University of Richmond UR Scholarship Repository

Master's Theses

Student Research

3-1989

Risk perception and precautionary intent for common consumer products

Elaine G. Martin

Follow this and additional works at: http://scholarship.richmond.edu/masters-theses

Recommended Citation

Martin, Elaine G., "Risk perception and precautionary intent for common consumer products" (1989). Master's Theses. Paper 519.

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.

Risk Perception and Precautionary Intent

for Common Consumer Products

⊖ by

Elaine G. Martin

Approved by:

Muha alter, Clair

Dr. Michael S. Wogalt

zh. 🕻 Barbara K

Dr. Scott T. Allison

3/ 189 30

Date

2

<u>3-30-89</u> Date

Risk Perception and Precautionary Intent

For Common Consumer Products

by:

Elaine G. Martin Master of Arts in Psychology University of Richmond 1989 Thesis Director: Dr. Michael S. Wogalter

ABSTRACT

This study attempted to determine if accident scenario analysis reduces accident frequency misestimations and leads to heightened precautionary intent for products. Subjects generated or were provided with scenarios and made estimates. Other subjects made estimates at varying paces without analysis. These and an additional group then rated their precautionary intent for the products. Subjects also gave ratings for confidence in their estimations reported injury experience related to the products. No differences were found among the group correlations. Analyses showed that the Scenario groups performed no better and sometimes worse than the other groups. The Hurried subjects reported lower precautionary intent ratings than other groups. Subjects with injury experience reported higher precautionary intent than subjects without such experience. No relationship was found between precautionary intent and frequency estimates. It is concluded that personal knowledge of accidents rather than general knowledge of accidents or frequencies may be a better predictor of intended behavior.

RISK PERCEPTION AND PRECAUTIONARY INTENT FOR COMMON CONSUMER PRODUCTS

By

Elaine G. Martin B.S., Lynchburg College, 1985

A Thesis

Submitted to the Graduate Faculty

of the University of Richmond

in Candidacy

for the degree of

Master of Arts

in

Psychology

May 1989

LIBRARY UNIVERSITY OF RICHMOND VIRGINIA 23173

TABLE OF CONTENTS

		<u>Page</u>
1.	INTRODUCTION	1
2.	FACTORS AFFECTIONG PERCEPTIONS OF HAZARDOUSNESS	1
3.	HEURISTICS AND RISK MISPERCEPTION	2
4.	FAULT TREES	4
5.	PRECAUTIONARY INTENT	11
6.	PRODUCT PERCEPTION STUDY	11
7.	METHOD	11
8.	RESULTS	18
9.	RESPONSE TIMES	18
10.	TESTING BETWEEN CORRELATIONS	18
11.	ANALYSES OF VARIANCE FOR CORRELATIONS	19
12.	DIFFERENCES BETWEEN ESTIMATES AND NEISS FREQUENCIES	21
13.	PRODUCTS AS A RANDOM VARIABLE	24
14.	PRECAUTIONARY INTENT	29
15.	CONFIDENCE	32
16.	INJURY EXPERIENCE	32
17.	ANALYSES FROM PRODUCT PERCEPTION STUDY	35
18.	DISCUSSION	38
19.	REFERENCES	48
20.	APPENDIX A: FAULT TREES USED BY SCENARIO PROVIDED GROUP	50
21.	APPENDIX B: MATERIALS AND INSTRUCTIONS	69
22.	APPENDIX C: DATA AND ANALYSES FOR RESPONSE TIMES	87
23.	APPENDIX D: GROUP ESTIMATES AND CORRELATIONS	92

24.	APPENDIX E:	INDIVIDUAL CORRELATIONS	111
25.	APPENDIX F:	ESTIMATE DIFFERENCES FROM NEISS FREQUENCIES	123
26.	APPENDIX G:	PRODUCTS AS A RANDOM VARIABLE	130
27.	APPENDIX H:	DATA AND ANALYSES FOR PRECAUTIONARY INTENT	147
28.	APPENDIX I:	ANALYSES FOR INJURY EXPERIENCE	159
29.	APPENDIX J:	ANALYSES FROM PRODUCT PERCEPTION STUDY	170

LIST OF TABLES

	<u>Page</u>
Table 1. Products, Frequency Category, and NEISS Accident	
Frequencies	13
Table 2. Product Category Means for Individual Correlations	20
Table 3. Group and Product Category Means for Logarithms of	
Individual Correlations	22
Table 4. Mean Differences of Estimates from NEISS Frequencies	by
Product Frequency Category and Group	25
Table 5. Group and Product Category Means for Logarithms of	
Estimate Differences	26
Table 6. Product Category Means for Absolute Differences of	
Estimates from NEISS Frequencies	27
Table 7. Group and Product Category Means for Estimate	
Differences from NEISS Frequencies Using Products as	a
Random Variable	28
Table 8. Group and Product Category Means for Estimate	
Logarithms from NEISS Frequencies Using Products as a	a
Random Variable	30
Table 9. Means for Analysis of Variance for Precautionary Intent	•
by Group and Product Category	31
Table 10. Precautionary Intent Correlated with NEISS Frequencie	s 33
Table 11. Estimate Means for Products Based on Injury Esperience	e 34
Table 12. Precautionary Intent Ratings for Products Based on Inj	ury
Experience	36

Table 13. Correlations for Questions From Product Perception Study 37

•

Risk Perception and Precautionary Intent for Common Consumer Products

The perception of risk is an important component in determining action and in preventing injury. Determining how individuals perceive risk, make judgments, and use available information is crucial for persons who must develop the design and display of warnings. If individuals misperceive the hazards or risks they may fail to read or heed vital safety information and serious consequences may result. Recent research has investigated the methods by which individuals make decisions regarding hazard information.

Until recently there has been little research on consumer product risk perception. Several important variables have emerged in the existing research. Familiarity with a product, severity of injury, willingness to read warnings, and precautionary intent for product use have been examined.

Factors Affecting Perceptions of Hazardousness

Godfrey, Allender, Laughery, and Smith (1983) had subjects rate consumer products along several dimensions including hazardousness and familiarity with a product. The results showed that the more familiar a person is with a product, the less hazardous he or she perceives that product to be. Godfrey and Laughery (1984) and Wogalter, Desaulmers, and Brelsford (1986) also found that higher familiarity is associated with lower perceptions of hazardousness. Hence, familiarity may lead to misperceptions of product hazardousness.

Severity of injury is also associated with perceptions of product

hazardousness. Wogalter, Desaulniers, and Brelsford (1987) had subjects generate accident scenarios for 18 consumer products. Subjects were then asked to rate the hazardousness, likelihood of injury, and severity of injury for each. Overall product hazardousness was positively correlated with severity of injury of generated scenarios ($\underline{r} = .90$, $\underline{p} < .0001$). Familiarity (frequency and time of contact) and judged likelihood of injury added little variance to the prediction of hazardousness beyond that accounted for by the severity variable. Hence, with regard to perceptions of hazardousness, severity is more important than familiarity.

Research also shows that hazardousness and severity have been positively correlated with looking for a product warning (Godfrey et al., 1983), willingness to read product warnings (Wogalter et al., 1986), and the level of precautionary intent that individuals report they will take when using a product (Wogalter et al. 1987). A negative relationship has been found between familiarity and these variables. These findings suggest that in order for a consumer to read and take precautionary measures regarding a product, he or she must be relatively unfamiliar with a product and perceive that the product will produce severe injury.

It is important to understand how individuals determine their perceptions of hazardousness, and if the decisions they make are accurate. Errors can lead to failure to gain important information about products, and this may lead to improper usage resulting in injury or death. People may be less likely to engage in precautionary behavior for products judged less hazardous then they actually might be.

Heuristics and Risk Misperception

Tversky and Kahneman (1973) suggested that people sometimes use heuristics, rules of thumb, for decision making and judgment. Generally, these rules of thumb are useful and accurate in the decision making process; however, their use can also lead to errors.

One type of heuristic that is used in frequency estimation tasks and probability tasks is the "availability heuristic". The premise of this rule of thumb is that individuals often determine the probability or frequency of an event by the ease with which similar events can be retrieved or by the number of such events that can be remembered. For the most part, this is a fairly accurate way of making a decision; however, in some circumstances availability is affected by factors other than actual frequency. The salience or vividness, the amount of media coverage, or the number of people affected can all contribute to ease of availability. Thus, ease of retrieval of information can be misinterpreted as evidence that an event happens frequently.

In order to determine the effects of the availability heuristic on risk perception, Lichtenstein, Slovic, Fischoff, Layman, and Combs (1978) examined individuals' frequency estimations for causes of deaths. College students and members of the League of Women voters were presented with pairs of causes of death and asked to choose which was the more likely cause of death. They were also asked to estimate the ratio by which the more frequent cause occurred. The findings showed that subjects were more likely to select accidents as a cause of death over disease when in fact the reverse is true. Subjects overestimated infrequent causes of death and underestimated the more frequent causes of death as compiled by the National Center for Health Statistics. Lichtenstein et al. argued that the more unusual or infrequently occurring types of death may be more available to people since they are more likely to be printed in the newspapers or given television and radio air time than other kinds of deaths. Silent killers such as heart disease and cancer kill more people each year but these individual deaths are not considered to be as newsworthy as tornadoes and plane crashes. Lichtenstein et al. argued that the large scale catastrophic events remain vivid in peoples' minds.

Lichtenstein et al. attempted to remove this estimation bias by informing the subjects of the types of errors that are made due to the availability and salience of certain types of death. Despite this information, there was no evidence of debiasing; subjects continued to make severe and consistent errors in judging the frequency of lethal events. Lichtenstein et al. hypothesized that this bias might be removed through other means such as the use of fault tree construction.

Fault trees

One approach to problem solving and decision making is representing the problem in an organized manner. This can be accomplished by the use of fault trees. Fault trees are often used in industrial settings to determine where and how errors in a system may occur. A fault tree organizes possible sources of trouble or alternative solutions into a branching structure. The top of the fault tree hierarchy presents the problem. The level below it describes major sources of trouble or alternatives, and the level below that branches out further for the listing of specific items. Because fault tree construction is dependent on the recall or generation of multiple alternative scenarios, items not readily available and therefore not generated by an individual may cause errors in analysis.

Fischoff, Slovic, and Lichtenstein (1978) examined how leaving out sections of a fault tree could alter perceptions about how system failure could occur. For example, subjects were presented with fault trees listing possible causes for a car that fails to start. Some subjects received trees that contained eight branches including one entitled "all other causes". Other subjects received fault trees that lacked several branches such as "battery failure" but always included the "all other causes" category. All subjects were asked to estimate the percentage of failures to start the car that should be attributed to each branch. Those subjects who had fault trees with branches missing should have attributed higher percentages to the "all other causes" category than the subjects with eight branches. This did not occur. Instead, subjects who were missing branches simply attributed higher percentages to the causes that were present. This underestimation of the "all other causes" category demonstrates a failure to properly estimate probabilities and supports the notion that availability can affect frequency estimates. Because perception of risk or hazard is dependent upon people recognizing the ways in which injury may occur, the failure to generate all the scenarios in which they may be harmed may lead to incorrect perceptions of the hazards associated with each product.

Another means of debiasing subjects was attempted by Brems (1986, 1987). Three experiments were conducted in order to investigate the nature of risk perception and more specifically, to determine if careful

analysis of products and accident scenarios would lead to more accurate perceptions of risk. Because of the importance of Brems' research in the present context, it will be discussed in detail.

Brems (1986) attempted to investigate subjects' ability to recall and generate accident scenarios based on accident frequencies provided by the National Electronic Injury Surveillance System (NEISS) which is maintained by the Consumer Products Safety Commission (CPSC). Subjects completed the following tasks:

- Task 1: Subjects rank ordered the products according to estimated annual emergency room visits.
- Task 2: Given an anchor point (the number of annual emergency room visits associated with swimming pools and accessories) subjects estimated the number of annual emergency room visits associated with each product.
- Task 3: Subjects generated accident scenarios for each product.
- Task 4: Subjects assigned percentages of accidents associated with each of the scenarios.
- Task 5: Subjects reported how they knew of each scenario.
- Task 6: Subjects were given the opportunity to reorder their original rankings.

The rank ordering and the correlation between emergency room visits and frequency estimates was quite reasonable before the scenario task ($\underline{r} = .60$, n = 13, $\underline{p} < .05$). The recalling and ratings of the accident scenarios did not change the rank ordering of the products. Subjects then reported the knowledge source for each scenario (i.e., happened to them,

news media, product warnings). The total number of times each knowledge source was mentioned was correlated with the NEISS accident frequencies for that product. Scenarios that an individual reported as having actually experienced were better predictors of true accident frequency than scenarios generated from other sources of knowledge including warnings and the news media. Unless other variables were operating, the results of this study suggest that a person may have to experience product related injury in order to perceive a product's risks accurately. Clearly, a better method of risk perception is desired.

A second experiment by Brems addressed several related issues. Did subjects automatically generate scenarios when they engaged in the rank order and estimation tasks? Was the failure to generate all possible accident scenarios in the first experiment due to a memory failure or a lack of awareness of the scenario?

The tasks in the second experiment were as follows:

- Task 1: Subjects gave a quick estimation of accident frequencies.
- Task 2: Subjects gave an unhurried estimation of accident frequencies.
- Task 3: Subjects generated accident scenarios.
- Task 4: Subjects estimated the percentage of accidents associated with each scenario.
- Task 5: Subjects were presented with a list of all possible scenarios (a compilation of all the scenarios generated by subjects in the first experiment) and asked if they were unaware of the scenarios or had just failed to recall them.

- Task 6: Subjects estimated the percentage of accidents associated with each scenario from the list of all possible scenarios.
- Task 7: Subjects estimated the number of emergency room visits associated with each product as they did in Task 2.

The pattern of results were similar to those found by Lichtenstein et al.: Infrequent events were overestimated and more frequently occurring events were underestimated. Responses made very quickly, that is without time to generate a scenario, were just as accurate as those made at a less hurried pace. The correlations were .78, .72, and .66 for hurried estimates, unhurried estimates, and estimates made after scenarios were generated. The mean response time for Task 1 was less than 2 seconds; the response time for Task 2 was 3.5 seconds, suggesting that the subjects must not have generated many scenarios during their estimations. Both of these types of estimates were as accurate as those made after 1/2 hour of recalling and rating the accident scenarios. Subjects reported more often that failure to produce a scenario was due to failure to recall rather than lack of awareness of the scenario. From these results it appears that scenario generation has little effect on perception of accident frequencies.

Why consideration of the accident scenarios was not helpful is not clear. One possibility is that subjects did not generate a sufficient percentage of scenarios to be helpful. While subjects reported that they had accounted for 80% of the possible scenarios, they had only accounted for 40%. An explanation posited by Brems was that subjects were unable to organize and refer to the scenarios during the final estimation task and therefore did not benefit from them. A third experiment by Brems (1987) was designed to determine if organization of scenarios through the implementation of fault trees would improve accident frequency estimations.

- Task 1: Subjects gave a quick estimation of frequencies followed by confidence ratings for their estimated frequencies.
- Task 2: Subjects gave an unhurried estimation of frequencies followed by confidence ratings.
- Task 3: Subjects created fault trees for each product category.
- Task 4: Subjects estimated injury frequencies using the fault trees they had created. Subjects again gave confidence ratings.

Frequency estimates were correlated with true accident frequencies and as in the two previous experiments, subjects tended to overestimate the less frequently occurring accidents and underestimate the more frequently occurring ones. The correlations between NEISS logs and the logs of mean frequency estimates were .75, .70, and .64 for Tasks 1, 2, and 4, respectively. The differences between these correlations were not statistically significant, $\underline{p} > .05$. Estimates for Task 2 were significantly larger than estimates on Task 1, $\underline{1}(29) = 2.91$, $\underline{p} < .01$; however, there were no differences between estimates in Task 2 and Task 4, $\underline{1}(29) = 0.73$, $\underline{p} >$.10. There were no significant differences in correlations between estimates and accident frequencies among Tasks 1, 2, or 4. Thus, the fault trees, organization of the scenario information, did not appear to aid the subjects in frequency estimation. The subjects' ratings of confidence, however, were higher in the frequency estimation task following the generation of the fault trees. While subjects did not improve upon their performance, the process of analysis gave them a false sense of confidence that they had performed better. A possible explanation is that analysis may be ineffective in frequency estimation tasks and in fact may lead to perceptual errors (i.e., overconfidence).

The findings of these experiments suggest that knowledge about accident frequencies is accessible without the use of accident scenarios. There are several possible explanations. It is possible that risks are associated with products in semantic memory and do not need to be analyzed or extracted separately. It is also possible that knowledge of scenarios does not provide sufficient information to improve estimates. Another possible explanation, however, lies within the methodology of these studies. Because of the within-subjects design, the same subjects were asked to give frequency estimates two or more times. The failure to find a difference in estimations after quick estimates, more leisurely estimates, and after fault tree analyses may be a result of the subjects' reluctance to stray too far from their original estimations. That is, the beneficial effects of these manipulations might have been hidden because of the experimental design that was used. A between-subjects design in which some subjects make hurried estimates and other subjects make use of accident scenario analysis before providing frequency estimates might show differences among the groups. This might demonstrate that scenario analyses allow individuals to make better estimates thereby eliminating overestimation of low frequency accidents and underestimation of high frequency accidents. If this occurred, not only would it tell something about the cognitive processes but it would also suggest a way to present

product warnings or other methods of conveying information. Warnings might need to be designed in a way to inform people more completely of the hazards and circumstances in which they may be harmed by a product. <u>Precautionary Intent</u>

While accident frequency estimation has been used in a number of studies examining risk misperceptions, it is not necessarily the best predictor of people's recognition of hazards. A more relevant and direct measure of risk perception is the person's precautionary intent; that is, how much precaution an individual reports to be willing to engage in when using a specific product. It is, after all, the individuals' behavior regarding a product that is most important, not how well he or she can estimate accident frequencies. By recognizing and considering the ways in which one may be injured, individuals may report appropriately heightened precautionary intent when using a hazardous product. Therefore, generation and use of accident scenarios was examined not only to determine if they improve accident frequency estimation but also to determine if they have an effect on precautionary intent.

Product Perception Study

Because many variables can influence perceptions of hazardousness and precautionary intent, a separate group of subjects was used to obtain additional data. These data were used to determine characteristics of the products, including familiarity and frequency of use, that may influence precautionary intent.

Method

<u>Subjects</u>

In the preliminary study, 24 University of Richmond undergraduates served as subjects. In the main experiment, subjects were 80 University of Richmond undergraduates, 40 males and 40 females, participating for credit in introductory psychology classes. The subjects were randomly assigned to one of five groups with each group containing an equal number of subjects. An additional group of 31 University of Richmond undergraduates participated in a follow-up ratings study.

<u>Materials</u>

Eighteen product categories, six in each of three groups of high, medium, or low accident frequencies, were selected, based on the range of accident frequencies in which they fell, from the 1986 National Electronic Injury Surveillance System (NEISS) data base, which is maintained by the U. S. Consumer Product Safety Commission (CPSC).

The NEISS data base is comprised of estimates of yearly national emergency room injury frequencies; these frequencies are based on a sample of 72 hospitals that have been determined to be statistically representative of emergency rooms across the United States. <u>Procedure</u>

After signing consent forms, subjects were randomly assigned to one of five groups. A set of instructions was then read to each subject. <u>The Hurried Estimation</u> group completed the following tasks:

Task 1: Subjects were read product categories and asked to give an estimate within 2 seconds of the annual accident frequencies associated with each product. The importance of giving immediate estimates was emphasized to the subjects.

•

Table 1

Products, Frequency Category, and NEISS Accident Frequencies

BleachLow15,109FansLow17,454GasolineLow17,768TelevisionsLow25,435ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,606Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh216,246KnivesHigh333,478BicyclesHigh333,478	Product Name	Frequency Category	Accident Frequency
BleachLow15,109FansLow17,454GasolineLow17,768TelevisionsLow25,435ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh216,246KnivesHigh333,478BicyclesHigh333,478	Vacuum cleaners	Low	11,117
FansLow17,454GasolineLow17,768TelevisionsLow25,435ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Fireworks	Low	12,602
GasolineLow17,768TelevisionsLow25,435ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Bleach	Low	15,109
TelevisionsLow25,435ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh216,246Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh101,865	Fans	Low	17,454
ChainsawsMedium23,433ChainsawsMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh101,865	Gasoline	Low	17,768
HammersMedium45,012HammersMedium48,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Televisions	Low	25,435
SkateboardsMedium46,479SkateboardsMedium81,066Drinking glassesMedium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh104,479	Chainsaws	Medium	45,012
Drinking glassesMedium81,006All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh104	Hammers	Medium	48,479
All terrain vehicles (ATVs)Medium81,606All terrain vehicles (ATVs)Medium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Skateboards	Medium	81,066
LaddersMedium86,400LaddersMedium90,019Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh101,866	Drinking glasses	Medium	81,606
Bathtubs and showersHigh90,019Windows and window glassHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh101,866	All terrain vehicles (ATV	s) Medium	86,400
Bathtubs and showersHigh101,866Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Ladders	Medium	90,019
Windows and window glassHigh128,777Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh333,478	Bathtubs and showers	High	
Nails, screws, thumbtacksHigh214,656Drugs and medicationHigh216,246KnivesHigh333,478BicyclesHigh	Windows and window glas	ss High	
Drugs and medication High 216,246 Knives High 333,478 Bicycles High	Nails, screws, thumbtac	ks High	
Knives High 333,478 Bicycles High	Drugs and medication	High	
Bicycles High	Knives	High	•
	Bicycles	High	546,420

Task 2: Subjects gave ratings of precautionary intent for each product. Subjects were given a scale from one to nine with the following anchors: no precaution at all (1); little precaution (3-4); moderate precaution (6-7); and extreme precaution (9).

- Task 3: Subjects gave confidence ratings for the estimated frequencies. Subjects were given a scale from 1-9 with the following anchors: no relationship between estimated and actual frequencies(1); moderate relationship between estimated and actual frequencies (5); and perfect relationship between estimated and actual frequencies (9).
- Task 4: For each product, subjects answered either yes (1) or no (0) if they or someone they know had experienced injury related to the product.

Subjects in the Unhurried Estimation group completed the following tasks:

- Task 1: Subjects, after being instructed to take as much time as they needed, were asked to give estimates of the annual accident frequencies associated with each product.
- Task 2: Subjects gave ratings of precautionary intent for each product.
- Task 3: Subjects gave confidence ratings for the estimated frequencies.
- Task 4: For each product, subjects reported if they or someone they know had experienced injury related to the product.
- Subjects in the Scenario Generate group completed the following tasks:
 - Task 1: Subjects constructed fault trees, attempting to identify all reasonable accident scenarios for each product.

- Task 2: Using the fault trees for reference, subjects made an estimation of the annual accident frequencies associated with each product.
- Task 3: Subjects gave ratings of precautionary intent for each product.
- Task 4: Subjects gave confidence ratings for the estimated frequencies.
- Task 5: For each product, subjects reported if they or someone they know had experienced injury related to the product.
- Subjects in the Scenario Provided group completed the following tasks:
 - Task 1: Subjects were given a set of fault trees with all reasonable accident scenarios. (A preliminary study in which all reasonable scenarios was compiled will be described later.) Using the fault trees for reference, these subjects made an estimation of the annual accident frequencies associated with each product.
 - Task 2: Subjects gave ratings of precautionary intent for each product.
 - Task 3: Subjects gave confidence ratings for the estimated frequencies.
 - Task 4: For each product, subjects reported if they or someone they know had experienced injury related to the product.
- Subjects in the Precaution Only group completed the following tasks:
 - Task 1: Without having given accident frequency estimates, the subjects gave ratings of precautionary intent for each product.
 - Task 2: For each product, subjects reported if they or someone they know had experienced injury related to the product.

The experimenter described fault trees for the Scenario Generate and Scenario Provided groups. An example of a fault tree describing accident scenarios with swimming pools and accessories was provided for these subjects. The subjects were informed that the top levels of the fault trees were for general categories and that the bottom levels should be used to list more specific accidents or scenarios.

Prior to estimating the annual frequency of emergency room injuries associated with each product, subjects were told that 88,000 emergency room injuries are associated with "swimming pools and accessories" annually. The experimenter read off one category at a time in random order, and the subject responded vocally with a frequency estimate. Each random order was given to one subject in each of the five groups for a total of 16 product orders. Answers were recorded by the experimenter and sessions with subjects were tape recorded.

A preliminary study was conducted in order to obtain a list of all reasonable accident scenarios for each product category. The subjects were given unlimited time to generate as many scenarios as possible for each product. Each subject was given six fault trees to complete out of the list of 18 products so that a total of eight fault trees per product was collected. Subject responses were pooled to form the list of all reasonable scenarios (see Appendix A). Responses that were redundant or did not fit into the context of physical injuries were eliminated.

Thirty-one additional subjects were asked a series of questions about the 18 products. Each subject received one of two product orders and answered seven questions, randomly ordered for each subject. The questions were placed on a 9 point Likert scale with endpoints of 0 and 8. Subjects rated all products for a particular question before going on to the the next question. The questions were:

"How frequently do you use this product?" with anchors of never
 (0), infrequent (2), frequent (4), very frequent (6), and extremely frequent
 (8);

2) "How knowledgeable are you about the product?" with anchors of not at all knowledgeable (0), slightly knowledgeable (2), knowledgeable (4), very knowledgeable (6), and extremely knowledgeable (8);

3) "How severely might you be injured with this product?" with anchors of not at all (0), slight injury (2), severe injury (4), extremely severe injury (6), and death (8);

4) "How likely (probable) are you to read a warning for this product?" with anchors of not at all (0), not likely (2), likely (4), very likely (6), and extremely likely (8);

5) "How technologically complex do you consider this product?" with anchors of not at all complex (0), slightly complex (2), complex (4), very complex (6), and extremely complex (8);

6) How likely (probable) would it be that you would be severely
injured (requiring emergency room care or resulting in permanent injury)
by this product in the next year?" with anchors of not at all (0), unlikely
(2), somewhat unlikely (4), likely (6), and extremely unlikely (8); and

7) "How likely (probable) would it be that you would receive any sort of minor injury by this product in the next year?" with anchors of not at all (0), unlikely (2), somewhat unlikely (4), likely (6), and extremely unlikely

(8).

Subjects were told that even though only some of the scale points were associated with verbal anchors, they were free to use any integer between 0 and 8.

Results

Response Times

The mean response times for product estimation for the Hurried and Unhurried Estimation groups were 1.96 and 3.76 seconds, respectively. An analysis of variance showed that the Hurried Estimation group responded significantly faster than the Unhurried Estimation group, E(1,30) = 15.37, <u>p</u> < .005. An analysis of variance of group by product category (low, medium, high frequency) showed no significant interaction for either raw response times or logarithms of the scores, E(1,30) = 1.32, <u>p</u> > .05, and E(1,30) = 1.37, <u>p</u> > .05.

Testing Between Correlations

Mean product accident frequency estimates were calculated for each group. Logarithms and square roots for both the estimates and NEISS frequencies were also generated because the variance around product estimates in the high category is larger than the variance around the product estimates in the low category. Correlations with the NEISS frequencies were then calculated for the mean estimates. For the Hurried group, $\underline{r} = .54$, N = 16, $\underline{p} < .03$. For the Unhurried group, $\underline{r} = .54$, N = 16, $\underline{p} < .03$. For the Scenario Generate group, $\underline{r} = .65$, N = 16, $\underline{p} < .004$. For the Scenario Provided group, $\underline{r} = .62$, N = 16, $\underline{p} < .007$. The logarithms of the estimates were correlated with the NEISS frequency transformations. For the Hurried, Unhurried, Scenario Generate, and Scenario Provided groups, the logarithm correlations were: .64, .53, .68 and .66, respectively. Also, the estimates and the NEISS frequencies were transformed to square roots. The correlations for the Hurried, Unhurried, Scenario Generate, and Scenario Provided groups were: .63, .55, .71, and .67, respectively.

All sets of correlations were then converted to Z scores using Fisher's Z prime transformation to determine whether there were significant differences between the correlations. No differences in correlations were found among the raw score, logarithm or square root means, p's > .05.

Analyses of Variance for Correlations

Correlations of estimates with NEISS frequencies for each of the 18 products were generated for each individual subject. These correlations provided a measure of estimation accuracy by examining subjects ordering of the frequencies. A one way analysis of variance showed no differences among the groups, $\underline{E}(3,60) = 2.06, \underline{p} > .05$. Products were then divided into three categories according to their actual frequencies (high, medium, and low) and correlation means were obtained. A three by four analysis of variance of group by product category failed to find a significant interaction, $\underline{E}(3,60) = 1.11, \underline{p} > .05$. Product category did produce a significant main effect, $\underline{E}(2,61) = 12.21, \underline{p} < .05$. These means are provided in Table 2. Tukey's Honestly Significant Difference (HSD) test showed that estimations for products in the low frequency category were less accurately ordered with the NEISS frequencies than estimates for products in the medium and high frequency categories.

Product Category Means for Individual Correlations

Product Category	Mean	
Low	097	
Medium	.151	
High	.132	

A similar analysis was performed using data that were transformed into logarithms. No significant differences were found with the one way analysis of variance by group, E(3,60) = 1.25, p > .05. A significant interaction was found, however, for the three by four, group by product category analysis, E(3,60) = 2.51, p < .05. Means are provided in Table 3.

Comparisons showed that for the high frequency category, subjects in the Hurried and Scenario Generate groups made significantly better estimates than subjects in other groups. No other significant differences were found.

Differences Between Estimates and NEISS Frequencies

In order to determine how close subject estimates were to the NEISS frequencies and to determine if overestimation of low frequency products and underestimation of high frequency products occurred, analyses of variance were performed using the differences between estimates and the NEISS data. The differences between actual and estimated frequencies were obtained for each subject. Means of the differences were then obtained for each of the product frequency categories (high, medium, low) resulting in three scores for each subject.

An analysis of variance of group by product category failed to find an interaction, $\underline{F}(3,60) = 1.82$, $\underline{p} > .05$. Main effects of product category and group were found, $\underline{F}(3,60) = 7.18$, $\underline{p} < .006$, and $\underline{F}(2,61) = 14.92$, $\underline{p} < .0001$, respectively. Table 4 shows means for product category and group. Tukey's (HSD) showed significant differences among all three product frequency categories.

Low frequency products were overestimated and medium and high

Group and Product Category Means for Logarithms of Individual

<u>Correlations</u>

Group	Product Category			
	Low	Medium	High	Mean
Hurried	106	010	.287	.057
Unhurried	.015	.076	.040	.044
Generate	121	.179	.326	.128
Provided	.146	.184	.127	.152
Mean	017	.107	.195	

frequency products were underestimated. Subjects underestimated high frequency products more than medium frequency products. Overall, subjects underestimated accident frequencies. Scenario Generate and Provided subjects underestimated frequencies by a greater amount than Unhurried subjects, and Scenario Provided subjects underestimated frequencies by a greater amount than Hurried subjects.

The analyses were repeated using logarithms of the estimate differences. Main effects for group $\underline{F}(3,60) = 25.16$, $\underline{p} < .0001$, and product category, $\underline{F}(2,61) = 15.71$, $\underline{p} < .0002$, showed that the Generate Scenario and Provided Scenario groups made greater misestimations than the Hurried and Unhurried groups and that low frequency estimates were significantly different from medium and high frequency estimates. This analysis also produced a significant interaction, $\underline{F}(3,60) = 2.60$, $\underline{p} < .03$. Means for the interaction are presented in Table 5.

Low frequency products were overestimated by all groups except the Scenario Provided group and high frequency products were underestimated by all groups. Tukey's (HSD) test showed that for low frequency products, the Scenario Generate and Scenario Provided groups made significantly better estimates than subjects in the Hurried and Unhurried Groups. For Medium frequency products, the Unhurried group made more accurate estimates than the Hurried, Scenario Generate, and Scenario Provided groups; the Hurried Group made better estimates than the Scenario Generate and Scenario Provided groups. For high frequency products, Scenario Provided subjects made less accurate estimates than subjects in the other groups. The analysis of variance was repeated using absolute values of the estimate differences. There was no significant interaction, E(3,60) = 1.31, p > .05. Product frequency category produced the only significant effect, F(2,61) = 508.00, p < .0001. High frequency products were misestimated by a larger amount than medium and low frequency products, and medium frequency products were misestimated by a larger amount than low frequency products. Means for product frequency category are provided in Table 6.

Products as a Random Variable

Analyses of variance using estimate differences were also performed using products as a random variable. An analysis of variance using raw estimate differences showed no significant interaction, $\underline{F}(3,14) =$ 1.82, $\underline{p} < .05$, however, significant main effects for product category and subject group, $\underline{F}(2,15) = 7.18$, $\underline{p} < .006$, and $\underline{F}(3,14) = 14.92$, $\underline{p} < .0001$, respectively, were found. Means for groups and product category are provided in Table 7.

Tukey's (HSD) test showed that medium and high frequency products were misestimated by a greater amount than low frequency products and that the Generate and Provided Scenario underestimated accident frequencies by a larger amount than the Hurried and Unhurried subjects.

The analysis was also performed using logarithms of estimate differences from NEISS frequencies. A main effect for group, F(3,14) = 15.71, p < .05 showed that the Unhurried group made more accurate estimates than all other groups. A main effect of product category showed that low frequency estimates were significantly different from medium and

Mean Differences of Estimates from NEISS Frequencies by Product

Frequency Category and Group

-

Group		Product Categor	У		
	Low	Medium	High	Mean	
Hurried	24,093.50	-15,083.12	-160,093.00	-50,360.89	
Unhurried	38,386.00	-2,013.33	-161,823.67	-41,817.00	
Generate	12,360.50	-37,311.50	-164,314.33	-63,088.44	
Provided	12,243.17	-39,908.67	-194,032.33	-73,899.28	
Mean	21,770.79	-23,579.17	-170,065.84		

Group and Product Category Means for Logarithms of Estimate Differences

Group		Product Category	ý	
	Low	Medium	High	Mean
Hurried	.370	117	412	053
Unhurried	.435	025	395	.005
Generate	.188	330	428	190
Provided	212	357	575	240
Mean	.301	207	453	

.

Product Category Means for Absolute Differences of Estimates from NEISS Erequencies

Product Frequency Category	Mean	
Low	31,471.96	
Medium	47,102.02	
High	197,688.75	

Group and Product Category Means for Estimate Differences from NEISS

Frequencies Using Products as a Random Variable

Group	F	Product Category	/	
	Low	Medium	High	Mean
Hurried	24,093.44	-15,080.00	-160,100.00	-50,360.00
Unhurried	38,385.84	-2,013.68	-161,800.00	-41,820.00
Generate	12,360.31	-37,310.00	-164,300.00	-63,088.50
Provided	12,243.13	-39,910.00	-194,000.00	-73,899.34
Mean	21,770.68	-23,580.00	-170,100.00	

high frequency estimates. A significant interaction was also found, E(3,14) = 2.60, p < .03. Subjects in the Unhurried group made significantly better estimates for the medium frequency category than subjects in all other groups. Means for group and product category are shown in Table 8. <u>Precautionary Intent</u>

An analysis of variance of group by product category was used to analyze subjects' reporting of precautionary intent. This analysis included scores from the Precaution Only group in which subjects gave ratings of precautionary intent without first having made accident frequency estimations. There was no significant interaction, E(4,75) = 1.44, p > .05. There were significant main effects for group, E(4,75) = 2.94, p < .03 and product category, E(2,77) = 107.19, p < .0001. Group means are shown in Table 9.

A Tukey (HSD) test showed that the Hurried group reported significantly less precautionary intent than did subjects in the Scenario Generate, Scenario Provided, and Precaution Only groups. There were no other significant differences among the groups. Tukey's (HSD) also showed that for the product categories, subjects reported significantly higher precautionary intent for products in the medium and high frequency categories than in the low frequency product categories. Interestingly, subjects reported significantly higher precautionary intent for products in the medium frequency category than for products in the high frequency category.

The relationship between reported precautionary intent and NEISS

Group and Product Category Means for Logarithm Differences from NEISS Frequencies Using Products as a Random Variable.

Group

Product Category

	Low	Medium	High	Mean
Hurried	.370	117	412	053
Unhurried	.435	025	395	.005
Generate	.188	330	428	190
Provided	.212	357	575	240
Mean	.301	207	453	

<u>Means for Analysis of Variance for Precautionary Intent by Group and</u> <u>Product Category</u>

Group	Product Frequency Category				
	Low	Medium	High	Mean	
Hurried	3.83	5.37	5.05	4.75	
Unhurried	4.40	6.19	5.48	5.35	
Generate	5.02	6.18	5.88	5.69	
Provided	5.03	6.07	5.88	5.66	
Precaution Only	4.89	6.05	5.55	5.49	
Mean	4.63	5.97	5.57		

frequencies was also examined. Table 10 provides the group correlations. There was no significant correlation of precautionary intent with the NEISS frequencies for any of the groups.

<u>Confidence</u>

Mean reported confidence for product frequency estimation was obtained for the Hurried, Unhurried, Scenario Generate and Scenario Provided Estimation groups. The group means were 4.31, 4.81, 3.94, and 4.44, respectively. An analysis of variance showed no significant differences among the groups, $\underline{F}(3, 60) = 1.41, \underline{p} > .05$.

Injury Experience

Analyses examined whether subjects who reported injury experience with a product estimated higher accident frequencies than did subjects without such experience. Subjects who had injury experience estimated higher accident frequencies for gasoline, $\underline{t}(78) = 2.11$, $\underline{p} < .05$, and all terrain vehicles, $\underline{t}(78) = 1.95$, $\underline{p} < .05$. Estimates are shown in Table 11.

There was a trend for subjects who reported injury experience to estimate higher accident frequencies than subjects who reported no injury experience. This trend was seen for 10 additional products: fireworks, bleach, televisions, hammers, drinking glasses, bathtubs and showers, windows and window glass, nails and screws, knives, and bicycles. A sign test conducted to examine this trend failed to find a significant difference for the expected population mean, $\underline{t}(17) = 2.05$, $\underline{p} > .10$.

Analyses examined whether subjects who reported injury experience gave higher levels of precautionary intent than subjects without such

Precautionary Intent Correlated with NEISS Frequencies

Group	Correlation	
Hurried Estimate	.12	
Unhurried Estimate	.17	
Generate Scenario	.18	
Provided Scenario	.19	
Precaution Only	.08	

<u>Note</u> For all groups, N = 16. None of the correlations is significant, p > .05.

Estimate Means for Products Based on Injury Experience

Product	Estimate Mean			
	Injury Yes	Injury No		
Gasoline	109,761.91	41,953.49		
All Terrain Vehicles	79,632.35	52,600.00		

experience. Subjects with injury experience reported significantly greater precautionary intent for the following products: gasoline, $\underline{t}(78) = 2.19$, $\underline{p} < .04$; drinking glasses, $\underline{t}(78) = 2.79$, $\underline{p} < .007$; ladders, $\underline{t}(78) = 2.19$, $\underline{p} < .04$; windows and window glass, $\underline{t}(78) = 2.66$, $\underline{p} < .009$; and nails and screws, $\underline{t}(78) = 1.99$, $\underline{p} < .05$. Means are shown in Table 12.

There was also a trend for subjects who reported injury experience to report greater precautionary intent for 10 additional products: fireworks, bleach, fans, televisions, chainsaws, hammers, all terrain vehicles, bathtubs and showers, drugs and medication, and bicycles. A sign test showed a significant effect, $\underline{t}(17) = 3.69$, $\underline{p} < .01$ indicating that, in general, subjects with greater injury experience reported greater precautionary intent.

Analyses From the Product Perception Study

Analyses, using products as a random variable, were performed on the data collected from the 31 subjects who participated in the Product Perception Study in which product characteristics were examined through seven questions. Table 13 shows the correlations for the questions.

Eleven of the 21 correlations were significant. The more frequently used a product is, the less likely it is to be perceived as likely to produce a severe injury and the less likely people are to read warnings. The greater the technological complexity of a product, the less likely people are to be knowledgeable about the product. As knowledge of the product hazards increases so does the likelihood of receiving both a minor and severe injury in the next year. The greater the severity of injury, the more likely it is

Precautionary Intent Ratings for Products Based on Injury Experience

Product	Precaution Mean			
	Injury Yes	Injury No		
Gasoline	7.00	6.07		
Drinking Glasses	3.74	2.58		
Ladders	6.59	5.71		
Windows and Window Glass	5.10	3.91		
Nails, Screws and Thumbtacks	4.98	4.11		

Correlations for Questions From Product Perception Study

	Freq	Know	Sev	Read	Tech	Likely S	Likely M
Freq	1						
Know	.077	1					
Sev	477 *	.322	1				
Read	472 *	035	.772*	1			
Tech	183	-,591 *	.300	.65*	1		
Likely S	.038	.394*	.714*	.376*	.156	1	
Likely M	.157	.706*	.2 9 6	084	435*	.539 *	1

* p < .05

Note: freq = Frequency of Use, know = Knowledge of the Hazards, sev = Severity of Injury, read = Likelihood of Reading a Warning, tech = Technological Complexity, likely s = Likelihood of Receiving a Severe Injury, likely m = Likelihood of Receiving a Minor Injury that an individual will look for a warning and that an individual will be severely injured in the next year. As technological complexity increases, so does likelihood of reading a warning and likelihood of receiving a minor injury in the next year. As likelihood of receiving a minor injury in the next year increases so does likelihood of receiving a severe injury.

In order to determine if product characteristics differed among the accident frequency categories, one way analyses of variance by product frequency category were performed for each of the seven questions. No significant differences were found for any of the questions, $\underline{p} > .05$. A planned comparison examining frequency of use showed that products in the high accident frequency category are used more often than products in the medium frequency category, Fisher's (LSD) = 2.75, p < .05. Table 14 provides means for frequency of use by product category.

Discussion

A significant difference in response times for making frequency estimates was found between the Hurried and Unhurried groups, showing that the subjects followed the experimenter's instructions. The actual difference in these times is small, however, (less than 2 seconds) and as proposed by Brems (1986) this small amount of time suggests that not many scenarios could have been generated by the Unhurried Estimation group. If scenarios were generated at all by either group, certainly not many more scenarios could have been generated by the Unhurried group than by the Hurried group.

There were no significant differences in estimate correlations with NEISS frequencies among the groups. This result replicates Brems' (1986,

Frequency of Use Means for Product Accident Frequency Categories

Product Accident Frequency	Mean	
Low	4.30	-
Medium	2.56	
High	5.31	

1987) results in which hurried estimates were found to be as accurate as unhurried estimates and estimates made after fault tree analyses. These results suggest that his findings were not a result of the repeated measures methodology he used.

When individual correlations with NEISS frequencies were examined as a measure of accuracy in ordering of the products, significant differences were found. An analysis of variance of the individual correlations showed no significant interaction or differences among the groups. Low frequency products were ordered less accurately than medium and high frequency products. An analysis using logarithms of the correlations did reveal a significant interaction, however. The Hurried and Scenario Generate groups made more accurately ordered estimates for products in the high frequency category. In other words, the group that spent the smallest amount of time processing (less than two seconds) and the group that spent the largest amount of time processing (1/2 to 1 1/2 hours) produced the most accurately ordered results. This result is both unexpected and puzzling.

It was hoped that scenario analysis would decrease underestimation of high accident frequency products and overestimation of low frequency accident rates. In order to evaluate this component, analyses of variance were conducted using estimate differences from NEISS frequencies. The results showed that for all groups, low frequency products were overestimated and both medium and high frequency products were underestimated. Scenario Generate and Scenario Provided groups underestimated frequencies more than Unhurried group subjects and the Scenario Provided group underestimated frequencies more than Hurried group subjects. This replicates earlier studies (Brems, 1987, and Lichtenstein et al., 1978) in which attempts to debias subjects were not successful. Subjects who were provided with all reasonable scenarios, that should have eliminated possible miscalculation involved with the availability heuristic, did not estimate accident frequencies better than subjects without such information. Additionally, being provided with all reasonable scenarios did not enable these subjects to estimate frequencies better than subjects who had to generate their own scenarios and therefore may have had much less comprehensive fault trees. Conversely, subjects who had to generate scenarios and therefore had to process the product information more actively did no better in estimating frequencies than subjects who did little or no analysis. Availability of accident information did not improve estimations.

Analysis of logarithms of the differences, however, produced different results. A significant interaction showed that for low frequency products Hurried and Unhurried group subjects overestimated frequencies more than Scenario Generate and Scenario Provided group subjects. For medium frequency products, the Unhurried group made the closest estimates to actual frequencies followed by the Hurried group. For high frequency products, the Provided group subjects underestimated frequencies more than the other groups. These inconsistent findings do not provide a clear picture of the efficacy of fault tree analysis or scenarios.

The analysis using the absolute values of the estimate and NEISS

frequency differences did not provide clarification. This analysis which examined accuracy of estimates without regard to whether the errors were overestimations or underestimations showed no significant differences among the groups. This result in conjunction with the other estimate difference analyses provides evidence that organization of information through fault trees and analysis does not, in a predictable or consistent way, assist individuals in assessing product risks. In fact it may actually interfere with accurate assessment. Overall, subjects who used the scenarios underestimated accident frequencies by a larger amount than the Hurried and Unhurried group subjects.

The estimates were also analyzed using products as a random variable. Raw score estimate differences and logarithm differences were used. The raw score estimate differences showed that medium and high frequency products were misestimated more than low frequency products. They also revealed that Scenario Generate subjects made less accurate estimates than Hurried and Unhurried group subjects.

The logarithm analysis showed that the Unhurried group made the best estimates overall. For all groups, estimates for low frequency products were significantly different from medium and high frequency products. A significant interaction emerged that showed for the medium frequency category, subjects in the Unhurried groups made more accurate estimates than subjects in all other groups. No other significant differences were found.

Based on Brems results, it is not surprising that the subjects who used fault trees did no better than the other subjects. However, it was unexpected that by some measures their performance was worse. Perhaps accident frequency estimation is not a sufficiently direct measure of product risk perception and therefore scenario analysis does not aid in this task.

For this reason, precautionary intent, which logically should be a better indicator of perceived risk, was also examined. Only the Hurried group, which prior to giving precautionary intent ratings spent the least time processing, gave lower ratings than subjects in other groups. Additionally subjects who spent from 1/2 hour to 1 1/2 hours either generating or reading accident scenarios did not report higher levels of precautionary intent than did subjects in the Unhurried Estimation group which, on the average, spent less than 4 seconds evaluating each product. Because the Hurried group gave significantly lower estimates perhaps some quick processing did occur in the Unhurried subjects that an organized and complex analyses does not improve upon. The few extra seconds the Unhurried group spent may have helped while time beyond this had no effect. Thus, some processing time is needed but apparently it it is not used to evaluate scenarios. This concurs with the results of the estimation tasks in which the Scenario Generate and Scenario Provided groups did not make better estimates than the Unhurried group.

Precautionary intent was also examined by product category. Subjects in all groups reported higher precautionary intent for products in the medium accident frequency category than in the high accident frequency category. An explanation may be found in the results of the product perception study. Although the analysis of variance was not

significant, paired comparisons showed a significant difference among products in the high and medium accident frequency categories. Products in the high accident frequency category are used more frequently than products in the medium frequency category. Clearly, frequency of use is related to familiarity; that is, the more frequently we use a product the more familiar it becomes. Godfrey et al. (1983); Godfrey and Laughery (1984); and Wogalter et al. (1986), reported that the more familiar an individual is with a product, the less likely that individual is to perceive that product as hazardous. This provides an explanation for subjects to report less precautionary intent for products in the high accident frequency category; these products are used more often than products in the medium accident frequency category. The fact that frequency of use factors into product perceptions may also shed some light on the inconsistent results of the estimation task. Products with high accident frequencies may not necessarily be the most dangerous or hazardous products to use. High accident frequencies may result simply because the products are more commonplace and used more often. Therefore, accident frequencies may not be the ideal source on which to base estimations of risk. This possibility may have canceled any effects that the scenario analysis may have had with regards to precautionary intent and risk perception.

Frequency estimates for all groups did correlate with the actual NEISS frequencies showing that subjects had at least a rough idea of actual frequencies. There were no significant correlations found when precautionary intent was correlated with the NEISS frequencies, however, providing evidence that knowledge of accident frequencies would have little impact on an individual's behavior regarding a product. In conjunction with the fact that Scenario subjects did not give higher ratings of precautionary intent than did subjects in the Unhurried Estimate group, these results suggest that incorporating accident scenarios or frequencies into product warnings may have little or no effect on consumer behavior. People may consider the severity of injury that may result rather than the probability that an injury could occur when evaluating product risks. The problems of familiarity, and getting consumers to read the warnings remain as well.

The use of fault trees and scenarios also had no effect on the subjects' confidence in their frequency estimates. This conflicts with Brems' results in which subjects reported higher confidence ratings after having generated fault trees than they did after they made hurried or unhurried estimates. Brems' findings, however, may have been an artifact of the within-subjects design. It is logical that subjects would give a higher confidence rating after a lengthy analysis that followed a confidence rating made after a brief analysis. It seems to be a demand characteristic of the task. In this study, however, in which subjects made frequency estimates only once, no differences among the groups were seen.

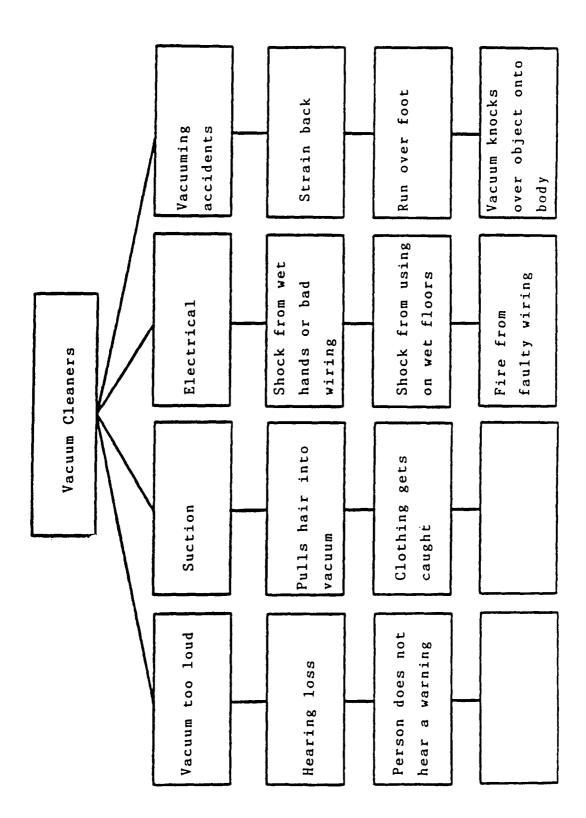
Precautionary intent, which is a primary component in risk assessment, was affected however, by a person's knowledge of injury associated with a product. Subjects who reported that they or someone they knew had an injury related to a product, reported higher levels of precautionary intent for 15 out of the 18 products. Significant differences were not found for every product but this effect may have occurred because for many of the products, the number of subjects who had injury experience was grossly unequal to the number of subjects who did not have injury experience. When examining the means, subjects with injury experience reported higher levels of precautionary intent. This was confirmed by a sign test which showed that the scores of the persons with injury experience or knowledge were larger than those with out such experience. If these analyses were repeated using an equal number of subjects in each group, perhaps the number of products for which there were significant differences would increase. It would be difficult, however, to find such subjects.

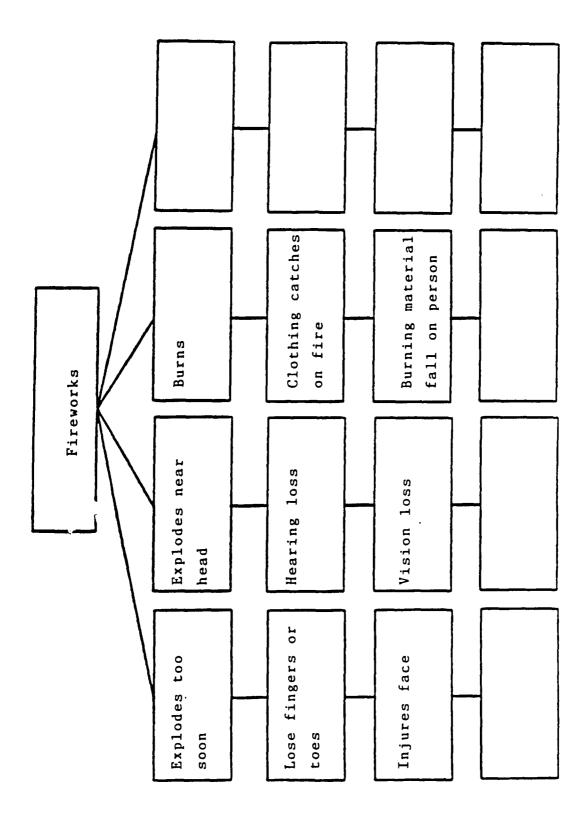
For two of the products, subjects who had injury experience gave higher frequency estimates than subjects without such experience. There was a similar trend for an additional 10 of 18 products. Brems (1986) reported that scenarios an individual had actually experienced, was a better predictor of true accident frequency than scenarios the subjects had read warnings for or heard about through the media. This further supports the idea that simply being provided with information in a warning or through accident scenarios is not sufficient to change behavior and improve consumer compliance and safety.

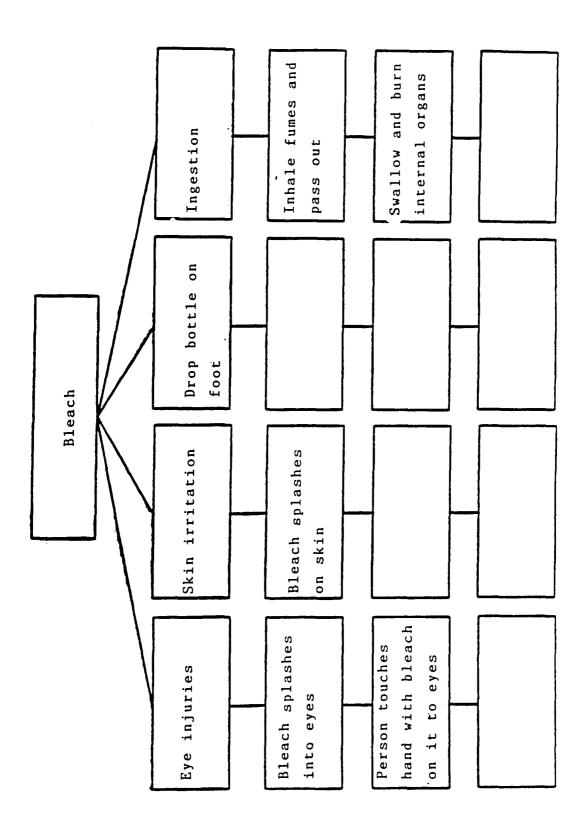
Unfortunately these results suggest that a person must be injured or know someone who was injured with a product in order to correctly perceive the risks related to the product or to be willing to take precaution with that product. Being provided with theoretical or possible accident scenarios is not enough. Some kinds of information may be helpful. Perhaps vivid case studies and accident accounts that personalize the risks rather than generic scenarios would provide better motivation to comply with warnings and product safety information. Obviously, injury experience, perhaps the most influential factor, is not a viable solution to preventing serious product related injuries and fatalities.

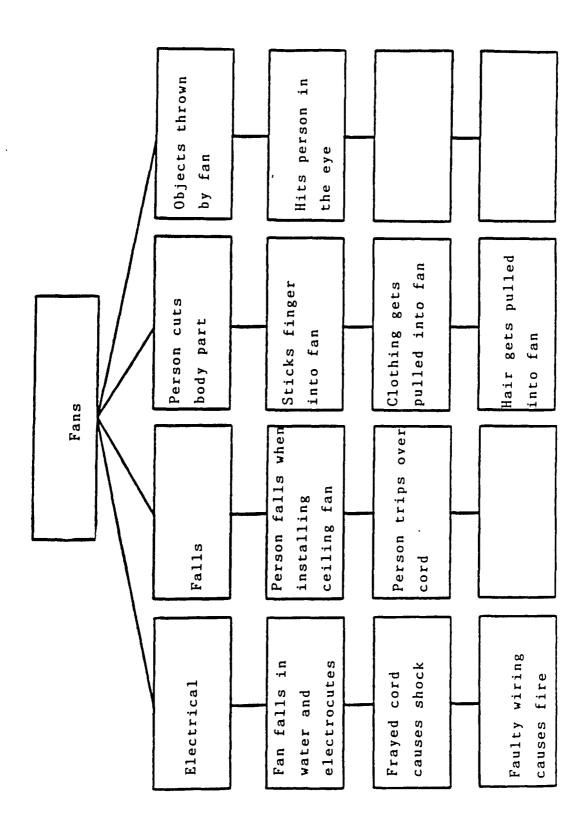
References

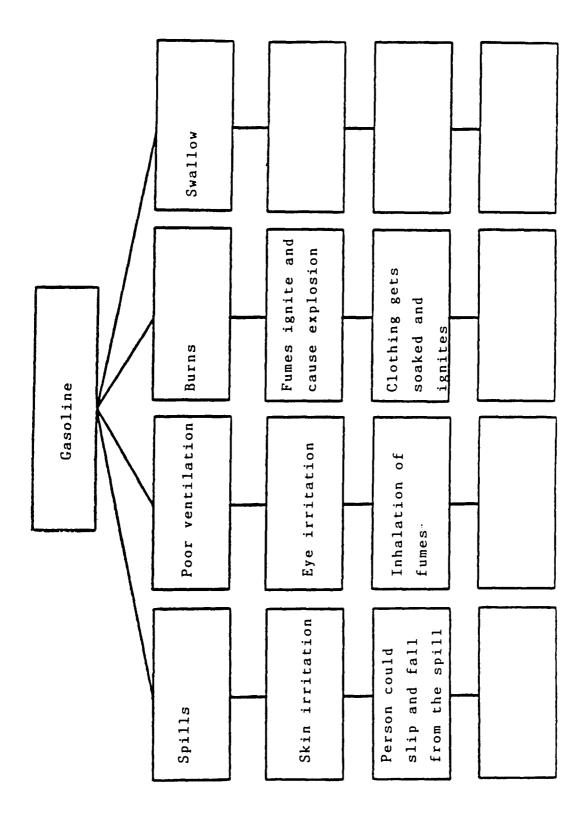
- Brems, D. J. (1986). Risk estimation for common consumer products. <u>Proceedings of the Human Factors Society 30th Annual Meeting</u>. (pp. 556-560) Santa Monica, CA: The Human Factors Society.
- Brems, D. J. (1987). <u>Risk perception for common consumer products</u>. Unpublished doctoral dissertation, Rice University, Houston, Texas.
- Fischoff, B., Slovic, P., & Lichtenstein, S. (1978). Fault trees: Sensitivity of estimated failure probabilities to problem representation. <u>Journal of Experimental Psychology: Human Perception and</u> <u>Performance, 4</u>, 330-344.
- Godfrey, S. S., Allender, L., Laughery, K. R., & Smith, V. L. (1983).
 Warning messages: Will the consumer bother to look? In A. T. Pope and L. D. Hough (Eds.). <u>Proceedings of the Human Factors Society</u> <u>27th Annual Meeting</u>. (pp. 950–954) Santa Monica, CA: The Human Factors Society.
- Godfrey, S. S., Laughery, K. R. (1984). The biasing effects of product
 familiarity on consumers' awareness of hazard. <u>Proceedings of the</u>
 <u>Human Factors Society 28th Annual Meeting</u>. (pp. 388-392) Santa
 Monica, CA: The Human Factors Society.
- Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M., & Combs, B. (1978). Judged frequency of lethal events. <u>Journal of Experimental</u> <u>Psychology: Human Learning and Memory</u>, <u>4</u>, 551-578.
- Tversky, A., and Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. <u>Cognitive Psychology</u>, <u>5</u>, 207-232.

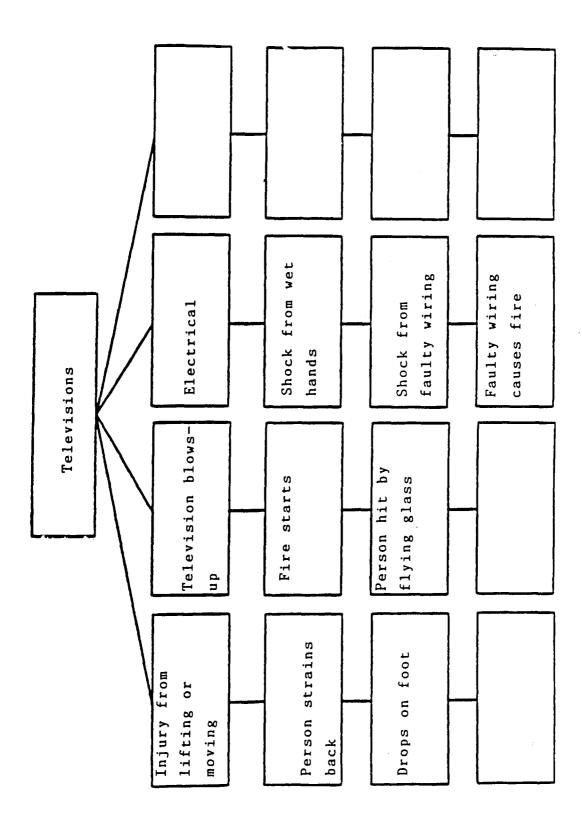

Wogalter, M. S., Desaulniers, D. R., & Brelsford, J. W. (1986). Perceptions

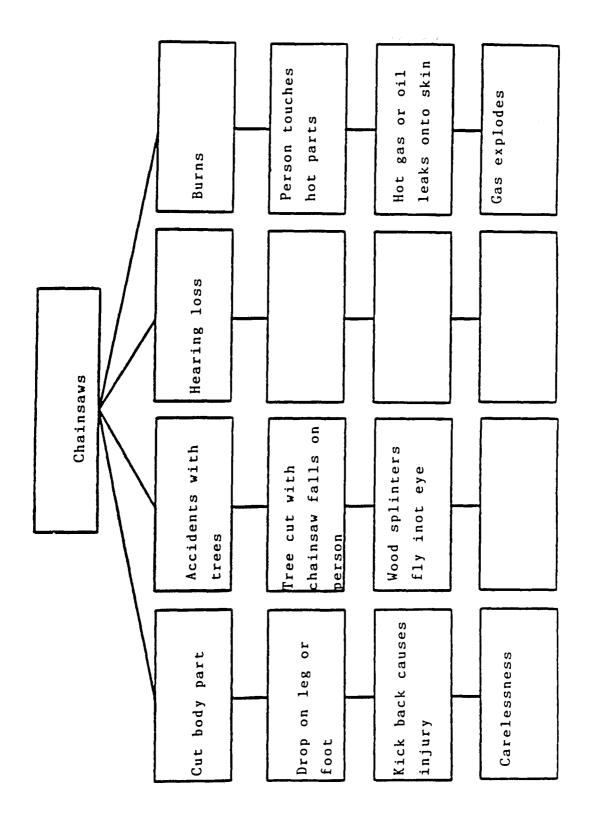

of consumer products: Hazardousness and warning expectations. <u>Proceedings of the Human Factors Society 30th Annual Meeting</u>. (pp. 1197-1201) Santa Monica, CA: The Human Factors Society.

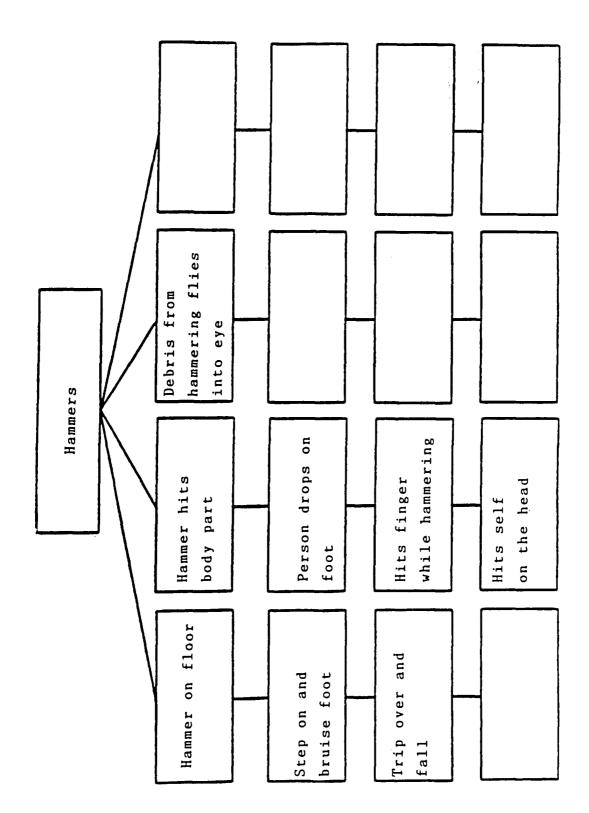

- Wogalter, M. S., Desaulniers, D. R., Breisford, J. W. (1987). Consumer products: How are the hazards perceived. <u>Proceedings of the Human Factors Society 31st Annual Meeting</u>. (pp. 615-620) Santa Monica, CA: The Human Factors Society.
- U. S. Consumer Product Safety Commission (1986). <u>NEISS Data Highlights</u>, <u>Volume 9</u>. Washington, D. C.

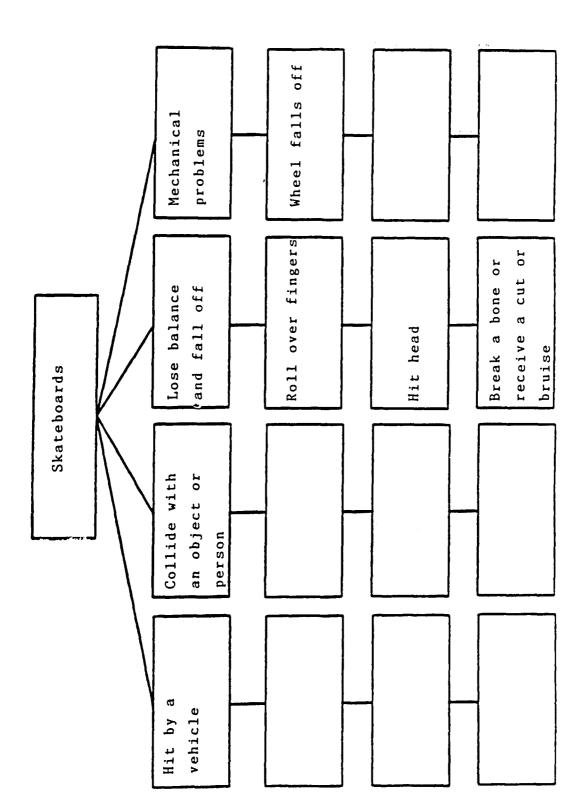

Appendix A

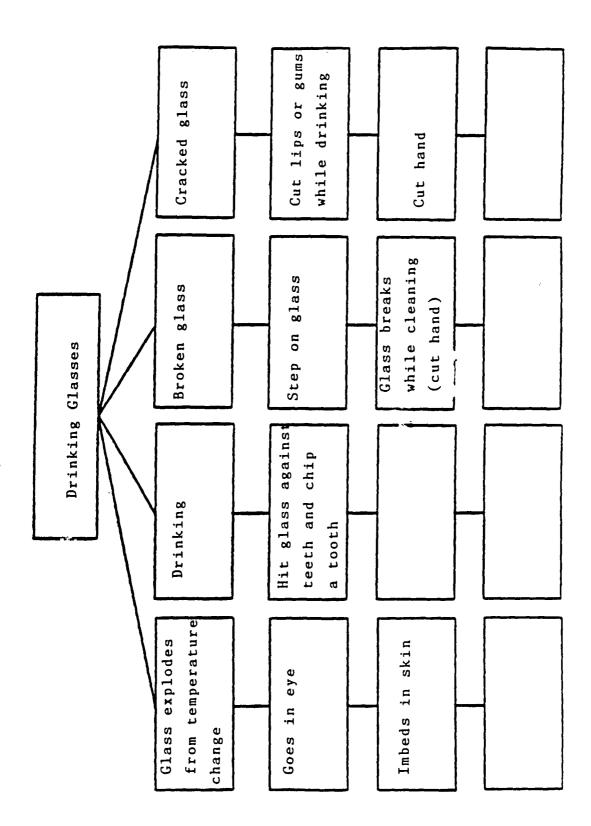

Fault Trees Used by Scenario Provided Subjects

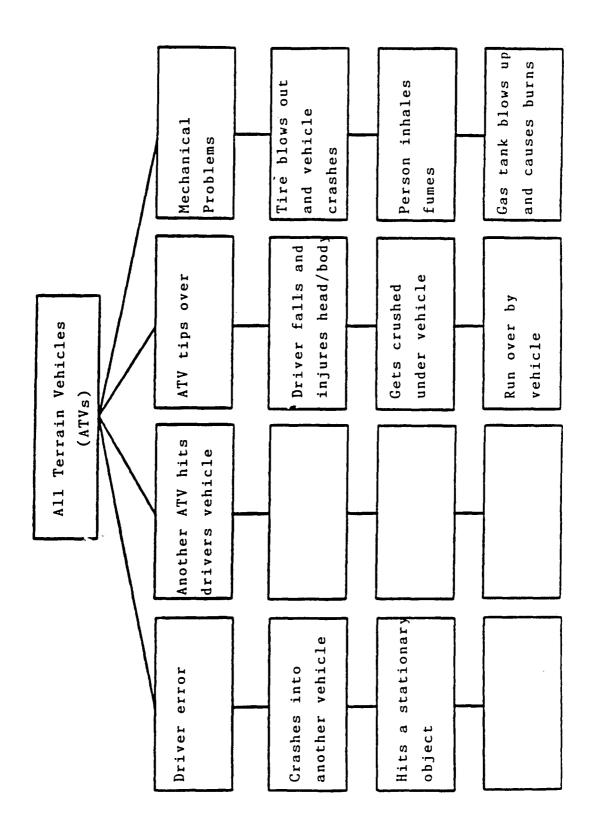


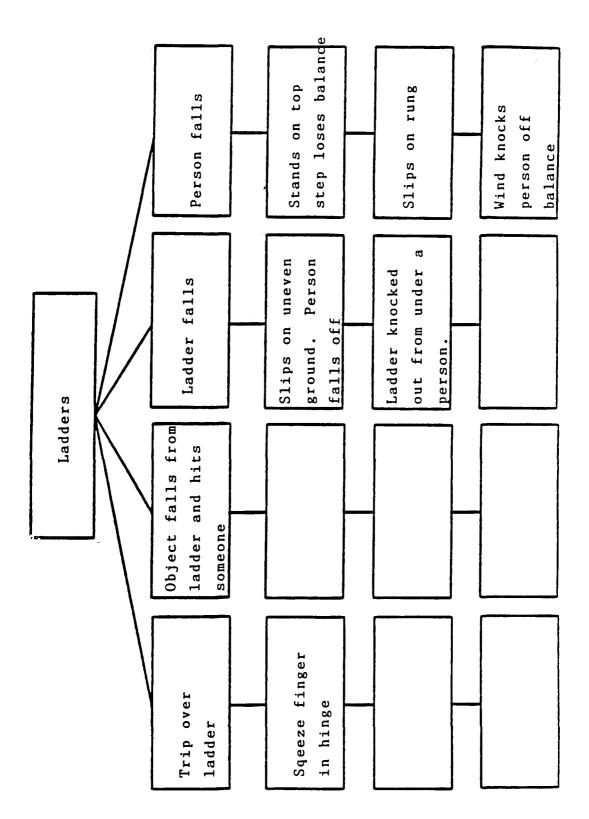


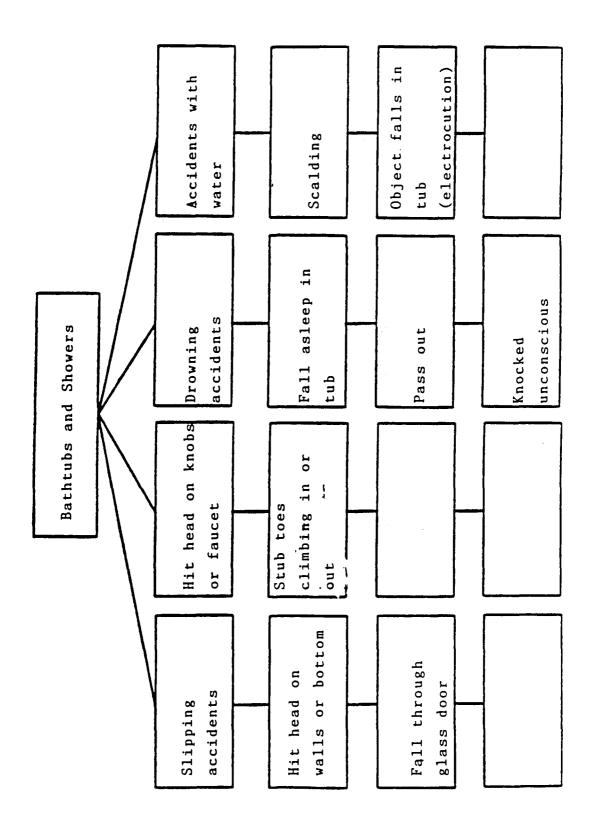


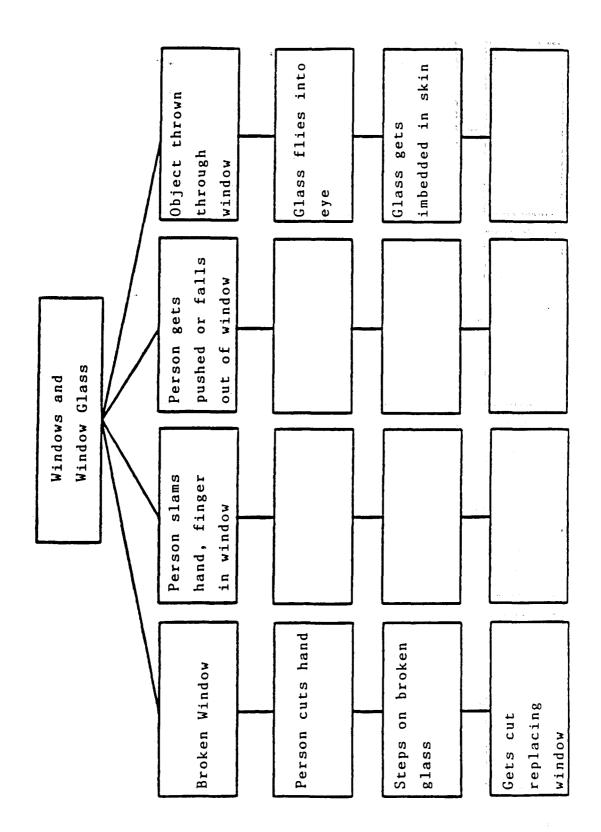


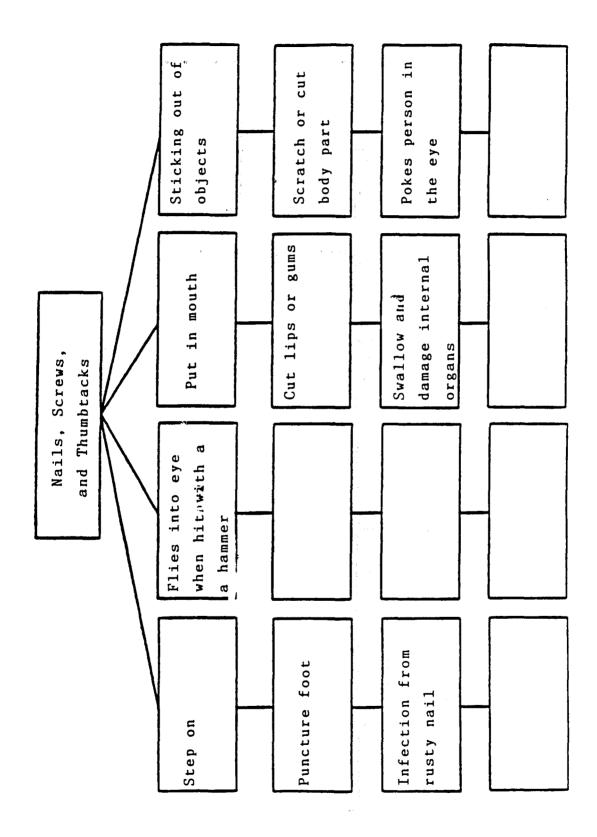






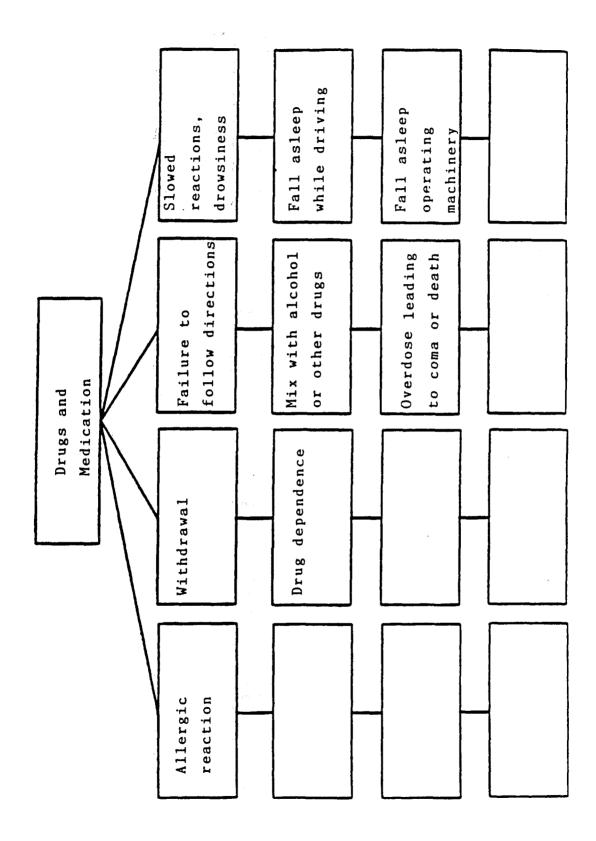


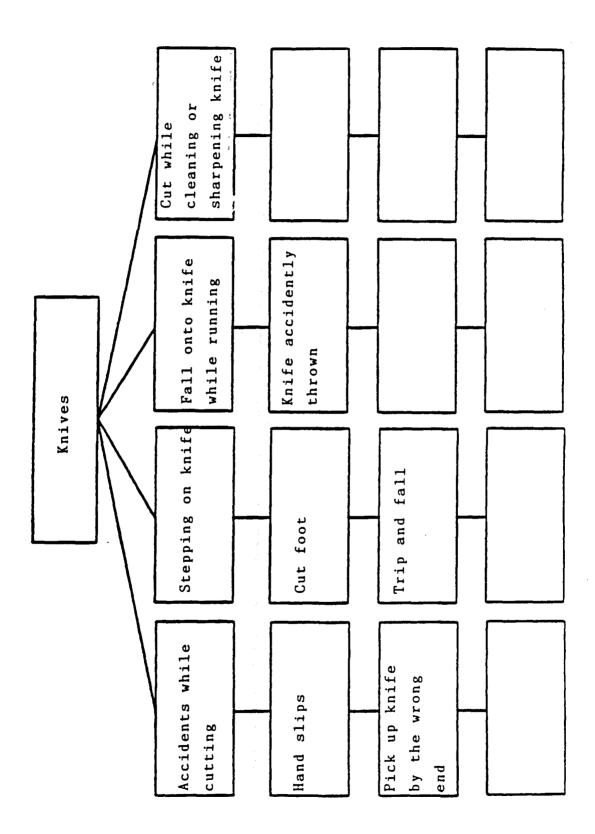




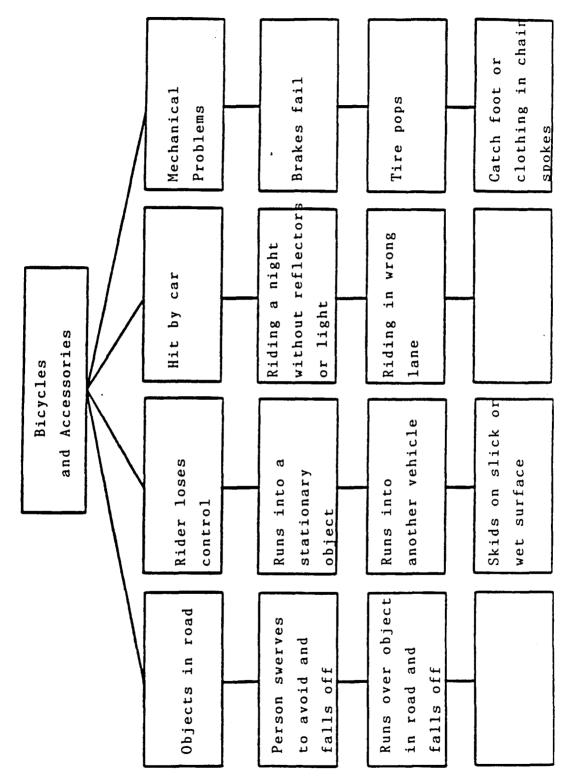
Risk Perception 62

Rick Perception 63




Rick Perception 65

•


,

Risk Perception 66

Risk Perception 67

Appendix B

Materials and Instructions

CONSENT FORM

We are conducting research in the area of consumer products. You will be asked to evaluate and answer questions regarding 18 common consumer products. There is no risk involved, however you are free to withdraw without penalty.

The results of your participation will remain confidential. Your individual performance will not be compared to that of other subjects. Your anonymity is guaranteed.

Participant's consent

I have read the above statement and understand the conditions under which I agree to participate.

Signed

print name below

course number

INSTRUCTIONS TO BE READ TO HURRIED GROUP SUBJECTS

We are interested in how well people can estimate the frequency of injuries that are associated with commonly used consumer products.

You will be asked to estimate how often these products were associated with emergency room cases during 1986 in the United States. Suicide attempts and cases involving assault are not included.

After the experiment you may examine the actual data if you wish.

I will read to you one product category at a time. I would like you to give me a frequency estimate as fast as you can. Your estimate should be made within 2 seconds after you hear the product category. I will go on to the next category about 2 seconds after each estimate that you give me. It is extremely important that you give me your estimate as quickly as possible.

I can tell you that during 1986, approximately 88,000 emergency room cases were associated with "Swimming pools and accessories." I have given you a paper to remind you of this frequency.

Please remember that these estimates should be done at a very fast pace. If you have any questions during the task please wait until we have gone through the whole list before asking the question because we do not want to interfere with the pace.

INSTRUCTIONS TO BE READ TO UNHURRIED GROUP SUBJECTS

We are interested in how well people can estimate the frequency of injuries that are associated with commonly used consumer products.

You will be asked to estimate how often these products were associated with emergency room cases during 1986 in the United States. Suicide attempts and cases involving assault are not included.

After the experiment you may examine the actual data if you wish.

I will read to you one product category at a time. I would like you to give me a frequency estimate, taking as much time as you need to make the estimate. I will go on to the next category about 2 seconds after each estimate that you give me. You do not need to hurry your estimates.

I can tell you that during 1986, approximately 88,000 emergency room cases were associated with "Swimming pools and accessories." I have given you a paper to remind you of this frequency.

If you have any questions during the task please wait until we have gone through the whole list before asking your questions.

INSTRUCTIONS TO BE READ TO GENERATE GROUP SUBJECTS

One way of evaluating the ways that accidents and injuries can occur is through the use of a fault tree. A fault tree is a method of organizing alternatives to a problem.

I have given you an example of a fault tree for emergency room accidents associated with "Swimming pools and accessories". The diagram lists some of the ways that swimming accidents can occur. The top row lists general types of accidents, and the bottom rows list more specific accident scenarios.

You will be asked to make fault trees for each product category. You do not have to fill in the entire fault tree for each product, but try to think of as many accident scenarios as you can. Try to use the top row for more general examples and the bottom rows for more specific scenarios.

You may take as much time as you like to fill out the fault trees.

After fault tree completion

We are interested in how well people can estimate the frequency of injuries that are associated with commonly used consumer products.

You will be asked to estimate how often these products were associated with emergency room cases during 1986 in the United States. Suicide attempts and cases involving assault are not included.

After the experiment you may examine the actual data if you wish.

I will read to you one product category at a time. I would like you to give me a frequency estimate taking as much time as you need to make the estimate. You may use the fault trees you have been given to make your estimates. I will go onto to the next category about 2 seconds after each estimate that you give me.

I can tell you that during 1986, approximately 88,000 emergency room cases were associated with "Swimming pools and accessories." I have given you a paper to remind you of this frequency.

If you have any questions during the task please wait until we have gone through the whole list before asking your questions.

INSTRUCTIONS TO BE READ TO PROVIDED GROUP SUBJECTS

One way of evaluating the ways that accidents and injuries can occur is through the use of a fault tree. A fault tree is a method of organizing alternatives to a problem.

You have been given fault trees for 18 common consumer products. The top row of each fault tree lists general types of accidents, and the bottom rows list more specific accident scenarios.

You will be asked to familiarize yourself with the information in these fault trees. You make take as much time as you like to read over the fault trees.

After fault tree completion

We are interested in how well people can estimate the frequency of injuries that are associated with commonly used consumer products.

You will be asked to estimate how often these products were associated with emergency room cases during 1986 in the United States. Suicide attempts and cases involving assault are not included.

After the experiment you may examine the actual data if you wish.

I will read to you one product category at a time. I would like you to give me a frequency estimate, taking as much time as you need to make the estimate. You may use the fault trees you have been given to make your estimates. I will go on to the next category about 2 seconds after each estimate that you give me.

I can tell you that during 1986, approximately 88,000 emergency room cases were associated with "Swimming pools and accessories." I have given you a paper to remind you of this frequency.

If you have any questions during the task please wait until we have gone through the whole list before asking your questions.

PRECAUTIONARY INTENT

I am going to read you a list of products. Using the scale below, please rate the amount of precaution you would be willing to take when using each product.

1	2	3	4	5	6	7	8	9
no preca	ution		tle		mode			extreme
at all		preca	aution		preca	aution	I	precaution

Labels are provided for some of the ratings, however you may use any whole number between 1 and 9 in making your rating.

CONFIDENCE RATINGS

Please rate how well you think that you have done overall in estimating injury frequencies. You should make a rating on a scale from 1 to 9 according to the following scale.

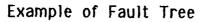
						!		
1	2	3	4	5	6	7	8	9
No relati between and actua frequenc	estimate al	ed			•	b ar		ationship stimated s.

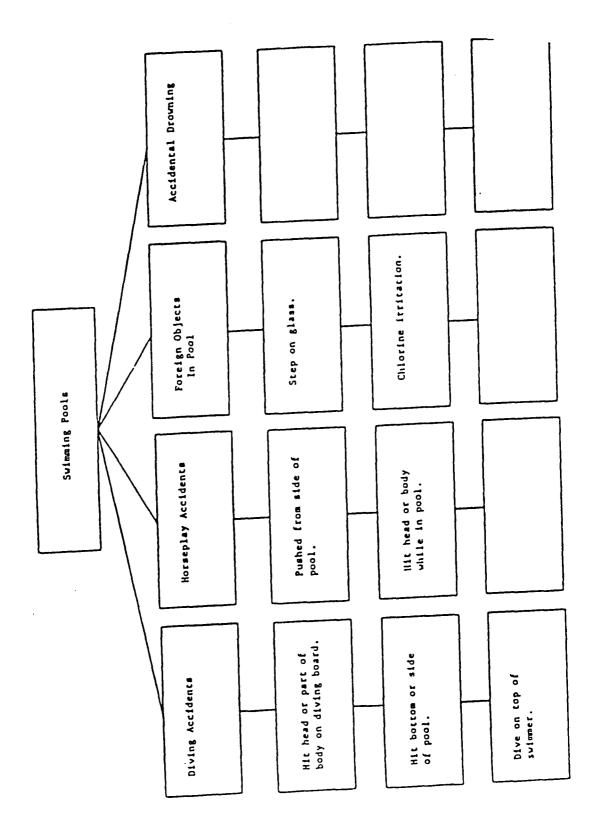
Labels are provided for some of the ratings, however you may use any whole number between 1 and 9 in making your rating.

INJURY EXPERIENCE

I am going to read a list of products to you. Please answer either yes or no to the following question for each product.

Have you or someone you know ever received an injury related to this product that required medical attention?


SUBJECT DATA SHEET


Subject	Number				
Product	Name	Estimate	Precaution	Confidence	Injury
<u></u>			, <u></u>		
······					
	. <u></u>				
			····		
			<u></u>		
<u> </u>	_ <u></u>				
	·				<u></u>
<u></u>					
	 		······		
	. <u> </u>				

Example of Actual Frequency

Swimming Pools and Accessories

88,000

Debrief

To the subjects:

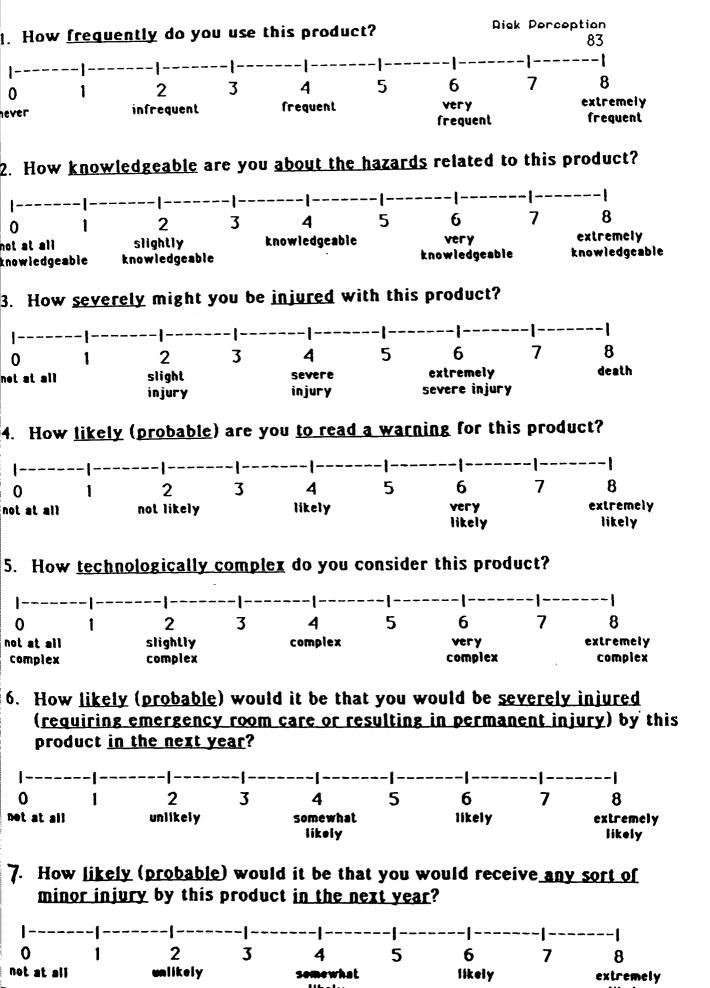
Your participation in this study has been extremely helpful to applied cognitive psychologists investigating product safety and ways in which products are perceived by the consumer.

If you are interested in the outcome of this study, or would like more information related to this line of research, you may contact at the University of Richmond Psychology department, Dr. Michael S. Wogalter (phone 289-8125) or Elaine Martin (phone 358-8572). Thank you for your participation.

It would be greatly appreciated if you would not discuss with anyone the purpose or procedure of this study as it might affect the results on subsequent testings. Thanks.

INSTRUCTIONS TO THE PARTICIPANTS

You should have a list of 18 products. <u>Before you begin to write</u> anything, please read through the entire list of products so that you are familiar with the variety and range of products listed.


You will be rating the products along 7 dimensions with scales ranging from 0 to 8. Note that the scales show only a few verbal labels. These verbal labels are presented to help you base your ratings. You may use any whole number between 0 and 8 when making your ratings.

You should work on the questions in the order shown on the attached yellow sheet. For example, suppose your sheet has the order: "4, 6, 3, 5, 7,1, 2"

You should start on Question 4 and then after you have rated all of the products on Question 4, you should then begin to work on Question 6, and then Question 3, and so on. Place your answer in the appropriate space next to each product. Note that even though you might work on Question 4 first you should not put your answers in the first column -- you should put your answers to this question in the fourth column.

Although it is not necessary to spend a long period of time answering each question, it is important that you carefully consider each product in relation to other products before deciding on your answers.

Please ask the experimenter if you have any questions.

NAME: Form A		Sex					8-1
Product Names	Q-1	<u>Q-2</u>	<u>Q-3</u>	Q-4	<u>Q-5</u>	<u>Q-6</u>	<u>Q-7</u>
1. Ladders							
2. Bicycles and Accessories					. <u></u>		<u></u>
3. Fireworks							
4. Chainsaws						. <u> </u>	
5. Drugs and Medication							
6. Bleach		- <u></u>					
7. All Terrain Vehicles (ATVs)					<u> </u>		
8. Bathtubs and Showers					<u> </u>		
9. Skateboards					<u> </u>		
10. Fans							
11. Nails, Screws, Thumbtacks						·	
12. Vacuum Cleaners	<u> </u>	<u> </u>			<u> </u>		
13. Gasoline					<u> </u>		
14. Windows, Window Glass							
15. Drinking Glasses		<u> </u>		·	<u> </u>		
16. Knives				<u> </u>			
17. Televisons							
18. Hammers							

NAME		Cov					a - <u>1</u>
Form B	<u> </u>						
Product Names	Q-1	<u>Q-2</u>	<u>Q-3</u>	<u>Q-4</u>	<u>Q-5</u>	<u>Q-6</u>	Q-7
1. Vacuum Cleaners							
2. All Terrain Vehicles (ATVs)				<u></u>			
3. Gasoline						<u> </u>	
4. Knives	<u> </u>					<u> </u>	
5. Hammers							
6. Televisions				<u>_;_</u>		• <u></u> -	
7. Drinking Glasses							
8. Fans							
9. Bicycles and Accessories			<u></u>		<u> </u>		
10. Fireworks							
11. Skateboards						. <u></u>	
12. Ladders					<u> </u>		
13. Windows, Window Glass							
14. Chainsaws							
15. Drugs and Medication							
16. Bathtubs and Showers							
17. Bleach							
18. Nails, Screws, Thumbtacks				. <u> </u>			

Debrief

To the subjects:

Your participation in this study has been extremely held the state to cognitive psychologists investigating product safety and held the state products are perceived and used by consumers.

If you are interested in the outcome of this study, or when the main information related to this line of research, you may contact the line of sity of Richmond Psychology department, Dr. Michael S. Woga Perkensyches 289-8125) or Elaine Martin (phone 358-8572). Thank you for each participation.

It would be greatly appreciated if you would and discuss with anyone the purpose or proposition with study as it might affect the results on subsyngood testings. Thanks. Appendix c

Data and Analyses for Response Times

د

Hurried Group Response Times For Estimates

.

. .

.

•	sub1	sub2	5duz	sub4	sub5	sub6	sub7	sub8	sub9	sub10	sub11	sub12	sub13	sut 14	<i>s</i> ub15	31 due
1	1.000	4.500	1.700	5.500	2.100	1.900	1.100	3.900	1.900	1.900	2.000	1.600	1.500	1.000	1.100	2.100
2	1.200	3.100	.900	4.300	1.700	1.700	.900	3.800	2.300	1.600	4.200	1.900	2.100	.800	2.200	2.600
3	.900	2.400	1.100	3.300	.900	2.100	.600	4.000	2.900	1.000	3.200	2.100	2.100	1.800	3.000	2.000
4	1.300	2.600	1.300	3.700	.800	1.800	.800	1.900	1.800	2.500	2.900	3.000	2.500	.800	.900	2.900
5	1.000	1.600	1.900	2.500	1.300	.900	.700	2.300	1.900	2.400	1.000	2.800	1.700	.900	.800	2.100
6	1.200	2.200	1.100	3.000	1.100	2.000	.600	2.600	2.800	3.800	2.900	3.700	2.100	1.000	1.100	1.100
7	.900	2.000	.800	2.200	.900	2.200	1.000	3.900	2.000	2.000	2.900	2.500	3.000	2.000	2.900	1.000
8	2.000	1.900	.900	2.600	2.000	2.100	1.100	3.500	2.000	3.900	1.800	2.000	1.100	1.100	2.200	.900
9	1.800	2.700	1.000	2.100	1.700	2.000	1.000	5.000	3.200	2.100	4.000	2.100	.900	.900	1.900	1.900
10	.900	1.600	1.000	2.600	1.100	1.900	1.100	3.100	1.100	3.600	2.200	2.200	.900	2.400	2.000	2.900
11	1.100	2.200	.900	2.800	.800	2.000	.800	2.900	1.800	2.900	1.700	1.800	1.100	.700	1.000	3.000
12	1.000	2.000	1.300	3.000	2.100	3.100	.900	6.200	2.000	2.000	2.500	3.000	1.300	1.200	2.300	1.100
13	1.700	2.300	1.100	1.500	1.500	3.000	.800	5.100	1.100	3.200	2.700	1.500	2.200	1.000	2.100	1.700
14	1.700	1.700	.800	1.900	1.100	2.500	1.000	3.200	1.700	1.500	2.800	3.000	3.400	.800	.900	2.200
15	.800	1.500	2.000	1.600	1.600	1.900	.800	4.300	3.100	2.100	1.500	2.800	2.000	1.300	2.000	1.300
16	1.000	2.100	1.500	1.900	1.100	1.900	.900	4.600	2.800	3.000	2.300	2.100	1.800	1.300	1.000	3.000
17	1.000	1.900	.900	1:700	.900	1.600	.700	3.200	1.000	2.200	2.600	3.100	2.200	.900	.900	2.100
18	1.500	2.000	1.200	2.000	1.500	2.200	1.500	2.400	1.100	3.100	1.800	1.900	1.900	1.000	1.500	1.800

Unhurried Group Response Times For Estimates

 $\mathcal{A}^{\mathcal{A}}$

Ì	sub 1	sub2	sub3	sub4	sub5	sub6	sub7	sub8	sub9	sub10	sub11	sub12	sub13	sub14	sub15	sub16
						-		-			а. 					
П	12.100	7.800	2.100	14.400	5.500	6.100	4.300	4.200	3.200	7.000	3.200	5.200	3.000	2.300	10.100	3.600
5	4.600	6.100	2.300	12.600	2.100	3.100	2.100	2.100	3.400	9.600	3.000	3.100	2.200	1.500	3.500	2.100
F	3.700	6.000	1.500	3.500	4.000	2.900	1.500	3.600	2.900	4.900	2.800	3.000	4.000	1.700	7.300	3.700
Ī	5.000	5.800	2.600	3.100	5.000	4.200	2.300	3.100	3.800	12.900	4.100	4.300	3.100	2.300	5.000	3.000
5	5.900	6.800	2.400	3.500	3.400	2.600	1.000	6.200	5.500	3.100	2.200	3.000	2.900	1.900	11.000	2.200
5	4.100	3.200	2.000	4.100	3.000	2.800	2.200	3.100	2.700	4.000	2.000	4.800	2.800	3.600	5.900	2.100
7	3.600	2.200	1.900	5.600	2.800	4.700	2.800	3.700	3.900	2.600	7.700	2.900	3.000	2.900	11.900	2.800
5	4.900	3.700	3.500	3.000	4.100	3.000	3.000	2.900	3.000	1.100	4.500	2.000	3.100	1.800	9.200	1.900
5	3.000	4.100	3.000	6.700	3.000	1.900	2.200	3.300	3.500	2.900	3.500	6.600	2.800	3.000	8.100	2.600
5	6.200	2.600	2.200	4.500	2.800	2.300	1.300	2.800	2.900	2.100	2.100	2.100	2.000	2.100	8.000	1.900
Π	6.100	2.300	1.900	4.000	4.000	4.100	1.200	3.400	3.100	2.300	4.600	2.500	1.900	2.300	7.400	2.000
	3.200	2.400	2.300	2.500	5.100	6.200	2.900	2.700	2.800	1.800	3.000	3.200	2.100	1.900	14.200	1.100
5	2.900	3.300	2.500	7.000	2.200	2.100	3.000	2.800	5.100	2.700	5.500	4.500	1.600	2.100	9.900	1.900
Ī	4.500	2.000	2.600	3.200	1.900	4.000	1.800	2.800	3.000	3.000	2.100	4.400	2.700	2.200	15.000	2.000
5	3.300	3.100	2.500	3.600	5.300	2.300	1.100	1.600	2.700	1.000	3.700	3.000	2.300	1.800	3.100	1.500
5	8.600	3.200	2.100	4.100	3.900	1.900	2.900	2.800	6.000	1.700	4.800	8.000	1.800	1.800	9.800	2.100
	5.000	2.500	3.100	5.200	2.900	3.200	1.800	1.900	4.800	2.200	2.000	5.700	2.000	2.000	15.800	2.000
8	6.000	3.500	3.200	4.500	1.000	5.700	2.800	2.600	2.300	1.900	5.300	6.100	2.600	1.600	5.800	2.000
1																

Response Times Unhurred vs Hurried and 3 Product Groups

Anova table for a 2-factor repeated measures Anova.

Source:	df:	Sum of Squares :	Mean Square :	F-test:	F value:
Group (A)	1	77.37	77.37	15.367	.0005
subjects w groups	30	151.041	5.035		
Repeated Measure (B)	2	2.575	1.287	2.057	.1367
AB	2	1.651	.826	1.319	.275
B x subjects w, groups	60	37.544	.626		

There were no missing cells found.

The AB Incidence table

Re	epeated Mea	RT Mean	RT Mean	RT Mean	Totals :
		16	16	16	48
dno	level 1	2.01	1.986	1.884	1.96
5		16	16	16	48
	level 2	4.168	3.53	3.57	3.756
	- · · ·	32	32	32	96
	Totals :	3.089	2.758	2.727	2.858

Log Response Times Unhurred vs Hurried and 3 Product Groups

Source :	df:	Sum of Squares :	Mean Square :	F-test:	F value:
Group (A)	1	1.725	1.725	22.744	.0001
subjects w. groups	30	2.275	.076		
Repeated Measure (B)	2	.034	.017	2.157	.1246
AB	2	.022	.011	1.366	.2629
B x subjects w, groups	60	.474	.008		

Anova table for a 2-factor repeated measures Anova.

There were no missing cells found.

The AB Incidence table

Re	peated Mea	Log RT M	Log RT M	Log RT M	Totals :
evel 1		16	16	16	48
		.247	.248	.232	.242
Group		16	16	16	43
	level 2	.557	.492	.483	.51
	T . 4 . 1	32	32	32	96
	Totals:	.402	.37	.357	.376

12 - 3

Appendix D

Group Estimates and Correlations

	Subject ID	Group	Seн	Vacuum	Fireworks	Bleach	Fans	Gasoline	TUS	Chainsouv
	300 jeer 10	aroup		Ducuum	THE DURS	Dieucii		ousonne		Chamsan
1	1	1	1	1000	85000	28000	20000	85000	50000	5000
2	. 2	1	2	40000	100000	50000	75000	90000		50000
3	.3	1	2	50000		100000	60000	100000		40000
4	4	1	1	5000	100000	10000	20000	20000	5000	20000
5	5	1	1	10000	50000	15000	5000		20000	10000
6	6	. 1	1	60000	80000	60000	70000	50000		110000
7	7	1	1	1000	5000	5000	500	1000	500	200
8	8	1	2	7000	60000	1500	1000	40000	2000	60000
9	9	1	1	20	20000	50000	50000	70000	10	10000
10	10	1	1	30000	250000	75000	50000	80000	68000	40000
11	11	1	2	500	5000	3000	10000	5000	2000	10000
12	12	1.	2	10000	50000	30000	60000	20000	6000	75000
13	13	1	2	75000	100000	50000	50000	100000	25000	150000
14	14	1	1	200	5000	5000	2000	50000	500	20000
15	15	1	2	12000	60000	30000	30000	30000	8000	50000
16	16	1	1	10000	100000	90000	40000	40000	50000	70000
17	17	2	2	400	35000	700	300	8000	20000	60000
18	18	2	1	1000	100000	350000·	100000	1000000	40000	100000
19	19	2	2	20000,	200000	20000	50000	90000	50000	200000
20	20	2	1	1000	40000	5000	2000	10000	5000	15000
21	21	2	1	200	7000	800	400	1000	10000	600
22	22	2	2	1000	20000	2000	15000	15000	1000	12000
23	23	2	2	25000	50000	100000	50000	90000	30000	45000
24	24	2	2	50000	75000	60000	85000	85000	65000	95000
25	.25	2	1	5000	20000	80000	5000	100000	10000	90000
26	26	2	2	8000	80000	6000	16000	36000	10000	35000
27	27	2	1	20000	110000	30000	5000	100000	20000	75000
28	28	2	1	2000	60000	3000	15000	45000	2000	60000
29	29	2	2	25000	150000	100000	25000	75000	20000	40000
30	30	2	1	15000	80000	40000	70000	70000	15000	40000
31	31	2	1	40000	125000	30000	00000	90000	40000	100000
32	32	2	1	5000	35000	12000	10000	25000	5000	26000
33	33	3	- 1	50	200000	50000	10000	20000	100	50000
34	34	3		2000	2000	20000	1000		40000	60000
35	35	3	2	15000	80000	40000	10000	40000		60000
36	36	3	2	20000	60000	15000	5000		35000	10000
37	37	3	2	50000	60000	50000	40000	70000		60000
38	38	3	2	30000	25000	5000	40000	20000		10000
39	39	3	1	10000	15000	40000	15000	40000	5000	10000
40	40	3	2	6000	60000	4000	12000	18000	5000	12000
41	41	3	2	10000	160000	30000	50000	95000	600	100000
42	42	3	1	200	10000	500	1000	2000	2000	10000

Accident Frequency Estimations - All Groups

	Hammers	Skateboards	Drinking Glasses	ATUs	Ladders	Bathtubs	Windows	Nails
	an a							
1	10000	32000	1000	7000	72000	100000	5000	2000
2	60000	50000	50000	90000	50000	75000	75000	100000
3	350000	400000	120000	300000	60000	150000	100000	300000
4	25000	90000	2000	100000	40000	90000	10000	50000
5	25000	35000	10	20000	15000	10000	8000	5000
<u> </u>	45000	80000	75000	40000	65000	40000	110000	70000
7	1000	100	1000	200000	200	1000	5000	2000
8	1000	100000	1000	70000	3000	50000	50000	100
9	30000	50000	33000		100	70000	40000	50000
10	200000	98000	150000	160000	100000	190000	100000	100000
11	100	10000	10000	5000	1000	1500	15000	20000
12	6000	80000	2000	20000	40000	80000	15000	25000
.13	100000	75000	25000	100000	95000	100000	95000	150000
14	3000	100000	600	15000	5000	25000	1000	1500
15	5000	10000	5000	10000	10000	25000	40000	25000
16	60000	170000	15000	90000	20000	60000	15000	120000
17	55000	40000	500	90000	25000	105000	40000	50000
18	100000	800000		200000	250000	50000	100000	10000
19	200000	200000	, 40000	80000	100000	100000	100000	30000
20	40000	5000	50000	22000	10000	10000	75000	40000
21	2000	35000	500	40000	400	1000	4000	2000
22	10000	10000	1000	5000	15000	20000	50000	10000
23	50000	70000	55000	70000	80000	100000	25000	45000
24	70000	80000	30000	95000	70000	75000	60000	75000
25	5000	50000	5000	15000	100000	90000	85000	20000
26	10000	30000	6000	75000	22000	70000	25000	5000
27	90000	150000	50000	200000	100000	85000	170000	125000
28	8000	50000	8000	60000	20000	40000	15000	8000
29	200000	100000	100000	50000	100000	150000	150000	200000
. 30	50000	50000	30000	80000	50000	50000	50000	80000
	65000	105000	50000	125000	75000	70000	80000	60000
32	6000	75000	5000	60000	50000	25000	100000	15000
. 33	40000	20000	25000	50000	50000	500000	100000	10000
34	50000	80000	5000	100000	1000	1000	150000	100000
35	20000	25000	10000	60000	60000	15000	60000	40000
. 36	30000	15000	20000	20000	40000	40000	150000	25000
. 37	50000	60000	50000	90000	70000	60000	50000	20000
38	50000	100000	10000	70000	60000	40000	70000	100000
39	25000	20000	15000	20000	30000	45000	40000	30000
40	25000	50000	2000	40000	50000	20000	15000	30000
.41	900	550	50000	150000	115000	175000	125000	15000
- 42	2000	10000	200	40000	5000	1000	200	2000

Rick Perception 95

	Drugs & Medicine	Knives	Bicycles
Sec. 1	brugs b ricultine	Kinzes	Diegelee
1	90000	10000	54000
	120000	100000	75000
3	500000	400000	200000
4	100000	150000	120000
5	90000	15000	50000
6	180000	75000	60000
7	100000	10000	50000
8	200000	1050	2000
9	100000	30000	100000
10	100000	200000	200000
11	40000	20000	20000
12	90000	60000	60000
13	200000	95000	95000
14	100000	500000	250000
15	100000	30000	50000
16	200000	80000	150000
17	70000	3000	80000
18	500000	800000	800000
19	300000	300000	100000
20	200000	100000	15000
21	1000	1000	1000
22	50000	35000	2000
23	120000	70000	80000
24	100000	80000	40000
25	90000	85000	40000
26	45000	25000	65000
27	100000	200000	95000
28	80000	85000	45000
29	300000	100000	200000
30	100000	80000	100000
31	95000	110000	75000
32	100000	60000	60000
33	100000	500000	750000
34	300000	100000	10000
35	90000	45000	80000
36	200000	150000	100000
37	80000	80000	70000
38	100000	50000	90000
39	80000	60000	75000
40	38000	20000	90000
41	200000	250000	130000
42	100000	6000	20000

.

	Subject ID	Group	Seн	Vacuum	Fireworks	Rigarh	Fans	Gasoline	TUS	Chainsaw
}	000100010	oroup		Ducuum	THE DUIKS	Dieucii	1 4115	Uasunne	103	chanisate
43	43	3	1	25000	40000	30000	30000	30000	20000	30000
44	44	3	2	1200	32000	98000	8000	43000	8000	55000
45	45	3	1	2000	3000	8000	10000	25000	17000	3572
46	46	3	1	250	50000	100	200	12000 [.]	150	50
47	47	3	2	10000	150000	10000	75000	90000	20000	100000
48	48	3	2	5000	17000	25000	7000	10000	10000	15000
49	49	4	1	5000	30000	10000	10000	65000	25000	40000
50	50	4	2	50000	50000	30000	60000	20000	40000	20000
51	51	4	2	11000	20000	8000	10000	90000	8000	8000
52	52	4	1	20000	30000	150000	75000	175000	30000	30000
53	53	4	1	2000	20000	10000	1000	8000	20000	20000
54	54	4	1	100	15000	20000	100	1000	10000	2000
55	55	4	2	15000	50000	75000	10000	90000	15000	50000
56	56	4	2	500	3500	35000	2500	45000	15000	1500
57	57	4	2	9000	10000	11000	20000	50000	15000	35000
58	58	4	1	5000	40000	20000	10000	60000	5000	20000
59	59	4	2	60000	80000	90000	90000	80000	75000	60000
60	60	4	1	10000	45000	15000	8000	40000	20000	60000
61	61	- 4	2	10000	60000	30000	20000	25000	60000	20000
62	62	4	2	3000	35000	10000	15000	80000	10000	15000
63	63	4	1	2000	8000	1000	1000	5000	1000	7000
64	64	4	1	1000	20000	2000	400	10000	4000	5000

.

	Hammers	Skateboards	Drinking Glasses	ATUs	Ladders	Bathtubs	Windows	Nails
43	50000	100000	20000	25000	50000	25000	40000	35000
44	1200	20000	35000	3500	64000	92000	6200	135000
45	15000	20000	15000	10000	12000	4000	25000	17000
46	100	1500	1750	10000	100	15000	1500	30000
47	10000	20000	15000	100000	30000	90000	100000	10000
48	5000	40000	2000	35000	3000	25000	15000	2000
49	30000	20000	5000	80000	40000	50000	20000	5000
50	75000	65000	75000	60000	45000	40000	75000	70000
51	15000	20000	8000	8000	8000	30000	60000	20000
52	50000	50000	125000	100000	100000	175000	100000	100000
53	10000	50000	2000	50000	10000	20000	30000	5000
54	1000	15000	50	30000	10000	5000	6000	2000
55	40000	10000	20000	30000	50000	30000	75000	25000
56	4500	8000	1500	20000	3000	45000	7500	2500
57	25000	10000	15000	60000	30000	55000	60000	40000
58	15000	50000	20000	90000	40000	60000	60000	15000
59	100000	110000	80000	100000	60000	150000	80000	70000
60	15000	3000	5000	80000	40000	5000	50000	4000
61	1000	40000	, 40000	100000	35000	45000	60000	10000
62	5000	10000	2000	30000	10000	70000	80000	50000
63	5000	12000	2000	20000	7000	10000	. 50000	50000
64	2000	10000	500	10000	5000	15000	1000	4000

	Orugs O Medicine	Knives	Bicycles
43	25000	60000	50000
44	180000	55000	120000
45	35000	150000	15000
46	75000	1000	5000
47	200000	75000	60000
48	160000	12000	50000
49	100000	90000	90000
50	80000	90000	85000
51	80000	90000	75000
52	60000	150000	75000
53	300000	150000	200000
54	50000	20000	30000
55	95000	90000	75000
56	150000	70000	50000
57	100000	50000	35000
58	75000	5000	80000
59	160000	100000	150000
60	60000	50000	50000
61	200000	100000	70000
62	100000	30000	25000
63	30000	6000	10000
64	100000	5000	8000

Group Estimation Means

.

	Product Name	NEISS	Hurried	Unhurried	Generate	Provided
1	vacuum oleaner	11117.000	19482.500	13662.500	11668.750	12725.000
2	fireworks	12602.000	70000.000	74187.500	60250.000	32281.250
3	bleach	15109.000	37656.250	52468.750	26600.000	32312.500
4	fans	17454.000	40218.750	53043.750	19637.500	20812.500
5	gasoline	17768.000	49375.000	115000.000	39687.500	52750.000
6	televisions	25435.000	27313.125	21437.500	15803.125	22062.500
7	chainsaws	41387.000	45012.500	62100.000	36601.375	24593.750
8	hammers	49479.000	57568.750	60062.500	23387.500	24593.750
9	skateboards	81066.000	86256.250	115625.000	36378.125	30187.500
10	drinking glasses	81606.000	30663.125	33187.500	17246.875	25065.625
11	ATYs	86400.000	82937.500	79187.500	51468.750	54250.000
12	ladders	90019.000	36018.750	66712.500	40006.250	30812.500
13	bath tubs	101865.000	66718.750	65062.500	71750.000	50312.500
14	windows/glass	128777.000	42750.000	70562.500	59243.750	50906.250
15	nails screws etc	214656.000	63787.500	48437.500	37562.500	29531.250
16	drugs/meds	216246.000	200625.000	140697.500	178937.500	108750.000
17	knives	333478.000	111003.125	133375.000	100875.000	68500.000
18	bicycles	546420.000	96000.000	112375.000	107187.500	69250.000

Correlation of Group Estimates and NEISS Frequencies

	NEISS	Hurried	Unhurried	<u>Generate</u>	Provided	ר ⁻
EISS	1			<u> </u>	<u></u>	4
turned	.538	1				
Johurried	.54	.802	1			
Generate	.653	.923	.771	1		
Provided	.615	.88	.81	.95	1	

Correlation of Hurried Group Estimates with NEISS Frequencies

Corr. Coeff. X1: Hurried Y1: NEISS						
<u>Count:</u>	Covariance:	Correlation :	R-squared:			
18	3.151E9	.538	.29			

Correlation of Unhurried Group Estimates with NEISS Frequencies

Count :	Covariance:	Correlation:	R-squared:
18	2.7559	.54	.292

Correlation of Generate Group Estimates with NEISS Frequencies

ount:	Covariance:	Correlation:	: R-square
18	3.7889	.653	.426

Correlation of Provided Group Estimates with NEISS Frequencies

Count:	Covariance:	Correlation:	R-squared :	
18	2.013E9	.615	.378	

	Product Name	NEISS	Hurried	Unhurried	Generate	Provide
1	L vacuum cleaner	4.050	4.290	4.140	4.070	4.100
2	L fireworks	4.100	4.850	4.870	4.780	4.510
3	L bleach	4.180	4.580	4.720	4.420	4.510
4	L fans	4.240	4.600	4.720	4.290	4.320
5	L gasoline	4.250	4.690	5.060	4.600	4.720
6	L televisions	4.410	4.440	4.330	4.200	4.340
7	L chainsaws	4.620	4.650	4.790	4.560	4.390
8	L hammers	4.690	4.760	4.780	4.370	4.390
9	L skateboards	4.910	4.940	5.060	4.560	4.480
10	L drinking glasses	4.910	4.490	4.520	4.240	4.400
11	L all terrain vehicles	4.940	4.920	4,900	4.710	4.730
12	L ladders	4.950	4.560	4.820	4.600	4.490
13	L bathtubs/showers	5.010	4.820	4.810	4.860	4.700
14	L windows/glass	5.110	4.630	4.850	4.770	4.710
15	L nails screws etc.	5.330	4.800	4.690	4.570	4.470
16	L drugs/meds	5.330	5.300	5.150	5.250	5.040
17	L knives	5.520	5.050	5.130	5.000	4.840
18	L bicycles	5.750	4.980	5.050	5.030	4.840

Correlation of Estimate Logarithms with NEISS Frequencies

	NEISS	Hurried	Unhurried	<u>Generate</u>	Provide
NEISS Hurried	.636	1		1	
Unhurried	.527	.849	1		
Generate	.681	.878	.831	1	
Provide	.662	.824	.823	.928	1

Correlation of Hurried Group Logarithms with NEISS Frequencies

ount:	Covariance:	Correlation:	R-squared
18	.08	.636	.405

Correlation of Unhurried Group Logarithms with NEISS Frequencies

Count:	Covariance:	Correlation:	R-squared:
18	.072	.527	.277

Correlation of Generate Group Logarithms with NEISS Frequencies

Count:	<u>Covariance:</u>	Correlation :	R-squared
18	.109	.681	.463

Correlation of Provided Group Logarithms with NEISS Frequencies

A state of the second

· •	, i	Corr. Coeff. X1:	Provide Y1:	NEISS
	Count:	Covariance :	Correlation:	R-squared:
	18	.078	.662	.438

	PRODUCT NAME	SOR NEISS	SQR Hurried	SQR Unhurried	SQR Generate	SQR Provided
1	S vacuum cleaner	105.437	139.580	116.887	108.022	112.805
2	S fireworks	112.259	264.575	272.374	245.459	179.670
3	S bleach	122.919	194.052	229.061	163.095	179.757
4	S fans	132.114	200.546	230.312	140.134	144.265
5	S gasoline	133.297	222.205	339.116	199.217	229.674
6	S televisions	159.484	165.267	146.416	125.710	148.535
7	5 chainsaws	203.438	212.161	249.199	191.315	156.824
8	S hammers	220.179	239.935	245.077	152.930	156.824
9	S skateboards	284.721	293.694	340.037	190.731	173.746
10	S drinking glasses	285.668	175.109	182.174	131.327	158.321
11	S ATVs	293.939	287.989	281.403	226.867	232.916
12	S ladders	300.032	189.786	258.288	200.016	175.535
13	S bath tubs	319.165	258.300	255.074	267.862	224.304
14	S windows/glass	358.855	206.761	265.636	243.400	225.624
15	S nails screws e	463.310	252.562	220.085	193.810	171.847
16	S drugs/meds	465.023	447.912	375.083	423.010	329.773
17	S knives	577.476	333.171	365.205	317.608	261.725
18	S bicy cles	739.202	309.839	335.224	327.395	263.154

Correlation of Square Roots of Estimates with NEISS Frequencies

	SHAK MELIS	S SUK HUR.	<u>, sur unn</u>	<u> surk uen.</u>	SOR Pro	ر
SQR NEISS SQR Hurrned	.63	1				-
SQR Unhurried	.545	.825	1			
SQR Generate	.712	.896	.798	1		
SQR Provided	.67	.847	.814	.938	1	

Correlation of Square Roots of Hurried Group Estimates with NEISS Frequencies

unt:	Covariance:	Correlation:	R-squared
18	8085.221	.63	.397

Correlation of Square Roots of Unhurried Group Estimates with NEISS Frequencies

ount:	Covariance:	Correlation:	R-squared
18	6816.25	.545	.297

Correlation of Square Roots of Generate Group Estimates with NEISS Frequencies

Corr.				
Count:	Covariance:	Correlation:	R-squared:	
18	10118.072	.712	.506	
<u> </u>				

Correlation of Square Roots of Provided Group Estimates with NEISS Frequencies

Count:	Covariance :	Correlation:	R-squared:
18	6327.405	.67	.449

Appendix E

Individual Correlations

Individual Correlations

1							Notual Low Frequencies
2							
	1	009	.525	.237	.036	.037	.199
		.405	.010	.200	.156	.389	+.121
4		.511	308	.150	.442	.447 .647	.660
-5		.047	131	193	.541	.365	385
6	1	.229	597	313	.020	.163	570
7	ī	.122	559	.274	.650	.224	477
8	1	095	390	.009	498	.002	333
9	.1	.370	159	134	.186	.475	036
10	!	.398	.049	.423	.300	.350	219
끸		.492	.313	.257	.599	.633	.004
12	<u> </u>	.250	360	093 492	.242	.318	305
긞	;	.549	.079	~.038	073	.302	649
낢		.162	434	494	.266	.332	.075
16	- i l	.358	.274	213	.200	.485	405
iit i	z	.406	.332	308	290	.347	.124
18	2	.294	.410	.557	.610	.431	.103
19	2	.380	.081	615	.170	, .275	198
ZO	2	.612	.037	230	.030	.351	304
21	2	.089	.494	.325	422	122	.564
22	2	.203	126	326	631	.199	221
23	2	.295	.033	.083	.224	.259	005
24	2	083	.367	283	467	202	.253
25	2	.350	.073	004	370	.147	012
26	2	.240	154	.106	.046	.255	311
27	2	.599	225	.363	.067	.390	253
29	2	.448	-,158	.014	.331	.377	266
29	2	· .595	403	.061	.068	.517	446
30	2	510	156	.257 .026	.829	.621	247
31	2	.273	116	.390	.260	.115	213
32		.504	206	296	.176	.450	331
33		.362	592	408	.245	.704	427
35		.383	426	064	.603	.458	.467 457
36		.507	044	.421	.259	.583	042
37		.139	097	.455	.235	.269	095
38	<u> </u>	.619	.118	.464	.424	.582	.179
39		.637	278	.510	.553	.759	176
40		.453	303	.170	.772	.596	370
41	3	.275	574	.172	.034	.449	375
42	3	.398	.232	.011	.622	.285	221
43	3	.333	580	.054	.677	.264	600
44	3-	.434	.161	.161	.379	.547	162
45	3	.589	.854	.611	.451	.454	.692
46	3	.348	281	.685	105	.124	365
47	3	.192	.036	080	152	.122	-,222
48	3	.236	.044	010	.140	.340	134
49	4	.411	.446	133	.361	.601	.259
50	4	.612	263	.539	.735	.654	231
51	4	.514	049	005	.491	.611	.043
52	4	.378	.230	.828	413	.137	.053
53 54	4	.091	.290	.263	.555	.717	.389
59		.323	167	456	.358	.502	164
56	- 4	.323	.503	.426	.269	.459	.252
30		.628	.303	146	455	.376	.252
58		.324	175	.701	206	.338	162
59		.511	.341	.226	.168	.555	.209
60		.137	.063	221	,461	.298	061
61		.345		.672	.190	, .415	.451
62	- 1	.350	.226	.014	006	.202	.036
63	4	.641	435	.180	400	.285	309
64	. 1	.300	.026	.107	.001	.101	210

	Group	All Products- Logs	Logs Low Frequencies	Logs Medium Frequency	Logs High Frequency	Actual Frequencies Corr	Actual Low Frequencies
	<u> </u>	009	.525	.237	.036	.037	.199 121
2 3	1	.405	.723	.200	.156	.309	.668
- 3		.511	308	.150	.541	.647	385
- 5		.047	131	193	.505	.365	201
6		.229	597	313	.029	.163	578
-7		.422	559	.274	.650	.224	477
8	1	095	390	.009	498	.002	333
9	.1	.378	159	134	.196	.475	036
10	1	.398	.049	.423	.388	.358	219
<u>11</u>	1	.492	.313	.257	.599	.633	.064
12	1	.250	360	093	.242	.318	305
13	1	.371	731	492	073	.302	649
14		.549	.079	038	.549	.510	.075
15		.162	434	494	.266	.332	463
17		.338	.332	213 308	.581	.485	070
18	2	.480	.332	.557	290	.347 .431	.124
19	2	.388		615	.010	, .275	198
20	2	.612	.037	230	.038	.351	304
21		.089	.494	.325	422	122	.564
22	2	.283	126	326	631	.199	221
23	2	.295	.033	.883	.224	.259	085
24	2	083	.367	283	467	202	.253
25	2	.350	.073	004	370	.147	-,012
26	2	.240	154	.106	.046	.255	311
27	2	.599	225	.363	.067	.390	253
28	2	.448	158	.014	.331	.377	266
29	2	.595	403	.061	.068	.517	446
30	2	510	156	.257	.829	.621	247
31	2	.273	116	.026	.260	.115	213
32	2	.565	253	.390	.176	,458	331
33	3	.584	206	296	.245	.704	427
34		.383	426	064	.166	.227	.467
35		.587	044	.421	.603	.458 .583	457 042
37		.139	097	.455	.259 .235	.269	042
38		.619	.118	.464	.424	.582	.179
39	3	.637	278	.510	.553	.759	176
40	3	.453	303	.170	.333	.596	370
41	3	.275	574	,172	.034	.449	375
42	3	.398	.232	.011	.622	.285	221
43	3	.333	580	.054	.677	.264	600
44	3	.434	.161	.161	,379	.547	162
45	3	.589	.854	.611	.451	.454	.692
46	3	.348	281	.685	185	.124	
47	3	.192	.036	080	152	.122	222
48	3	.236	.044	010	.140	.340	134
49	4	.411	.446	133	.361	.601	.259
50	4	.612	263	.539	.735	.654	231
51	4	.514	049	085	.491	.611	.043
52	4	.378	.230	.828 .019	413	.137	.053
53	4	.429	.290	.263	.555	.717 .502	.389
54 55	4	.323	167	456	.330	.302	164
56	4	.323	.583	.426	.269	.459	.252
57	4	.628	.383	146	455	.376	.264
58	4	.324	-,175	.701	206	.318	162
59		.524	.341	.226	.168	.555	.209
60	4	.137	.063	221	.461	.298	061
61		.345		.672	.190	.415	.451
62		.350	.226	.014	806	.202	.036
63	4	.641	435	.188	400	.285	389
64	4	.300	.026	.107	.081	.184	210

	Actual Medium Frequencies	Relual High Frequencies
1	.482	096
2	.218	063
-3	.083	.154
5	.027	.332
6	382	182
7	.348	.316
8	.052	344
9	.149	.369
11	027	.261
12	160	.121
13	609	-,206
14 15	.153	.203
16	828	.113
17	272	103
18	.384	.828
19	697	
20	164	155
21	.442	431
23	.871	.106
24	274	537
25	049	453
26	.226	.223
27	.426	039
28	063	.299
30	.311	.732
31	.088	.178
32	.546	.020
33	218	.403
34 35	151	283
36	.347	.104
37	.483	.353
38	.478	.304
39	.433	.593
40	.514	.865
41	.283	.074
42	.286	.060
43	.036	.216
45	.449	.222
46	.442	228
47	191	238
48	.234	.062
49 50	.106	.557
51	086	.525
52	.772	372
53	.269	.514
54	.572	.430
55	441 .400	.382
56 57	.037	432
58	.611	.111
59	.157	.250
60	042	.415
61	.660	
62	.175	739
63	.355	476

Anova of Actual Individual Correlations by Group

One Factor ANOVA X1: Group Y1: Actual Frequencies Corr

Source :	DF :	Sum Squares :	Mean Square:	F-test:
Between groups	3	.233	.078	2.061
Within groups	60	2.264	.038	p = .115
Total	63	2.498		

Analysis of Variance Table

Model II estimate of between component variance = .013

One Factor ANDVA X1: Group Y1: Actual Frequencies Corr

Group :	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	16	.355	.185	.046
Group 2	16	.276	.217	.054
Group 3	16	.423	.197	.049
Group 4	16	.423	.176	.044

One Factor ANOVA X1: Group Y1: Actual Frequencies Corr

Comparison:	Mean Diff.:	Fisher PLSD :	Scheffe F-te	st: Dunnettt:
Group 1 vs. 2	.079	.137	.444	1.155
Group 1 vs. 3	067	.137	.32	.979
Group 1 vs. 4	067	.137	.32	.98
Group 2 vs. 3	147	.137*	1.518	2.134
Group 2 vs. 4	147	.137*	1.519	2.135

Anova of Actual Individual Correlations by Group One Factor ANOVA X1: Group Y1: Actual Frequencies Corr

Comparison :	Mean Diff.:	Fisher PLSD:	Scheffe F-test :	Dunnett t:
Group 3 vs. 4	-6.250E-5	.137	2.760E-7	.001

Anova of Low, Medium, High Individual Correlations by Group

Source:	df:	Sum of Squares :	Mean Square :	F-test :	P value :
Group (A)	3	.769	.256	1.976	.1272
subjects w. groups	60	7.783	.13		
Repeated Measure (B)	2	2.451	1.226	12.21	.0001
AB	6	.672	.112	1.116	.3571
B x subjects w. groups	120	12.046	.1		

Anova table for a 2-factor repeated measures Anova.

There were no missing cells found.

The AB Incidence table

Re	peated Mea	Actual Lo	Actual M	Actual Hi	Totals :
Τ	level 1	16	16	16	48
	levell	177	.033	.161	.006
	10.010	16	16	16	48
Group	level 2	115	.082	.019	005
18	1	16	16	16	48
	level 3	144	.224	.229	.103
	10.401 4	16	16	16	48
	level 4	.046	.266	.119	.144
		64	64	64	192
	Totals :	097	.151	.132	.062

Upper Triangle: .05 level ; Lower Triangle: .01 1 evel

	A	В	C	D
8.82	X	-	-	-
B. A 1	-	X	-	-
С. А З	-	-	X	-
D. A 4	-	-	-	X

Upper Triangle: .05 level ; Lower Triangle: .01 1evel

	A	8	С
A. B. 1	X	-	S
B. B 2	-	X	-
С. В З	S	-	Х

Anova of Logs Individual Correlations by Group

One Factor ANOVA X1: Group Y1: All Products- Logs

Source:	DF:	Sum Squares :	Mean Square :	F-test:
Between groups	3	.12	.04	1.251
Within groups	60	1.922	.032	p = .2994
Total	63	2.043		

Analysis of Variance Table

Model II estimate of between component variance = .003

One Factor ANOVA X1: Group Y1: All Products- Logs

Group :	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	16	.321	.21	.053
Group 2	16	.371	.195	.049
Group 3	16	.411	.158	.039
Group 4	16	.436	.145	.036

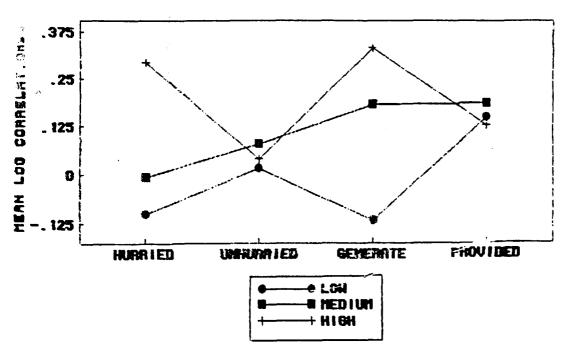
One Factor ANOVA X1: Group Y1: All Products- Logs

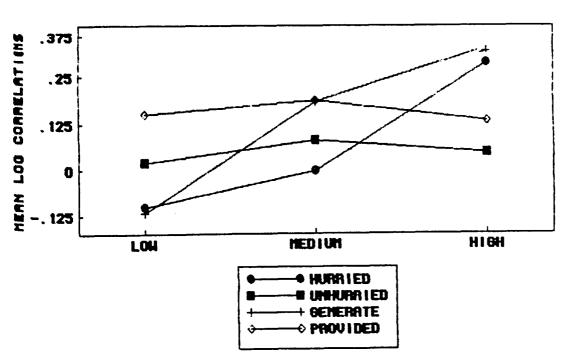
Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-tes	st: Dunnett t:
Group 1 vs. 2	051	.127	.213	.799
Group 1 vs. 3	09	.127	.669	1.416
Group 1 vs. 4	115	.127	1.097	1.814
Group 2 ys. 3	039	.127	.127	.617
Group 2 vs. 4	064	.127	.344	1.015

Anova of Logo Individual Correlations by Oroup One Factor ANOVA X1: Group Y1: All Products- Logs

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
Group 3 vs. 4	025	.127	.053	.398

Anova of Logs Low Medium High Individual Correlations by Group


Anova table for a 2-factor repeated measures Anova.


Source :	df:	Sum of Squares :	Mean Square :	F-test:	P value :
Group (A)	3	.405	.135	.877	.458
subjects w. groups	60	9.237	.154		
Repeated Measure (B)	2	1.447	.723	6.733	.0017
AB	6	1.619	.27	2.512	.0252
B x subjects w. groups	120	12.89	.107		

There were no missing cells found.

The AB Incidence table

Re	peated Mea	Logs Low	Logs Medi	Logs High	Totals:
	11 4	16	16	16	48
	level 1	106	01	.287	.057
	11-7	16	16	16	48
Ъ,	level 2	.015	.076	.04	.044
Group	1	16	16	16	48
	level 3	121	.179	.326	.128
	1	16	16	16	48
	level 4	.146	.184	.127	.152
	64	64	64	192	
	Totals :	017	.107	.195	.095

freet	MOn	DFn	Dfe	MOre	F	q
at LOW	.247	3	174	. 123	2.013	. 114
at MEDIUM	. 137	3	174	. 123	1.111	.346
at HIGH	. 29 1	3	174	. 123	2.365	.073
at HURRIED	.673	2	120	. 107	6.263	.003
at UNHURRIED	.015	2	120	. 107	. 14 1	. 868
at GENERATE	.831	2	120	. 107	7.740	.001
at PROVIDED	.014	2	120	. 107	. 126	. 882

Upper Triangles -05 level ; Lower Triangles -01 Level

	R	B	C	D
A. PROVIDED	X	-	5	5
B. GENERATE	-	X	-	5
C. HURRIED	5	-	X	-
D. UNHURRIE	5	5	-	X

	Upper Triangle: .05 level	Lawer Triangles .01 Level
--	---------------------------	---------------------------

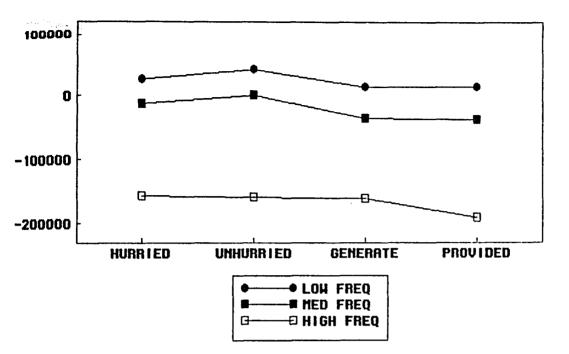
_	A	B	С
A. HIGH FRE	X	S	s
B. MED FREQ	-	X	-
C. LOW FRED	S	-	X

Appendix F

Estimate Differences from NEISS Frequencies

ANOVA Summary Table for Relax/Seagate0:MacTerminal 2.2:Martin Thesis Estimate Diffs-te

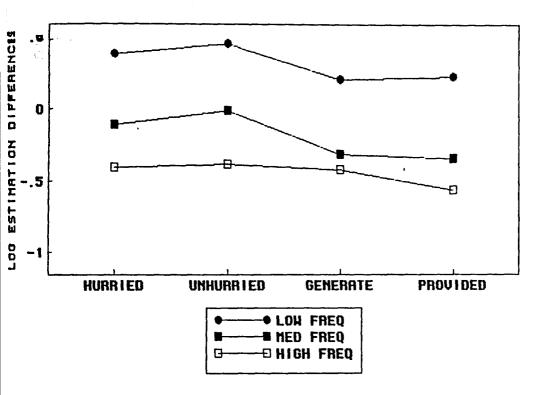
Source of Variation	dſ	Sum of Squares		Mean Square	F	ρ	Epsilo Correct	
ß	2 48	2530023386.	695	24 12650 1	1693.348	7.184	. 0065	
Error	15 50	3752622059.	876	33583508	137.325			
B	3 10	744494627.4	185 3	58149820	9.162	14.919	. 0000	
AB	626	24403406.30	06 43	7400567.	7 18	1.822	. 1162	
Error	45 10	80303 1536 . 9	258 2	40067369	.710			.78


Upper Triangles .05 level ; Lawer Triangles .01 1evel

	A	В	C	D
. PROVIDED	X	-	5	S
. GENERATE	-	X	-	S
HURRIED	S	-	X	-
UNHURRIE	5	5	-	X

•

Upper Triangles .05 level ; Lawer Triangles .01 Level


	A	В	С
HIGH FRE	X	S	5
· MED FREQ	-	X	-
Loh Freq	5	-	X

ANOVA Summary Table for Relax/Seagate0:MacTerminal 2.2:Martin-Log Estimate Diffs-Text

Source of Variation	df	Sum of Squares	Mean Square	F	Þ	Epsilon Correction
· A	2	7.094	3.547	15.710	.0002	
Error	15	3.387	. 226			
B	3	.710	. 237	25.162	.0000	
AB	6	. 147	. 024	2.599	.0301	
Error	45	. 423	. 009			. 95

Effect	MSn	DFn	DFe	MSe	F	P
A at HURRIED	. 935	2	19	.064	14.722	000
A at UNHURRIED	1.037	2	19	.064	16.337	.000
A at GENERATE	.659	2	19	.064	10.372	.001
A at PROVIDED	. 990	2	19	.064	15, 583	.000
B at LOH FREQ	.087	3	45	.009	9.227	.000
B at NED FREQ	. 158	3	45	.009	16, 759	000
B at HIGH FREQ	.041	3	45	.009	4.373	.009

2

ANOVA Summary Table for TERMINAL/CLR:absolute values2

Source of Variation	df	Sum of Squares	Mean Square	F	P	Epsilon Correction	n
A	3	900046106.731	3000 15368 . 9 10)	. 298 .	8264	
Error	60	60318969842.32	27 1005316164	039			
В	2	1078371905403	.59 5391859527	01.793	3 508.002	.0000	
AB	6	8309444686.238	3 1384907447.7	206	1.305	. 2602	
Error	120	127366309500.2	280 105 13859 12	2.502			. 78

Uppor Triangle: .05 louel ; Lower Triangle: .01 teuel

	A	B	C
1	X	S	Ξ
2	S	X	S
2 3	5	S	Х

А. Ь В. Ь С. Ь

Upper Triangle: .05 level ; Lower Triangle: .01 level

Ę
S
x

Appendix G

Products as a Random Variable

ANOVA using Products as Random Variable

Source : df: Sum of Squares: Mean Square : F-test: Pivalue: 2 Product Groups (A) 3.166E10 1.583E10 5.007 .0216 15 3.162E9 subjects w. groups 4.743E10 Repeated Measure (B) 3 1.074E10 3.581E9 14.919 .0001 AB 6 2.624E9 437390829.014 1.822 .1162 B x subjects w. groups 45 1.080E10 240068027.765

Anova table for a 2-factor repeated measures Anova.

There were no missing cells found.

The AB Incidence table

Re	epeated Mea	Hurried	Unhurried	Generate	Frowided	Totals:
		6	6	6	6	24
level 1	40674.271	54966.667	28941.146	28823.958	38351.51	
Š	1 1 10/01/2	6	6	6	6	24
ğ		56409.479	69479.167	34181.479	31583.854	47913,495
Product	117	6	6	6	6	24
à	L level 3	96814.062	95083.333	92592.708	62875	86841.276
		18	18	18	18	72
	Totals:	64632.604	73176.389	51905.111	41094.271	57702.094

Upper Triangle: .05 level ; Lower Triangle: .01 Tevel

	R	B	C
A. A 3	X	ž	5
B. R 2	-	X	-
C. A 1	S	-	Х

Upper Triangle: .05 level ; Lower Triangle: .01 tevel

	A	B	C	Ŋ
A. B 4	X	-	5	5
B. B 3	-	X	-	5
C. B 1	5	-	X	-
D. B 2	2	S	-	X

ANOVA using Products as Random Variable

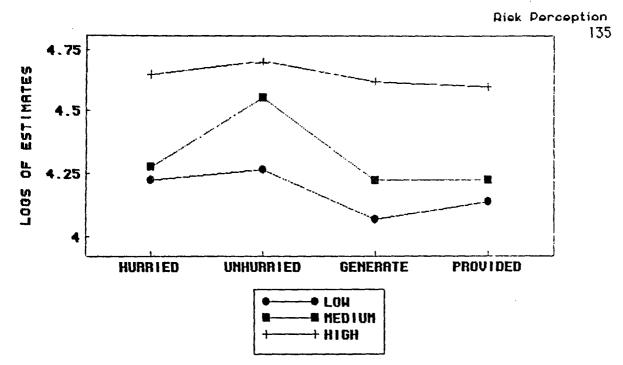
Anova table for a 2-factor repeated measures Anova.

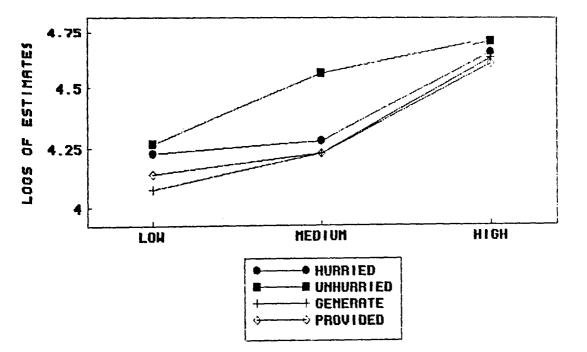
Source:	df:	Sum of Squares :	Mean Square :	F-test:	P value:
PRODUCT GROUP (A)	2	1.834	.917	5.745	.014
subjects w. groups	15	2.394	.16		
Repeated Measure (B)	3	.71	.237	25.162	.0001
AB	6	.147	.024	2.599	.0301
B x subjects w. groups	45	.423	.009		

There were no missing cells found.

The AB Incidence table

Repeated Mea		Hurried	Unhurried	Generate	Frovide	Totals :
GROUP		6	6	6	- 6	24
	level 1	4.575	4.64	4.393	4,417	4,506
		6	6	6	6	24
9	level 2	4.72	4.812	4.507	4,48	4.63
PRODUCT		6	6	6	6	24
	level 3	4.93	4.947	4.913	4.767	24 4.889
Totals :		18	18	18	18	72
		4.742	4.799	4.604	4.554	4.675


Effect	MSn	DFn	DFe	MSe	F	p
A at B 1	.319	2	15	. 119	2.683	. 101
A at B 2	. 294	2	15	.077	3.840	.045
A at B 3	. 479	2	15	.084	5.706	.014
A at B 4	. 363	2	15	.080	4.558	. 029
Bat R 1 🕔	.046	3	45	.012	3.976	.013
B at A 2	. 153	3	45	.012	13.248	.000
B at A 3	.012	3	45	.012	1.041	. 383


Upper Triangle: .05 level ; Lower Triangle: .01 tevel

	Ř	В	C	D
R. GENERATE	X	-	-	5
B. FROVIDED	-	X	-	5
C. HURRIED	-	-	X	2
D. UNHURRIE	S	S	S	X

Upper Triangle: .05 level ; Lower Triangle: .01 1evel

	A	В	C
A. LON	X	-	z
B. MEDIUM	-	X	-
C. HIGH	-	_	Х

ANOVA - Products as Random Variable

P value: df: Sum of Squares: Mean Square: F-test: Source : 2.413E11 7.184 .0065 2 Product Groups (A) 4.825E11 3.358E10 subjects w. groups 15 5.038E11 14.919 .0001 Repeated Measure (B) 3 1.074E10 3.581E9 .1162 437390829.014 1.822 AB 6 2.624E9 240068027.765 B x subjects w. groups 45 1.080E10

Anova table for a 2-factor repeated measures Anova.

There were no missing cells found.

The AB Incidence table

Re	peated Mea	HURRIED	UNHURRIE	GENERAT	FROVIDED	Totals :
Groups	level 1	6	6	6	6	24
		24093.438	38385.833	12360.312	12243.125	21770.677
5		6	6	6	6	24
10	level 2	-1.508E4	-2013.667	-3.731E4	-3.991E4	24 -2.358E4 24
Product		6	6	6	6	24
4	level 3	-1.601E5	-1.618E5	-1.643E5	-1.94E5	-1.701E5
Totals :		18	18	18	18	72
		-5.036E4	-4.182E4	-63088.5	-73899.34	-5.729E4

Effect	MSn	DFn	DFe	MSe	Г	Ð
A at LON	.247	3	60	. 119	2.087	
A at MEDIUM	. 137	3	60	. 116	1.170	.325
R at HIGH	.291	3	60	. 134	2.165	101
B at HURRIED	.673	2	120	. 107	6.260	.002
B at UNHURRIED	.015	2	120	. 107	. 14 1	869
B at CENERATE	.831	2	120	. 107	7.740	.001
B at PROVIDED	.014	2	120	. 107	. 125	. 882

Upper Triangle: .05 level ; Lower Triangle: .01 Tevel

0 0 1	A	В	Ċ
A. A 1	X	-	5
8. H 2	-	X	-
B. A 2 C. A 3	-	-	X

Upper Triangle: .05 level ; Lower Triangle: .01 tevel

• • •	A	8	С	ħ
R. B 4	X	-	2	Ę
B. B 3	-	X	-	5
C. B 1	5	-	X	-
D. B 2	S	S	-	X

ANOVA using Product Means as Random Variable

Anova table for a 2-factor repeated measures Anova.

Source:	df:	Sum of Squares :	Mean Square :	F-test:	P value:
PRODUCT GROUP (A)	2	7.094	3.547	15.71	.0002
subjects w. groups	15	3.387	.226		
Repeated Measure (B)	3	.71	.237	25.162	10001
AB ·	6	.147	.024	2.599	.0301
Bix subjects will groups	45	.423	.009		

There were no missing cells found.

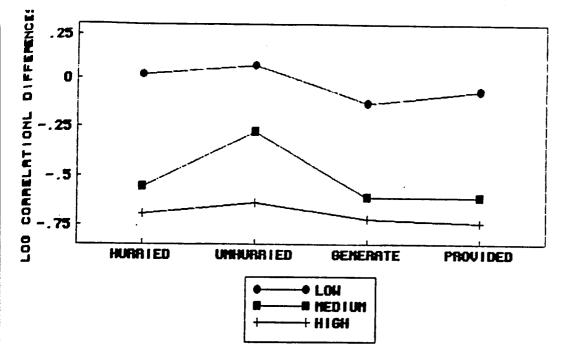
The AB Incidence table

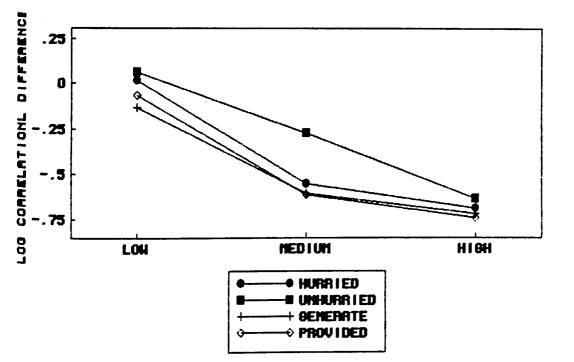
Re	peated Mea	Log Hurri	Log Unhur	Log Gener	Log Provi	Totals :
<u>e</u>	1011	6	6	6	6	24
GROUP	Jevel 1	.37	.435	.188	.212	.301
1. I	10.001.2	6	6	6	6	24
PRODUCT	5 level 2	117	~.025	33	357	207
١ <u>گ</u>	lovel Z	6	6	6	6	24
۲Ľ	Y level 3	412	395	428	575	453
	Totals:	18	18	18	18	72
	10(815).	053	.005	19	24	119

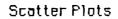
Effect	MSn	DFn	DFe	NSe	F	P
A at B 1	.862	2	15	. 136	6.348	.510
A at B 2	. 740	2	15	. 105	6.926	.007
A at B 3	. 589	2	15	.092	6,429	.010
A at B 4	.770	2	15	.089	8.697	.003
B at A 1	.046	3	45	.012	3,968	.014
B at A 2	. 153	3	45	.012	13.227	.000
B at A 3	.012	3	45	.012	1.043	. 383

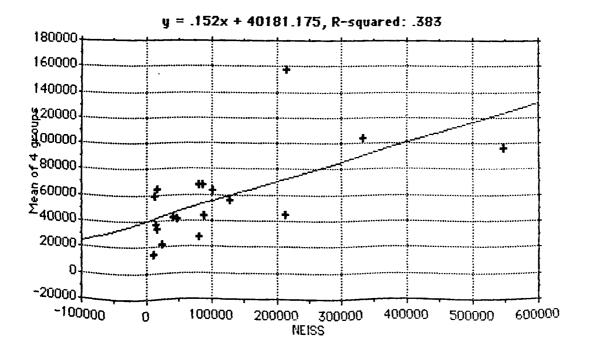
Upper Triangle: .05 level ; Lower Triangle: .01 level

Ĥ	8	C	U
X	-	-	5
-	X	-	5
-	-	X	- -
5	5	S	, X
	fi X - - s	^	- x -

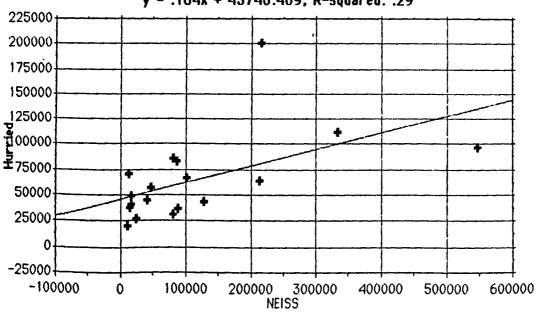

ī

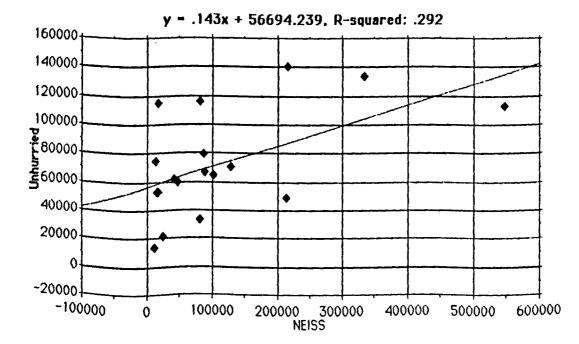

ï

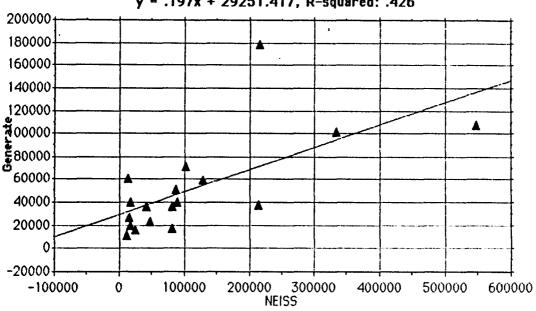

,

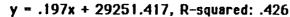

Upper Triangle: .05 level ; Lower Triangle: .01 level

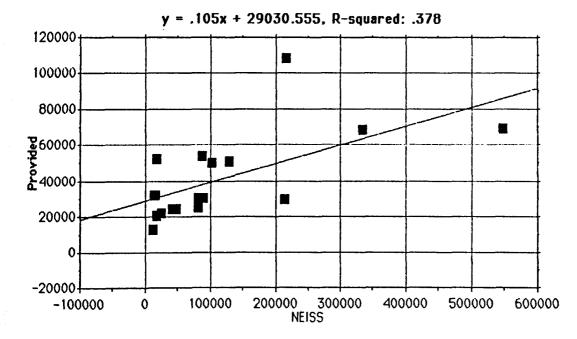
0.000	A	В	С
A. HIGH	X	-	5
B. MEDIUM	-	X	s
C. LOW	5	-	x

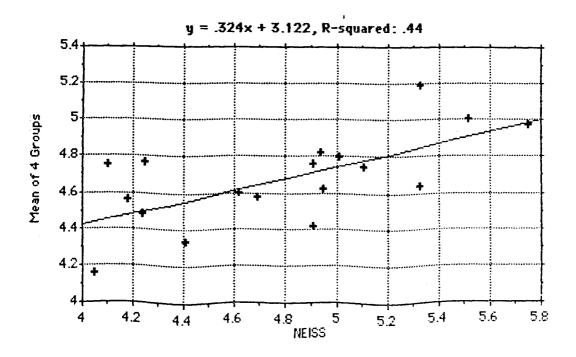


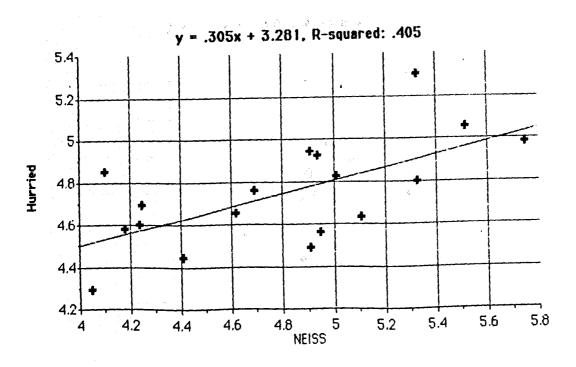


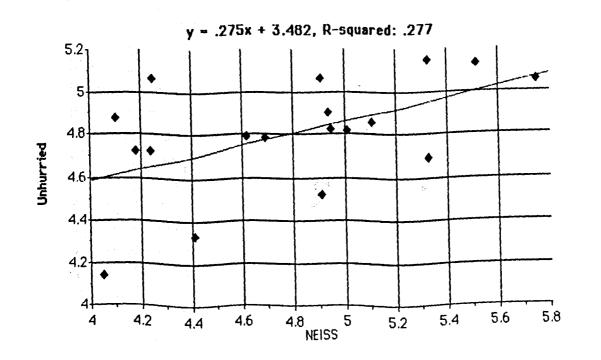

Scatter Plots



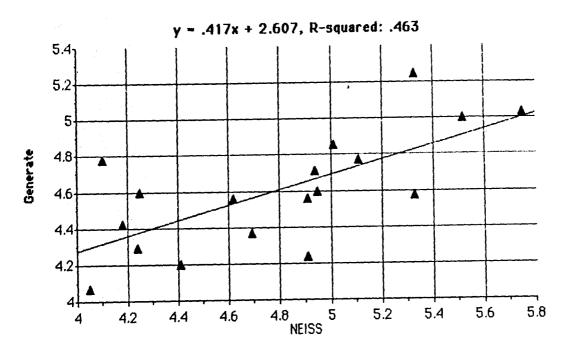

y = .164x + 45748.489, R-squared: .29

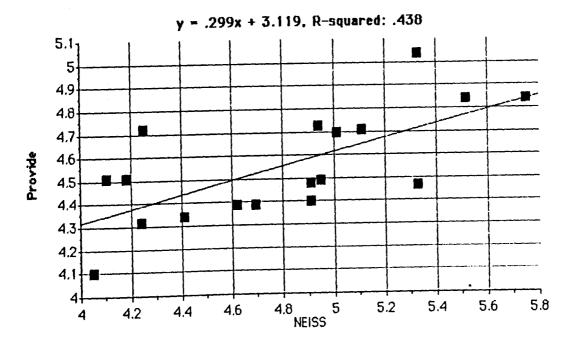

Scatter Plots





Scatter Plot


Scatter Plots



÷

Scatter Plots

Appendix H

Data and Analyses for Precautionary Intent

Precaution Data and Means

Riek Perception

Risk Perception 150

Rick Perception 151

2 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 80 5 2 2 9 4 2 6 2 9 5 7 1 9 8 1 7 3 9 7 4 2 2 1 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1

.

\$ type precaut1.out SPSS-X RELEASE 2.2 FOR VAX/UNS 8-SEP-88 PAGE 1 18:53:34 UNIVERSITY OF RICHMOND DEC VAX-11/780 VHS V4.5 For UMS U4.5 UNIVERSITY OF RICHMOND License Number 10534 ******** 1 0 TITLE 2 0 MEANS FOR PRECAUTION AND CONFIDENCE 3 0 FILE HANDLE 4 0 DATA/NAME = 'PRECAUT.TEM' 5 0 DATA LIST 6 0 FILE = DATA RECORDS = 27 /1 ID 1-2 GROUP 4 SEX 6 VACUUMP 8 FIREWORP 10 BLEACHP 12 FAMSP 14 0 GASP 16 8 0 TVP 18 CHAINSRP 20 HAMMERP 22 SKATEP 24 DRINKP 25 ATVP 28 LADDERP 30 9 0 BATHTUBP 32 WINDOWP 34 NAILSP 36 DRUGSP 38 KNIVESP 40 CYCLESP 42 BATING 44 10 0 /2 VACCUMA 1 FIREWORA 3 BLEACHA 5 FANSA 7 GASA 9 TVA 11 CHAINSAR 13 11 0 Hammera 15 skatea 17 drinka 19 atva 21 laddera 23 bathtuba 25 WINDOWA 27 12 0 NAILSA 29 DRUGSA 31 KNIVESA 33 CYCLES 35 THE ABOVE DATA LIST STATEMENT WILL READ 2 RECORDS FROM FILE DATA VARIABLE REC START END FORMAT WIDTH DEC In 4 4 1

10	1	1	2	F	2	0
GROUP	1	4	4	F	1	0
SEX	1	6	6	F	1	0
VACUUMP	1	8	8	F	1	0
FIREWORP	1	10	10	F	1	0
BLEACHP	1	12	12	F	1	0
FANSP	1	14	14	F	1	0
GASP	1	16	16	F	1	0
TUP	1	18	18	F	1	0
CHAINSAP	1	20	20	F	1	0
HammerP	1	22	22	F	1	0
SKATEP	1	24	24	F	1	0
DRINKP	1	26	26	F	1	0
atup	1	28	28	F	1	0
LADDERP	1	30	30	F	1	0
BATHTUBP	1	32	32	F	1	0
MINDOWP	1	34	34	F	1	0
NAILSP	1	36	36	F	1	0
DRUGSP	1	38	38	F	1	0
KNIVESP	1	40	40	F	1	0
CYCLESP	1	42	42	F	1	0
RATING	1	44	44	F	1	0
VACCUMA	2	1	1	F	1	0

FIREHORA BLEACHA FANSA GASA TVA CHAINSAA HANMERA SKATEA DRINKA ATVA LADDERA BATHTUBA WINDOWA NAILSA DRUGSA KNIVESA CYCLES END OF DATALIST TABLE	2 3 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29 2 31 2 33 2 35	3 5 7 9 11 13 15 7 9 11 35 27 9 1 33 35		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	JARTED'2'L 5'2'FEMALE		'GENERATE' 4'	PROVIDE	: 5 'ONLY'/
	PRECAUTION 7 OF RICHMON		DENCE PRGE 3 DEC VAX-11	/780 VMS	U4.5
			+ Bleachp + Erp + Skatep		GASP + TVP)/6 + ATVP +
19 0 COMPUTE HIGH CYCLESP)/(5		P + NAILSP +	DRUGSP +	KNIVESP +
20 0 LIST / VARIA 21 0	BLES = GROUP	' Low Medi	UN HIGH		
THERE ARE 2229752 BYT THE LARGEST CONTIGUOUS					
356 Bytes of Men 224 Bytes Have F 132 Bytes Remain	ILREADY BEEN	ACQUIRED			
8-SEP-88 MEANS FOR	PRECAUTION	AND CONFI	Denice Prige 4		
18:53:39 UNIVERSITY	OF RICHMON	D	DEC VAX-11	/780 VHS	V4.5
GROUP LOW MEDIL	IM HIGH				

3.50 4.17 4.50 3.67 1 1 4.50 5.00

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	$\begin{array}{c} 1.50\\ 4.83\\ 3.83\\ 4.50\\ 3.83\\ 4.50\\ 3.83\\ 4.67\\ 5.83\\ 4.367\\ 5.83\\ 4.367\\ 5.52\\ 4.00\\ 3.67\\ 5.83\\ 0.30\\ 3.67\\ 5.83\\ 0.33\\ 7.50\\ 4.55\\ 0.03\\ 7.5\\ 5.83\\ 7.5\\ 7.3\\ 7.3\\ 7.3\\ 7.3\\ 7.3\\ 7.3\\ 7.3\\ 7.3$	$\begin{array}{c} 4.50\\ 6.83\\ 5.50\\ 5.63\\ 5.67\\ 6.63\\ 6.65\\ 5.63\\ 6.67\\ 6.63\\ 6.65\\ 5.63\\ 6.67\\ 7.6.\\$	$\begin{array}{c} 3.83\\ 6.50\\ 4.33\\ 6.00\\ 4.50\\ 7.33\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 6.83\\ 7.17\\ 6.55\\ 6.00\\ 5.83\\ 7.15\\ 7.03\\ 5.83\\ 7.03\\$
3 3 4 4 4			

8-SEP-88 MEANS FOR PRECAUTION AND CONFIDENCE

18:53:40

•

UNIVERSITY OF RICHMOND

PAGE 5 DEC VAX-11/780 UNS V4.5

Rick Perception 155

80

V4.5

V4.5

SECONDS

SECONDS

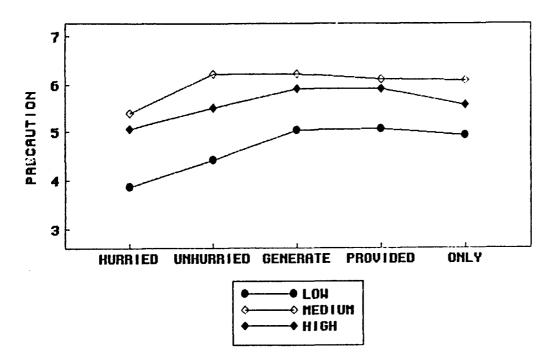
GROUF	LOW	MEDIUM	HIGH			
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 4.33\\ 4.17\\ 4.67\\ 4.33\\ 5.33\\ 5.33\\ 5.33\\ 5.33\\ 5.00\\ 5.33\\ 5.00\\ 5.33\\ 5.00\\ 5.33\\ 5.00\\ 5.50\\ 4.33\\ 5.00\\ 5.517\\ 4.57\\ 5.67\\ 7.33\\ 4.50\\ 7.33\\ 4.50\\ 7.13\\ 7.13\\ 4.50\\ 7.13$	$\begin{array}{c} 6.17\\ 5.83\\ 6.50\\ 5.17\\ 6.33\\ 8.33\\ 6.00\\ 7.83\\ 7.00\\ 6.83\\ 4.83\\ 5.17\\ 4.50\\ 5.00\\ 6.33\\ 7.00\\ 4.17\\ 5.83\\ 6.17\\ 5.67\\ 6.33\\ 6.17\\ 7.00\\ 6.17\\ 7.00\\ 6.17\\ 7.17\\ 6.50\\ 6.50\end{array}$	5.50 4.67 5.83 4.17 5.83 7.33 6.33 6.33 6.33 6.33 5.67 5.67 5.63 5.67 5.383 5.67 5.383 5.67 5.383 5.67 5.383 5.67 5.383 5.67 5.67 5.833 5.67 5.67 5.833 5.67 5.67 5.67 5.833 5.67 5.67 5.67 5.833 5.67 5.67 5.67 5.833 5.67 5.67 5.67 5.833 5.67 5.67 5.833 5.67 5.67 5.833 5.67 5.67 5.833 5.67 5.67 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 5.700 5.833 7.17 5.717			
NUMBER OF	CASES	read =	80	NUMBER OF	CASES LIS	TED =
8-SEP-88	MEAN	s for prec	CAUTION	and confid		
18:53:40	UNIU	ERSITY OF	RICHMON	D	Page 6 Dec Vax-	11/780 VMS
PRECEDING Elapsed.	task r	EQUIRED	1.6	5 SECONDS	CPU TIME;	2.47
22 0	EXECUTE					
8-SEP-88	MEAN	s for prec	AUTION	AND CONFID	ENCE PAGE 7	
18:53:41	UNIV	ERSITY OF	RICHMON	D		11/780 VHS
PRECEDING Elapsed.	TASK R	EQUIRED	0.0	8 SECONDS	CPU TIME;	0.08

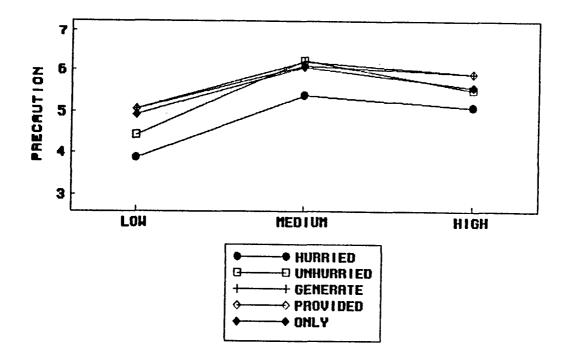
ANDUA Summary Table for Relax/SeagateD:MacTerminal 2.2:LMH PRECAUTION GROUP M

Source of Variation	df	Sum of Squares	Mean Square	F	P	Epsilon Correction
A	4	27.994	6,998	2.935	.0260	
Error	75	178.819	2.384			
B	2	75,121	37.560	107.187	.0000	
AB	8	4.024	. 503	1.435	. 1852	
Error	150	52.563	. 350		-	. 98

HURRIED	LOW	3.8337
HURRIED	MEDIUM	5.3650
HURRIED	HIGH	5.0519
UNHURRIE	Loh	4.3956
UNHURRIE	MEDIUM	5 .1869
UNHURRIE	HIGH	5.4800
GENERATE	LOW	5.0206
GENERATE	MEDIUM	6.1775
GENERATE	HIGH	5.8750
PROVIDED	Loh	5.0300
PROVIDED	MEDIUM	6.0619
PROVIDED	HIGH	5.8744
ONLY	LOW	4.8862
ONLY	MEDIUM	6.0531
ONLY	HIGH	5.5525

HURRIED	4.750Z
UNHURRIE	5.3542
GENERATE	5.6910
PROVIDED	5.6554
ONLY	5.4973


Upper Triangle: .05 lovel ; Lower Triangle: .01 lovel


A. HURRIED B. UNHURRIE C. ONLY	A X - -	B - X -	C 5 - X	D s - -	E 5 -
0. PROVIDED	5	-	-	x	_
E. GENERATE	S	-	-	-	X

LOW	4.6332
MEDIUM	5.9689
HIGH	5.5667

Upper Triangle: .05 level ; Lower Triangle: .01 1evel

	ß	В	C
A. LOW	x	S	S
B. HIGH	S	X	5
C. MEDIUM	S	5	X

Appendix I

Analyses for Injury Responses

Unpaired t-Test X1: Column 40 Y1: AYACUUM

	DF:	DF: Unpaired t Value: Prob. (2-tail):		
	62	189	.8507]
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	1	11000	•	•
Group 2	63	14438.413	18051.372	2274.259

Unpaired t-Test X2: Column 41 Y2: AFIRE¥ORKS

. •

	DF:	Unpaired t Value	: Frob. (2-tail)	<u>:</u>
	62	.129	.898	
Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	33	60000	40792.922	7101.136
Group 2	31	58306.452	62832.406	11285.033

Unpaired t-Test X3: Column 42 Y3: ABLEACH

	DF :	Unpaired t Value	: Prob. (2-tail)	:
	62	.476	.6356	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	9	44888.889	41114.001	13704.667
Group 2	55	36010.909	53256.443	7181.097

Unpaired t-Test X4: Column 43 Y4: AFANS

	DF :	Unpaired t Value	: Prob. (2-tail)	
	62	974	.3337]
Group :	Count :	Mean :	Std. Dev.:	Std. Error:
Group 1	8	15375	19167.961	6776.897
Group 2	56	36007.143	59092.248	7896.534

Unpaired t-Test X5: Column 44 Y5: AGASOLINE

	DF :	Unpaired t Value:	Prob. (2-tail)	
	62	2.105	.0394	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	21	109761.905	207875.18	45362.083
Group 2	43	41953.488	32312.428	4927.599

Unpaired t-Test X6: Column 45 Y6: ATELEVISIONS

	DF :	Unpaired t Value	: Prob (2-tail)	: _
	62	1.636	.107	
Group:	Count:	Mean :	Std. Dev. :	Std. Error :
Group 1	+	38750	33757.715	16878.858
Group 2	60	20514.333	20779.561	2682.63

Unpaired t-Test X7: Column 46 Y7: ACHAINSAWS

	DF:	Unpaired t Value:	Prob. (2-tail):	
	62	262	.7941	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	22	40300	32902.728	7014.885
Group 2	42	43007.667	42122.457	6499.636

Unpaired t-Test X8: Column 47 Y8: AHAMMERS

	DF:	Unpaired t Value	: Prob. (2-tail) :	
	62	.748	.4572	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	- 31	47229.032	69446.378	12472.938
Group 2	33	35930.303	50435.277	8779.655

Unpaired t-Test Xg: Column 48 Yg: ASKATEBOARDS

	DF :	Unpaired t Value	: Prob. (2-tail):	
	62	434	.6661].
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	41	62564.634	124424.866	19431,899
Group 2	23	75217.391	84885.461	17699.842

Unpaired t-Test X10: Column 49 Y10: ADRINKING GLASSES

	DF:	Unpaired t Value	: Prob. (2-tail)	
	62	.854	.3963	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	16	32937.5	30538.432	7634.608
Group 2	48	24408.542	35788.139	5165.573

Unpaired t-Test X11: Column 50 Y11: AATVS

	DF:	Unpaired t Value	: Prob. (2-tail)	
	62	1.945	.0563	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	34	79632.353	65253.737	11190.923
Group 2	30	52600	41693.132	.7612.09

Unpaired t-Test X12: Column 51 Y12: ALADDERS

	DF:	Unpaired t Value	Frob. (2-tail)	
	62	.159	.8743	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	26	44400	51549,122	10109.615
Group 2	38	42694.737	34403.849	5581 041

Unpaired t-Test X13: Column 52 Y13: ABATHTUBS

	DF :	Unpaired t Value:	Prob. (2-tail):	
	62	.349	.7283	
Group :	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	27	67185.185	50399.204	9699.331
Group 2	37	60743.243	85594.297	14071.616

Unpaired t-Test X14: Column 53 Y14: AVINDOWS

	DF:	Unpaired t Value :	Prob. (2-tail):	
	62	1.185	.2405	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	48	59535.417	44732.284	6456.549
Group 2	16	44856.25	36598.141	9149.535

Unpaired t-Test X15: Column 54 Y15: ANAILS

	DF:	Unpaired t Value :	Prob. (2-tail):	
	62	.515	.6083	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	36	47902.778	60319.367	10053.228
Group 2	28	40878.571	44834.943	8473.008

Unpaired t-Test X16: Column 55 Y16: ADRUGS

	DF:	Unpaired t Value :	Prob. (2-tail):	
	62	-1.598	.1151	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	56	143821.429	152743.529	20411.213
Group 2	8	251250	311101.155	109990.868

	DF:	Unpaired t Value:	Prob. (2-tail):	
	62	.029	.977	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	56	103625.893	133307.223	17813.927
Group 2	8	102125	165119.383	58378.518

Unpaired t-Test X17: Column 56 Y17: AKNIYES

Unpaired t-Test X18: Column 57 Y18: ACYCLES

	DF :	Unpaired t Value :	Prob. (2-tail):	
	62	.245	.807	
Group :	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	56	97767.857	141563.091	18917.164
Group 2	8	85250	62522.567	22105.066

	DF:	Unpaired t Value :	Prob. (2-tail):	
	78	2.193	.0313	
Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	23	7	1.128	.235
Group 2	57	6.07	1.898	.251

Unpaired t-Test X5: GASA Y5: GASP

Unpaired t-Test X6: TVA Y6: TVP

	DF :	Unpaired t Va	lue: Prob. (2-tail):
	78	1.882	.0636	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	5	4		.894
Group 2	75	2.587	1.603	.185

Unpaired t-Test X7: CHAINSAA Y7: CHAINSAP

	DF:	Unpaired t Value	: Prob. (2-tail	<u>):</u>
	78	.367	.7146	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	24	8.5	.933	.19
Group 2	56	8.411	1.023	.137

Unpaired t-Test Xg: HAMMERA Yg: HAMMERP

	DF :	Unpaired t Value	Prob. (2-tail):	
	78	.995	.3229	
Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	38	5.105	1.886	.306
Group 2	42	4.69	1.841	.284

Unpaired t-Test Xg: SKATEA Yg: SKATEP

	DF :	Unpaired t Valu	ie: Prob. (2-tail):
	78	276	.783	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	50	6.18 '	1.859	.263
Group 2	30	6.3	1.915	.35

Unpaired t-Test X10: DRINKA Y10: DRINKP

	DF:	Unpaired t Value	: Prob. (2-tail):
	78	2.794	.0065	
Group:	Count:	Mean :	Std. Dev.:	Std. Ernon:
Group 1	23	3.739	1.839	.384
Group 2	57	2.579	1.614	.214

Unpaired t-Test X11: ATVA Y11: ATVP

	DF:	Unpaired t Va	lue: Frob.(2-tail):
	78	1.76	.0824	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	38	7.632	1.651	.268
Group 2	42	6.976	1.675	.258

Unpaired t-Test X12: LADDERA Y12: LADDERP

	DF:	<u>Unpaired</u> t Va	lue: Prob. (2-tail)
	78	2.186	.0318	
Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	. 32	6.594	1.624	.287
Group 2	48	5.708	1.868	.27

	DF :	Unpaired t Value :	Prob. (2-tail):	
	78	1.39	.1684	
Group :	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	32	4.438	2.501	.442
Group 2	48	3.771	1.789	.258

Unpaired t-Test X13: BATHTUBA Y13: BATHTUBP

Unpaired t-Test X14: ¥INDO¥A Y14: ¥INDO¥P

	DF:	Unpaired t Value:	Prob. (2-tail):	
	78	2.657	.0096	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	59	5.102	1.739	.226
Group 2	21	3.905	1.863	.408

Unpaired t-Test X15: NAILSA Y15: NAILSP

	DF :	Unpaired t Value :	Prob. (2-tail):	
	78	1.993	.0497	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	43	4.977	1.596	.243
Group 2	37	4.108	2.283	.375

Unpaired t-Test X16: DRUGSA Y16: DRUGSP

	DF:	Unpaired t Value :	Frob. (2-tail):	
	78	.177	.8603	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	69	7.812	1.448	.174
Group 2	11	7.727	1.618	.488

	DF :	Unpaired t Va	lue: Frob. (2-tail	<u></u>
	78	102	.9188	
Group:	Count:	Mean :	Std. Dev.:	Std. Error :
Group 1	71	7.056	1.548	.184
Group 2	9	7.111	1.167	.389

Unpaired t-Test X17: KNIVESA Y17: KNIVESP

Unpaired t-Test X18: CYCLESA Y18: CYCLESP

	DF:	Unpaired t Value :	Prob. (2-tail):	
	78	1.532	.1296]
Group:	Count:	Mean:	Std. Dev.:	Std. Error :
Group 1	69	5.261	1.86	.224
Group 2	11	4.364	1.362	.411

SIGN TEST-INJURY EXPERIENCE GROUPS

One Sample t-Test X1: Injury Exp > Estimates

DF:	Sample Mean :	Pop. Mean :	t Value :	Prob. (2-tail):
17	.667	.5	1.458	.1631

One Sample t-Test X2: Injury Exp > Precaution

DF :	Sample Mean :	Pop. Mean :	t Value :	Prob. (2-tail)
17	.833	.5	3.689	.0018

Appendix J

Analyses from Product Perception Study

Order		-	7	ſ	4	ľ		·[~	Ī			2	: [:	2	2	4	5		2	8
Freq Use Group		2		-	*		5		1					-	5	3	¢			2
Frequency Group		-	-	-				<u> </u>	<u></u>					2	3	3			, ,	2
Product Name		.8710 Bacuum Llean	2 1 2 40 ftreuinite	2905 Blanch	fane	9387 Georgine	7242 Tetencine	1 1613 Chaineaus	1 7747 Hammers	1 2258 (teleburide	5404 Arinting discas			SJappel (CCC4.)	1.8387 Bathtubs etc.	2.4516 Windows etc	11613 Noris screme	2 2092 Drugs and meds	4 48 40 K Millet	2.6452 Bicycles
' Likely Min Inj Mean		8710	0PC1.C	1095.1	1 2001 Fant	28781	(824	1111	CPCC 1	9266 1	P0751			(((6.)	1.8387	2.4516	11911	2002 6	DIBT F	2.6452
05 Tech Complek Mean 46 Likely Sev Inj Mean 47 Likely Min Inj Mean		2903	1.5484	58061	7742	1.4871	2419	8382	8065	102599	10878		2001.2	9776-1	1.1935	1.6452	7419	1 9017		1.6129
15 Tech Complex Mean		3.7419	3.32261	2.6452	2.8065	3.3871	5.9032	4.6774	1.090.1	C2F9 1	5161 1	10100 3		0000.1	2.3548	10128.1	1.3226	5 2258	11/11	3.0000
44 Read Warning Mean		CF00.1	4.9677	3.0968	1.5806	3.7419	1.6129	6.5484	7828.	1.1290	1 2067	4.1935	1.3548		LURC.	.1742	.3871	6.9677	1.9677	1.3548
us severily Mean u		0.0	6.1613	3.6774	3.1290	5.5806	2.1935	7.1935	4.0968	4.8065	2.2581	2.1935	5.0645	1112	F) / 0.C	5.8710	2.3871	7.1290	6.3548	4.6774
42 Know Haz Mean	C 010 X	10000	5.9355	4.4839	5.3871	5.5806	4.4516	5.5806	6.0000	5.1935	5.2903	3.9355	6.2581	5101 5		5.7419	5.8065	5.5161	6.7742	5.9032
n reg mean		0000-	100.01.1	2.2581	5.0968	6.4516	6.7742	.3226	3.3226	5908.	7.2581	1.3226	1.8065	11100	0110.1	01/8.0	4.5484	3.8065	6.7097	3.0645
<u> </u>	ŧ	t	7	-	4	5	9	2	8	6	ē	=	12	+	=	-	15	16	=	18

•

Rick Perception 171

•

One Factor ANOYA X1: Frequency Group Y1: Q1 Freq Mean

Source	DF:	Sum Squares :	Mean Square:	F-test:
Between groups	2	24.825	12.413	2.489
Within groups	15	74.799	4.987	p = .1165
Total	17	99.624		

Analysis of Variance Table

Model II estimate of between component variance = 3.713

One Factor ANOVA X1: Frequency Group Y1: Q1 Freq Mean

Group:	Count:	Mean :	Std. Dev.:	Std. Error :	
Group 1	6	4.296	2.249	.918	
Group 2	6	2.473	2.561	1.045	
Group 3	6	5.312	1.828	.746	

One Factor ANOVA X1: Frequency Group Y1: Q1 Freq Mean

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-te	st: Dunnett t:
Group 1 vs. 2	1.823	2.748	.999	1.414
Group 1 vs. 3	-1.016	2.748	.311	.788
Group 2 vs. 3	-2.839	2.748*	2.424	2.202

* Significant at 95%

One Factor ANOVA X1: Frequency Group Y2: Q2 Know Haz Mean

Source:	DF:	Sum Squares:	Mean Square :	F-test:
Between groups	2	2.304	1.152	2.162
Within groups	15	7.994	.533	p = .1496
Total	17	10.298		

Analysis of Variance Table

Model II estimate of between component variance = .31

One Factor ANOVA X1: Frequency Group Y2: Q2 Knov Haz Mean

Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	6	4.946	.808	.33
Group 2	6	5.376	.815	.333
Group 3	6	5.823	.531	.217

One Factor ANOVA X1: Frequency Group Y2: Q2 Know Haz Mean

Comparison:	Mean Diff.	Fisher PLSD:	Scheffe F-test	: Dunnett t:
Group 1 vs. 2	43	.898	.521	1.02
Group 1 vs.3	876	.898	2.162	2,079
Group 2 vs. 3	446	.898	.56	1.059

One Factor ANOYA X1: Frequency Group Y3: Q3 Severity Mean

Source	DF:	Sum Squares :	Mean Square :	F-test:
Between groups	2	6.226	3.113	.917
Within groups	15	50.902	3.393	p = .4209
Total	17	57.128		

Analysis of Variance Table

Model II estimate of between component variance = -.14

One Factor ANOVA X1: Frequency Group Y3: Q3 Severity Mean

Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	6	3.699	1.857	.758
Group 2	6	5.102	1.894	.773
Group 3	6	4.683	1.773	.724

One Factor ANOVA X1: Frequency Group Y3: Q3 Severity Mean

Comparison:	Mean Diff.:	Fisher PLSD :	Scheffe F-test	t: Dunnett t:
Group 1 vs. 2	-1.403	2.267	.87	1.319
Group 1 vs. 3	- 984	2.267	.428	.925
Group 2 vs.3	.419	2.267	.078	.394

One Factor ANOVA X1: Frequency Group Y4: Q4 Read Varning Mean

Source :	DF:	Sum Squares:	Mean Square :	F-test:
Between groups	2	1.506	.753	.154
Within groups	15	73.311	4.887	p = .8585
Total	17	74.817		

Analysis of Variance Table

Model II estimate of between component variance = -2.067

One Factor ANOVA X1: Frequency Group Y4: Q4 Read ¥arning Mean

Group:	Count:	Mean :	Std. Dev.:	Std. Error:
Group 1	6	2.677	1.516	.619
Group 2	6	2.392	2.45	1
Group 3	6	1,973	2.522	1.03

One Factor ANOVA X1: Frequency Group Y4: Q4 Read Warning Mean

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-test:	Dunnett t:
Group 1 vs. 2	.285	2.721	.025	.223
Group 1 vs. 3	.704	2.721	.152	.552
Group 2 vs. 3	.419	2.721	.054	.329

One Factor ANOVA X1: Frequency Group Y5: Q5 Tech Complex Mean

Source :	DF :	Sum Squares :	Mean Square :	F-test:
Between groups	2	4.74	2.37	.879
Within groups	15	40.435	2.696	p = .4354
Total	17	45.175		

Analysis of Variance Table

Model II estimate of between component variance = -.163

One Factor ANOVA X1: Frequency Group Y5: Q5 Tech Complex Mean

Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	6	3.634	1.182	.482
Group 2	6	2.613	2.106	.86
Group 3	6	2.489	1.502	.613

One Factor ANOVA X1: Frequency Group Y5: Q5 Tech Complex Mean

Comparison:	Mean Diff.:	Fisher PLSD:	Scheffe F-te	st: Dunnett t:
Group 1 vs. 2	1.022	2.021	.581	1.078
Group 1 vs. 3	1.145	2.021	.73	1.208
Group 2 vs. 3	.124	2.021	.009	.13

One Factor ANOVA X1: Frequency Group Y6: Q6 Likely Sev Inj Mean

Source:	DF:	Sum Squares :	Mean Square :	F-test :
Between groups	2	1.251	.625	2.628
Within groups	15	3.57	.238	p = .1051
Total	17	4.821		

Analysis of Variance Table

Model II estimate of between component variance = .194

One Factor ANOVA X1: Frequency Group Y6: Q6 Likely Sev Inj Mean

Group:	Count :	Mean :	Std. Dev.:	Std. Error :
Group 1	6	.887	.484	.198
Group 2	6	1.075	.507	.207
Group 3	6	1.516	.472	.193

One Factor ANOVA X1: Frequency Group Y6: Q6 Likely Sev Inj Mean

Comparison :	Mean Diff.:	Fisher PLSD :	Scheffe F-te	<u>st: Dunnett t:</u>
Group 1 vs. 2	188	.6	.223	.668
Group 1 vs.3	629	.6*	2.494	2.233
Group 2 vs. 3	441	.6	1.225	1.565

* Significant at 95%