http://www.x-cd.com/eis04/search.html

[33] S. Marsland, “Novelty detection in learning systems,” Neural Comput.
Surv., vol. 3, pp. 157–195, 2003.

[34] A. Baker, J. Beale, B. Caswell, and M. Poore, Snort 2.1 Intrusion
Detection, 2nd ed. Rockland, MA: Syngress, 2004.

[35] G. A. Barreto, J. C. M. Mota, L. G. M. Souza, R. A. Frota, and
L. Aguayo, “Condition monitoring of 3G cellular networks through
competitive neural models,” IEEE Trans. Neural Netw., vol. 16, no. 5,
pp. 1064–1075, Sep. 2005.

[36] Z. Chen and S. Haykin, “On different facets of regularization theory,”
Neural Comput., vol. 14, no. 12, pp. 2791–2846, Dec. 2002.

Suseela T. Sarasamma received the M.Eng. degree
in electrical and computer engineering from Con-
cordia University, Montreal, QC, Canada, in 1991,
and the Ph.D. degree in computer science from the
University of Nebraska at Lincoln in 1996.

She is a Senior Software Engineer at Northrop
Grumman Mission Systems, Bellevue, NE. Her cur-
rent interests are in the design and development
of scientific algorithms for practical applications.
Some specific areas are network intrusion detection,
data mining, and collective knowledge inference

techniques.
Dr. Sarasamma has been a member of the Association for Computing

Machinery since 1993.

Qiuming A. Zhu (SM’97) received the Ph.D. degree
in computer and systems engineering from Rensse-
laer Polytechnic Institute, Troy, NY, in 1986.

He is a Professor of computer science at the
University of Nebraska at Omaha. He did his post-
doctoral Research in the Center for Computer Aids
for Industrial Productivity at Rutgers University, and
was an Assistant Professor of computer science and
engineering at Oakland University from 1986 to
1990. His research interests include digital image
processing and computer vision, pattern recognition,

neural networks, multiagent software systems, and artificial-intelligence appli-
cations in science and engineering.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	8-2006

	Min–Max Hyperellipsoidal Clustering for Anomaly Detection in Network Security
	Suseela T. Sarasamma
	Qiuming Zhu
	Recommended Citation

	tmp.1461882214.pdf.qxTkj

