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Separation of theE andB components of a microwave background polarization map or a weak lensing map
is an essential step in extracting science from it, but when the map covers only part of the sky and/or is
pixelized, this decomposition cannot be done perfectly. We present a method for decomposing an arbitrary sky
map into a sum of three orthogonal components that we term ‘‘pureE,’’ ‘‘pure B,’’ and ‘‘ambiguous.’’ The
fluctuations in the pureE andB maps are due only to theE andB power spectra, respectively, whereas the
source of those in the ambiguous map is completely indeterminate. This method is useful both for providing
intuition for experimental design and for analyzing data sets in practice. We show how to find orthonormal
bases for all three components in terms of bi-Laplacian eigenfunctions, thus providing a type of polarized
signal-to-noise eigenmodes that simultaneously separate both angular scale and polarization type. The number
of pure and ambiguous modes probing a characteristic angular scaleu scales as the map area overu2 and as the
map boundary length overu, respectively. This implies that fairly round maps~with short perimeters for a
given area! will yield the most efficientE/B decomposition and also that the fraction of the information lost to
ambiguous modes grows towards larger angular scales. For real-world data analysis, we present a simple
matrix eigenvalue method for calculating nearly pureE and B modes in pixelized maps. We find that the
dominant source of leakage betweenE and B is aliasing of small-scale power caused by the pixelization,
essentially since derivatives are involved. This problem can be eliminated by heavily oversampling the map,
but is exacerbated by the fact that theE power spectrum is expected to be much larger than theB power
spectrum and by the extremely blue power spectrum that cosmic microwave background polarization is ex-
pected to have. We found that a factor of 2 to 3 more pixels are needed in a polarization map to achieve the
same level of contamination by aliased power than in a temperature map. Oversampling is therefore much
more important for the polarized case than for the unpolarized case, which should be reflected in experimental
design.

DOI: 10.1103/PhysRevD.67.023501 PACS number~s!: 98.70.Vc, 98.80.2k

I. INTRODUCTION

Detecting polarization of the cosmic microwave back-
ground~CMB! radiation has become one of the main goals
of the CMB community. Numerous experimental groups are
currently searching for CMB polarization@1–5#. CMB polar-
ization can potentially offer a vast amount of information
about our Universe. In general, polarization is very sensitive
to the ionization history of the Universe. For example, on
large scales it can provide insight into the way the Universe
reionized @6#. On degree scales, once the temperature
anisotropies are well measured, the predicted polarization
can serve as a test of how and when recombination happened
and could potentially lead to an important confirmation of
the big bang model@7,8#. Moreover, because the bulk of the
polarization is produced at the last-scattering surface, it
should exhibit no correlation on scales larger than about one
degree unless there were superhorizon perturbations at de-

coupling. Polarization can thus become a good test of infla-
tion @9#.

Most of the recent interest in polarization is based on its
ability to provide evidence for a stochastic background of
gravity waves. It has been shown that the polarization field
on the sky can be decomposed into two parts, a scalar part
usually calledE and a pseudoscalar part usually calledB
@10,11#. The pseudoscalar part cannot be created by density
perturbations to linear order in perturbation theory. A detec-
tion of theB component on large scales would thus indicate
the presence of a background of gravity waves, a prediction
of inflationary models@12,13#. Such a detection would deter-
mine the energy scale of inflation and could provide a strin-
gent test of inflationary models@14#. On smaller scales, theB
modes will most probably be dominated by secondary con-
tributions produced after last scattering, the leading one be-
ing gravitational lensing@15#. A detection of these contribu-
tions could provide information about the distribution of

PHYSICAL REVIEW D 67, 023501 ~2003!

0556-2821/2003/67~2!/023501~14!/$20.00 ©2003 The American Physical Society67 023501-1



matter all the way up to the last-scattering surface. There are
many proposals for how to detect and use this effect@16–
18#. In standard models, however, theB component is likely
to be quite difficult to detect@19–21#.

It is clear that a separation of the observed polarization
into E andB parts is crucial to much of the CMB polariza-
tion scientific program. It has been realized, however, that
real-world complications such as the finite size of the ob-
served patch can significantly reduce our ability to do a clean
separation between the two components: when using a qua-
dratic estimator method for measuring theE and B power
spectra, substantial ‘‘leakage’’ between the two was found on
large angular scales@20#. In Ref. @21# it was shown that
naive estimates of the sensitivity needed to detect theB com-
ponent that ignore such leakage can significantly underesti-
mate the required sensitivity for an experiment aimed at de-
tecting theB modes. In Ref.@22# it was shown that in a finite
patch, modes that are onlyE or only B can be constructed but
that there are also ambiguous modes, modes that receive
contributions to their power from bothE and B. The con-
struction of the modes was done for a round patch working
in harmonic space. It was shown for each value ofm there
are two ambiguous modes.

The issue of separatingE andB has also generated inter-
est in the field of weak gravitational lensing@26–28#, where
the basic cosmological signal is expected to produce only an
E pattern in cosmic shear maps, and theB mode therefore
serves as an important test for other signals due to intrinsic
galaxy alignment or systematic errors. Although we do not
discuss weak lensing explicitly in this paper, our results are
relevant to that case as well since the lensingE/B problem is
mathematically analogous.

In this paper we revisit the issue ofE andB mode sepa-
ration, with two goals: to provide intuition for experimental
design and for efficiently analyzing data sets in practice. We
present a general derivation of the pureE, pureB and am-
biguous modes in real space, and relate them to the eigen-
functions of the bi-Laplacian on a finite patch. We then in-
troduce a way to obtain modes that are very nearly ‘‘pure’’ in
a pixelized map by solving a generalized eigenvalue problem
and discuss how this can be used to analyze real-world data
sets.

The paper is organized as follows. Section II establishes
some notation and reviews the mathematics underlying the
E/B decomposition of a polarization field. In Sec. III, we
show how to decompose the space of all polarization fields
on a finite patch of sky into pureE modes, pureB modes,
and modes that are ambiguous with respect to theE/B de-
composition. Section IV presents examples of this decompo-
sition. In Sec. V, we present a method for finding~nearly!
pureE andB modes numerically for pixelized maps by solv-
ing a generalized eigenvalue problem. Section VI presents
examples. In Sec. VII we show that aliasing of small-scale
power is the dominant source of ‘‘leakage’’ between theE
andB modes. We summarize our conclusions in Sec. VIII.

II. E AND B MODES: NOTATION AND PRELIMINARIES

In this section we will review the definition ofE and B
modes to introduce all the relevant notation. We will also

give alternative definitions of these modes which will help
clarify how this decomposition works on finite patches of
sky. In Sec. II C we discuss the small-angle approximation.
Further details on properties of spin-two fields on the sphere
and theE/B decomposition may be found in, e.g., Refs.@23,
24#, and references therein.

A. Spin two notation

This section is rather technical. Since all intuitive aspects
of our results can be understood in terms of the much simpler
formulas that apply in the flat-sky approximation, some read-
ers may wish to skip straight to Sec. II C and revisit this
section as needed.

The~linear! polarization of the CMB is described in terms
of the Stokes parametersQ andU. The definition ofQ andU
depends on the coordinate system chosen. In this subsection
we review definitions that are valid for the full sky, so we
will use spherical coordinates to defineQ andU.

We will follow the notation of Ref.@11#. The Stokes pa-
rameters can be combined to form a spin 2 (Q1 iU ) and a
spin 22 (Q2 iU ) combination. In the full sky these combi-
nations can be decomposed using spin-2 harmonics

Q1 iU 5(
lm

a2,lm 2Ylm , Q2 iU 5(
lm

a22,lm 22Ylm .

~1!

It is natural to introduce a scalar~E! and a pseudoscalar
~B! field to describe polarization. The expansion coefficients
of these two fields in~ordinary spin-0! spherical harmonics
are

aE,lm52~a2,lm1a22,lm!/2, aB,lm5 i ~a2,lm2a22,lm!/2.

~2!

On the sphere, these two functions completely characterize
the polarization field@11#. They are important physically be-
cause cosmological density perturbations cannot createB
type polarization while gravitational waves can@10,11#. On
small scalesB polarization can be generated by lensing@15#,
and furthermoreB may turn out to be a good monitor of
foreground contamination, although at the moment nothing
is known about how different foregrounds contribute toE or
B. In terms ofaE,lm andaB,lm the Stokes parameters can be
written as@25#

Q52(
lm

~aE,lmX1,lm1 iaB,lmX2,lm!,

U52(
lm

~aB,lmX1,lm2 iaE,lmX2,lm!, ~3!

where X1,lm5(2Ylm122Ylm)/2 and X2,lm5(2Ylm

222Ylm)/2. These functions satisfyX1,lm* 52X1,l 2m and
X2,lm* 52X2,l 2m which together with aE,lm* 5aE,l 2m and
aB,lm* 5aB,l 2m makeQ andU real quantities.

The spin-2 harmonics in Eq.~1! can be related to the
usual spin-0 spherical harmonics by means of two first-order

BUNN et al. PHYSICAL REVIEW D 67, 023501 ~2003!

023501-2



differential operators, the spin-raising (Z) and spin-lowering
(Zp) operators@11#, which are defined in spherical coordinates
by

Z52sins uF ]

]u
1 i cscu

]

]fGsin2s u, ~4!

Zp52sin2s uF ]

]u
2 i cscu

]

]fGsins u, ~5!

wheres is the spin of the function to which the operator is
being applied. When applied to the spin-weighted spherical
harmonics, these operators yield the following identities:

ZsYlm5@~ l 2s!~ l 1s11!#1/2
s11Ylm ,

ZpsYlm52@~ l 1s!~ l 2s11!#1/2
s21Ylm . ~6!

In particular, the spin-0 and spin-2 harmonics are related as
follows:

2Ylm5@~ l 22!!/ ~ l 12!! #1/2ZZYlm ,

22Ylm5@~ l 22!! ~ l 12!! #1/2ZpZpYlm . ~7!

Another useful consequence of these relations is

ZpZpZZYlm5ZZZpZpYlm5
~ l 12!!

~ l 22!!
Ylm

5~ l 12!~ l 11!l ~ l 21!Ylm ~8!

or, equivalently, that when acting on spin-zero variables

ZpZpZZ5ZZZpZp5¹2~¹212!, ~9!

since ¹2 corresponds to2 l ( l 11) in spherical-harmonic
space.

Equations~1!, ~2!, and~7! can be combined to obtain

Q1 iU 5ZZ~cE1 icB!, Q2 iU 5ZpZp~cE2 icB!,

cE52(
lm

@~ l 22!!/ ~ l 12!! #1/2aE,lmYlm ,

cB52(
lm

@~ l 22!!/ ~ l 12!! #1/2aB,lmYlm . ~10!

ThusQ andU can be written in terms of second derivatives
of the scalar and pseudoscalar ‘‘potentials’’cE and cB ,
which are directly related toE andB. Equation~10! is analo-
gous to the fact that a vector field can be written as a sum of
a gradient and a curl component. The difference for spin-2
fields is that one can write them assecond derivativesof the
scalar and pseudoscalar potentials.

We pause to note that the reason whyE and B are the
focus of attention instead ofcE andcB is partly a matter of
convention. Perhaps more importantly,E and B have the
same power spectrum on small scales as the Stokes param-
eters, while the derivatives in Eq.~10! imply that the power

spectra of the Stokes parameters and those ofcE and cB
differ by a factor (l 22)!/( l 12)!; l 24.

To clarify the relation between all these quantities, we can
think of weak gravitational lensing~e.g., Refs.@26,27#!. The
shear variables are the analogues of the Stokes parameters,E
is the analogue of the projected mass density, andcE is the
analogue of the projected gravitational potential.

We can use Eqs.~10! and ~9! to show that

¹2~¹212!cE5@ZpZp~Q1 iU !1ZZ~Q2 iU !#/2,

¹2~¹212!cB5 i @ZpZp~Q1 iU !2ZZ~Q2 iU !#/2.
~11!

These equations show that we can take linear combinations
of second derivatives of the Stokes parameters and obtain
variables that depend only onE or on B. ~In the flat-sky
approximation, the left-hand sides of these equations are
simply ¹2E and¹2B, respectively. On the sphere, the rela-
tion is not so simple, but it is still true that the left-hand sides
depend only onE and B, respectively.! We will use this to
project out theE andB contributions.

B. Vector notation

We can summarize the above results using a slightly dif-
ferent notation that will help clarify the analogy with vector
fields. We will use boldface to denote the polarization field
written in the form of a vectorP5(U

Q). We then define two
second-order differential operatorsDB andDE ,

DE5
1

2 S ZZ1ZpZp

2 i ~ZZ2ZpZp!
D , ~12!

DB5
1

2 S i ~ZZ2ZpZp!

ZZ1ZpZp
D . ~13!

Equation~10! now becomes

P5DEcE1DBcB , ~14!

the analogue of the gradient/curl decomposition. Moreover,
DE andDB satisfy two important properties

DE
†
•DB5DB

†
•DE50, ~15!

DE
†
•DE5DB

†
•DB5¹2~¹212!. ~16!

Equation~15! is the spin-two analogue of the familiar fact
that¹3¹50. Substituting Eq.~10! into Eq.~15! implies that
if a polarization field on the sky has onlyE as a source, it
should satisfyDB

†
•P50 and if it is only due to aB compo-

nent it should satisfyDE
†
•P50.

In this vector notation, Eq.~3! can be written as

P52(
lm

aE,lmYE,lm1aB,lmYB,lm ,
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YE,lm5S X1,lm

2 iX2,lm
D , YB,lm5S iX2,lm

X1,lm
D . ~17!

C. Small-angle approximation

In this subsection, we present some formulas valid in the
small-angle~flat-sky! approximation. When working in this
limit, it is more natural to measure the Stokes parameters
with respect to a Cartesian coordinate system~x,y! instead of
the usual polar coordinate axis. In the flat-sky approxima-
tion, the differential operators reduce to simply

Z52~]x1 i ]y!, ~18!

Zp52~]x2 i ]y!, ~19!

DE5S ]x
22]y

2

2]x]y
D , ~20!

DB5S 22]x]y

]x
22]y

2 D . ~21!

Using the above expressions it is trivial to demonstrate that
DB

†
•DE5DE

†
•DB50 and thatDE

†
•DE5DB

†
•DB5¹4. In the

flat-sky approximation,u¹2u@1 ~that is, only modes with
eigenvalues much greater than one contribute significantly!,
so the¹2(¹212) operator in Eq.~16! has reduced to the
bi-Laplacian¹4.

DE andDB are the spin-2 analogues of the familiar gradi-
ent and curl operators. ApplyingDE or DB to a scalar field
givesE andB fields that have vanishing ‘‘curl’’ and ‘‘gradi-
ent,’’ respectively. Equations~20! and ~21! show thatDB
5R•DE , where the 232 matrix

R[S 0 21

1 0 D ~22!

simply performs a rotation takingQ°2U and U°Q.
When drawing polarization fields as two-headed arrows with
length (Q21U2)1/2 and angle tan21(U/Q)/2, this corresponds
to rotating the polarization direction by 45° at each point. In
other words, rotating the polarization directions of anE field
by 45° gives aB field.

The analogue of Eq.~17! is now given in terms of Fourier
modes

P~r !5E d2k

~2p!2 FE~k!S cos 2f
sin 2f D1B~k!S 2sin 2f

cos 2f D Geik•r,

r5S x
yD , k5kS cosf

sinf D . ~23!

In other words, theE/B decomposition becomes local in
Fourier space: the polarization direction of theE component
is parallel or perpendicular tok whereas that of theB com-
ponent makes a 45° angle withk.

III. A NATURAL BASIS FOR POLARIZATION FIELDS

On a manifold without boundary, any polarization field
can be uniquely separated into anE part and aB part. But if
there is a boundary~i.e., if only some subsetV of the sky has
been observed!, this decomposition is not unique. Let us first
introduce some notation to clarify the problem.

Polarization fields living onV form a normed vector
space with the inner product

~P,P8![E
V

P•P8 dV, ~24!

and we say that two fieldsP and P8 are orthogonal if
~P,P8!50. We refer to a polarization fieldP as E if it has
vanishing curl, i.e.,DB

†
•P50; B if it has vanishing diver-

gence, i.e.,DE
†
•P50; pureE if it is orthogonal to allB fields;

and pureB if it is orthogonal to allE fields.
As long asV is simply connected, which we shall assume

throughout this paper, an equivalent definition of anE polar-
ization field is one that can be derived from a potentialcE
via P5DEcE . ~And, of course, an analogous statement holds
for B fields. As always, the analogy with the more familiar
case of vector fields holds: any curl-free field is the gradient
of a potential.!

On the complete sky, every polarization field can be
uniquely represented as a linear combination of anE field
and aB field, and allE fields are perpendicular to allB fields.
In other words, the space of all polarization fields is the
direct sum of two orthogonal subspaces: the space of allE
fields and the space of allB fields. @One way to prove these
assertions is simply to use theE andB spherical harmonics
defined in Eq.~17! as a basis.# In this case, there is no dis-
tinction between anE field and a ‘‘pureE’’ field.

But if only some subset of the sky has been observed, so
that V is a manifold with boundary, then this decomposition
is not unique. One way to see this is to note that there are
modes that satisfy both theE-mode andB-mode conditions
simultaneously. When we split a polarization field into anE
part and aB part, these ‘‘ambiguous’’ modes can go into
either component. In order to make theE/B decomposition
unique, we must first project out the ambiguous modes.

In other words, the subspaces of allE modes and allB
modes are no longer orthogonal: in fact, they overlap. To
recapture orthogonality, we must restrict our attention to the
pureE andB subspaces. To be specific, the space of pureE
modes is the orthogonal complement of the space of allB
modes, which includes both pureB modes and ambiguous
modes. Similarly, the space of pureB modes is orthogonal to
both the pureE modes and the ambiguous modes. In sum-
mary, we can represent the space of all polarization fields on
V as a direct sum of three subspaces: pureE, pure B, and
ambiguous.

In this section, we show explicitly how to construct ortho-
normal bases of pureE modes, pureB modes, and ambigu-
ous modes, so that we can unambiguously decompose any
polarization field into these three components. In Ref.@22#
this construction was presented for a cap working in har-
monic space. We here present the general formalism in real
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space. For simplicity, we work in the flat-sky approximation,
although the construction works without this assumption.

We first construct the ambiguous modes. An ambiguous
modeP must be anE mode, soP5DE f for some scalar field
f. And it must also satisfy theB-mode conditionDE

†
•P50.

Combining these, we get

05DE
†
•DE f 5¹4f . ~25!

So we can make a pair of ambiguous modesDE f andDB f
out of any functionf that satisfies¹4f 50. All such bihar-
monic functions are determined by their values and first de-
rivatives on the boundary of the region, so it is straightfor-
ward to form a basis of them simply by choosing a basis for
the set of scalar functions on the boundary.

In the quest of separating theE and B contributions the
ambiguous modes are not very useful, since we cannot know
whether they are due to a cosmologicalE or B signal. If we
are willing to assume~on either observational or theoretical
grounds! that E dominates overB on the angular scale of
interest, then it may be sensible to assume that power found
in the ambiguous modes isE power. This does enhance the
accuracy with which theE power spectrum can be detected
in a given data set@21#.

Of much more use are the ‘‘pure’’E and B modes. We
now give an explicit construction of these pure modes.

Let the scalar fieldcE generate a pureE modeDEcE , and
let DBcB beany Bmode~not necessarily pure!. The require-
ment for a pureE mode is that these be orthogonal:

E
V

d2r ~DEcE!•~DBcB!50. ~26!

If we use the explicit forms~20! and~21! for the differential
operators and integrate by parts twice to moveDE over to the
DBcB term, this reduces to a line integral around the bound-
ary of V. ~After integrating by parts, the surface integral
vanishes because it containsDE

†
•DBcB , which is zero.! The

line integral contains terms proportional tocE and n̂•¹cE .
The conditions for a pureE mode are therefore~1! cE50 on
the boundary]V and ~2! n̂•¹cE50 on the boundary]V.

In other words,cE must satisfy both Dirichlet and Neu-
mann boundary conditions simultaneously. Fortunately, the
bi-Laplacian operator has a complete set of eigenfunctions
that satisfy these boundary conditions. To form an orthogonal
basis of pureE modes, all we have to do is find a complete
set of such eigenfunctions and apply the operatorDE to
them. Similarly, if we applyDB , we will have an orthogonal
set of pureB modes. The pureB modes can also be found by
taking the pureE modes and rotating the polarization at each
point by 45°. The boundary conditions turns out to have a
simple geometrical interpretation: for a pureE mode the po-
larization on the boundary must be parallel or perpendicular
to the boundary; for a pureB mode it must make a 45° angle
with the boundary.

The proof that these basis functions are orthogonal is
similar to the more familiar situation with eigenfunctions of
the Laplacian. Letf andg be eigenfunctions of¹4 with ei-
genvaluesl andm, and let them satisfy the boundary condi-

tions. ThenDE f and DEg are two of our ‘‘pureE’’ basis
functions. Their inner product is

E
V

d2r DE f •DEg5E
V

d2r f ¹4g5mE
V

d2r f g, ~27!

where we have integrated by parts twice and used the bound-
ary condition onf to drop the boundary terms. Of course the
same argument withf andg switched leads to the conclusion
that the inner product isl times the integral offg. If lÞm,
then the integral must therefore vanish, and ifl5m, we can
take a linear combination that orthogonalizes the two modes.
We choose to normalize all modesP so that~P,P!51.

In conclusion, the pureE modes, pureB modes, and am-
biguous modes form a complete orthonormal basis for the
space of all square-integrable@i.e., (P,P),`] polarization
fieldsP in a sky regionV. We found that a polarization field
is pureE if it has vanishing curl and is parallel or perpen-
dicular to the boundary, pureB if it has vanishing divergence
and makes a 45° angle with the boundary, and ambiguous if
it has vanishing divergenceand curl. These conclusions ap-
ply not only to the eigenmodes that we have constructed but
more generally, by linearity, to any field. This means that we
can optionally decompose a polarization fieldP into its three
components directly, without going through the step of ex-
panding it in eigenmodes. The pureE componentPE is ob-
tained by solving the bi-Poisson equation¹4cE5DE

†
•P with

Dirichlet and Neumann boundary conditions and computing
PE5DEcE . The pureB componentPB is obtained analo-
gously, and the ambiguous componentP? is simply the re-
mainder, i.e.,P?5P2PE2PB .

IV. WORKED EXAMPLES I

In this section we illustrate the above construction for two
worked examples: a disk in the flat-sky approximation and a
spherical cap.

A. Disk

Suppose that the observed region is a disk of radiusR
with R!1 radian, so that the flat-sky approximation is ap-
propriate. We begin with the ambiguous modes. We want to
find functions f with ¹4f 50. Assume a separable solution
f (r ,f)5F(r )eimf. We know that¹2(¹2f )50, so¹2f must
be a harmonic function. The most general solution is¹2f
}r meimf. Solving this equation forf, we get two indepen-
dent solutions

f ~r ,f!} H r meimf,
r m12eimf. ~28!

As we expected, there are in general two solutions perm
~since there are two conditions we wish to impose on the
boundary!. Each solution yields two ambiguous modesDEf
andDBf , which turn out to be just rotations of each other.

In the casem50, though, these two solutions do not yield
any ambiguous modes, asDEf 5DBf 50. The same is true
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for the first of the twom51 solutions, so there is only one
pair of ambiguous modes withm51. This counting of modes
agrees with Ref.@22#.

We now proceed to find the pureE- and pureB-modes.
One way to construct eigenfunctions of¹4 is to take

f 5al1a2l , ~29!

whereal is an eigenfunction of¹2 with eigenvaluel and
a2l has eigenvalue2l. ~These two are obviously degener-
ate eigenvalues of¹4 with eigenvaluel2, so we can take
linear combinations of them. Of course there are no well-
behaved eigenfunctions of¹2 with positive eigenvalue over
an entire manifold, but there are over a manifold with bound-
ary.!

Once again we apply separation of variables in polar co-
ordinates. The angular dependence iseimf. Then for any
positive k, the Bessel functionJm(kr) has eigenvalue2k2

and the modified Bessel functionI m(kr) has eigenvaluek2,
so we can take our eigenfunctions of¹4 to be

f mk~r ,f!5@aJm~kr !1bIm~kr !#eimf. ~30!

The boundary conditions tell us that

a

b
52

I m~kR!

Jm~kR!
52

I m8 ~kR!

Jm8 ~kR!
. ~31!

So there will be solutions for all values ofk that satisfy
Jm8 /Jm5I m8 /I m . These roots can be computed numerically.
For largen, a good approximation for thenth root with azi-
muthal quantum numberm is

kmnR5pS n1
m

2 D . ~32!

Figures 1–4 show the first few modes of each type. As
noted above, there are no ambiguous modes withm50, one
pair of ambiguous modes withumu51, and two for each
umu.1. Only one of each pair is shown; the other is found by
rotating the whole pattern. Similarly, for each pureE and
pure B mode, a linearly independent mode can be obtained
by rotating the page.

If our data covered the entire plane, we would construct a
basis out of only the ordinary Bessel functionsJm , excluding
the modified Bessel functionsI m . In the limit kR→`, there-
fore, we expect the contribution fromI m to be small, and
indeed this is the case. The functionI m grows exponentially
for large argument, so in order to satisfy the Dirichlet bound-
ary condition the coefficientb in Eq. ~30! must be small. For
a mode withkR@1, therefore, the ordinary Bessel function
dominates except near the boundary. In this limit, the modi-
fied Bessel function takes over in a small region near the
boundary to ‘‘flatten out’’ the mode and make it satisfy the
Neumann boundary condition.

It is worth noting that all modes except those withm50
require that bothQ andU be measured in the patch. Modes
with m50 depend only onQ for the pureE modes and only
on U for the pureB modes~with Q and U defined with
respect to the polar coordinates!.

FIG. 1. Ambiguous modes of a disk. From top to bottom,m
51,2,3.

FIG. 2. The first twom50 pure E ~left! and pureB ~right!
modes for a disk.
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B. Spherical cap

This construction can be adapted to give the basis func-
tions for a spherical cap without recourse to the flat-sky ap-
proximation. In this case, the functions we are looking for
are eigenfunctions of the operator

¹2~¹212!5~¹211!221. ~33!

The ambiguous modes will therefore be eigenfunctions of
the Laplacian with eigenvalues 0 and22. These eigenfunc-
tions can be written in terms of associated Legendre func-
tions Plm as

f amb~u,f!5H P0m~cosu!eimf

P1m~cosu!eimf ,
~34!

for any integerm.
The associated Legendre functionPlm is well-behaved

over the entire sphere as long asumu< l , so there appear to
be four singularity-free solutions over the entire sphere.
These are mapped to zero byDE andDB , though, so they do
not give ambiguous modes. This is of course as it should be:
there are no ambiguous modes over the entire sphere.

If, however, the region of interestV is a spherical capu
<Q, then we permit functions that have singularities outside
V. In that case, there is one nontrivial ambiguous mode with
m561, namelyP061e6 if, and two for everym with umu
.1. The l 50 modes can be written explicitly as

P0m~cosu!5S sinu

11cosu D m

. ~35!

The l 51 modes are not so simple. The first one is

P12~cosu!5
~cosu12!sin2 u

~11cosu!2 , ~36!

and the remainder can be computed from recurrence rela-
tions.

We can also construct the pureE andB modes from the
associated Legendre functions. Suppose we fix the azimuthal
quantum numberm and look for eigenfunctions of¹2(¹2

12) with eigenvaluek. We can construct one by taking a
linear combination of two associated Legendre functions
Pl1m andPl2m , wherel6 are the two roots of

@2l6~l611!11#25k11. ~37!

The left-hand side is the eigenvalue of (¹211)2; recall that
the eigenvalue associated withPlm is 2 l ( l 11), and com-
pare this equation to Eq.~33!. Just as in the case of the disk,
there will be a discrete set ofk’s for which a linear combi-
nation of these two functions can satisfy both boundary con-
ditions.

V. PIXELIZED MAPS

A. Eigenvalue formalism

In this section we study the decomposition of polarization
in finite pixelized maps. One possibility would be to search
for eigenfunctions of a discretized version of the bi-
Laplacian operator. On scales much larger than the pixel
scale, we would expect to recover modes that are approxi-
mately the same as those found above. The orthogonality of
pureE andB modes would not be expected to be perfect in
the discretized case, but on reasonably large scales it should
be close. The main drawback of this approach is that by
construction it explicitly assumes that bothQ andU are mea-
sured at each pixel, so we would like to generalize the ap-
proach preserving its spirit and power.

We will adopt a different method in which a complete set
of E, B, and ambiguous modes can all be found at once by
solving a single eigenvalue problem. With this approach, we
can find a basis of modes that approximate the pureE andB
modes very well~except for modes with frequencies close to

FIG. 3. Same as Fig. 2 withm51. FIG. 4. Same as Fig. 2 withm52.
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the Nyquist frequency, where problems may be expected to
arise no matter what approach one adopts!.

We assume that we have a map of a finite portion of the
sky composed ofN pixels. In each pixel we could have mea-
sured bothQ andU; however, it is possible that in some or
all of them only one combination of the Stokes parameters
was measured. We will denote the vector of measured Stokes
parametersP, which will have dimension less than or equal
to 2N. In terms of theE and B modes of the full sky, the
vectorP is given by

P52(
lm

~aE,lmYE,lm1aB,lmYB,lm!. ~38!

Ideally we want to find the pixelized analogues of the pureE,
pureB and ambiguous modes. A pureE mode, which we will
denotee, should satisfyYB,lm•e50 for all lm. A pure B
modeb satisfiesYE,lm•b50 for all lm. It is clear that one
cannot find a solution to these sets of equations, i.e., to find
such ane or b, since in general, we are trying to satisfy more
equations than we have components of theP vector. In prac-
tice the number of constraints we need to satisfy is set by the
angular resolution of the experiment, which determines the
maximum l mode that has any appreciable power. Thus the
difficulty of finding puree or pureb modes will increase as
the distance between pixels gets larger compared to the an-
gular resolution of the experiment. Moreover, we also expect
that the number of pureE and pureB modes will decrease as
the fraction of pixels where only one of the Stokes param-
eters is measured increases.

A pure E mode should satisfy

(
lm

CBliYB,lm•ei250 ~39!

or, equivalently,

et
•B•e50; B5(

lm
CBlYB,lm•YB,lm

† , ~40!

for any choice of power spectrumCBl . An analogous state-
ment clearly holds for pureB modes

bt
•E•b50; E5(

lm
CElYE,lm•YE,lm

† ~41!

for any CEl . The matricesE andB give the contribution to
the power in each mode from theE and B components. In
order to find candidateE andB modes numerically, we must
choose a particular power spectrum; we will choose
C(E,B) l /2p5( l 22)!/( l 12)!3Wl

2, whereWl
2 is the window

function that describes the beam smearing. We will motivate
this choice in the next subsection: in practice we found it to
work extremely well, making mixing between modes ex-
tremely small and almost perfectly recovering the modes we
obtained in the previous section with the bi-Laplacian.

Our aim is to construct a basis of vectors that span all the
space but are ordered by their relative contributions fromE
andB modes. In principle, we would like to find the gener-
alized eigenvectors of something likeE•e5lEB•e. A prob-
lem arises, however: we know thatB has a null space~the
space of pureE modes!. So we regularize the problem by
introducing a matrixN5s2I , with I the identity matrix and
s2 a very small constant. We then solve

~E1N!•e5lE~B1N!•e. ~42!

If we chooses2 small enough, the matrixE1N is essentially
equal toE in the subspace of pureE modes and is propor-
tional to the identity matrix in the subspace of pureB modes.
The converse holds forB1N. As a consequence, the eigen-
vectors with largelE will be very close to pureE modes.
Furthermore, with our choice of power spectra, the eigenvec-
tors will automatically separate in scale with larger scale
modes having a larger eigenvalue.

There is an equivalent equation forB modes,

~B1N!•b5lB~E1N!•b, ~43!

but any modee satisfying Eq.~42! also satisfies Eq.~43!
with lB51/lE .

We can derive simple and useful properties of the eigen-
values and eigenvectors if we assume that at every pixel in
the map we have bothQ and U. We consider the simple
transformation where we rotate the polarization at every
pixel by 45° ~i.e., Q→2U and U→Q). We denote this
transformationR45. It is represented by a block diagonal
matrix

~R45! i j 5d i j S 0 21

1 0 D , ~44!

where i , j label pixels. The matricesE and B satisfy
R45

t
•E•R455B and R45

t
•B•R455E. MoreoverR45

t
•R455I .

By substitution into Eq.~42!, it is straightforward to prove
that the vectore85R45•e also solves the eigenvalue equation
but with eigenvalue 1/lE . We conclude that if at every pixel
we have measured bothQ andU, modes that solve Eq.~42!
come in pairs with eigenvalueslE and 1/lE . One member of
the pair is preferentiallyE and the other preferentiallyB.

In the next section we will present numerical examples to
gain intuition on how the eigenvalue problem works. First
we will motivate our choice ofCl spectra.

B. Relation to bi-Laplacian formalism

To find the relation between our eigenvalue and bi-
Laplacian formalisms, we start by considering a vector sat-
isfying the eigenvalue equation

~E1s2I !•e5lE~B1s2I !•e. ~45!

SinceDE
†
•B5DB

†
•E50, multiplying Eq.~45! by DE

† andDB
†

yields two scalar equations

DE
†
•E•e5s2~lE21!DE

†
•e,
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DB
†
•B•e5s2~lE

2121!DB
†
•e. ~46!

We now proceed to show that with our choice of spectra
CEl5( l 22)!/( l 12)! the modes constructed using our bi-
Laplacian formalism solve Eq.~46!. We take

¹2~¹212!cE5lcE ~47!

and assume thatcE satisfies both Dirichlet and Neumann
boundary conditions. We can use the completeness relation
for spherical harmonics and our choice of spectra to write

l21¹2~¹212!cE~u!5E du8(
lm

Ylm~u!Ylm* ~u8!cE~u8!

5E du8(
lm

CEl

~ l 12!!

~ l 22!!
Ylm~u!

3Ylm* ~u8!cE~u8!. ~48!

We can use the fact that DE
†
•YE,lm5@( l 12)!/

( l 22)!#1/2Ylm to get

E du8(
lm

CElDE
†
•YE,lm~u!YE,lm

† ~u8!•DEcE~u8!

5l21¹2~¹212!cE~u!, ~49!

where we have integrated by parts using the boundary con-
ditions satisfied bycE . Finally we can factorize the bi-
Laplacian operatorDE

†
•DE5¹2(¹212) and use our defini-

tions e5DEcE and theE matrix to get

DE
†
•E•e5l21DE

†
•e. ~50!

Thus if we identify l215s2(lE21), DEcE satisfies the
first of equations~46!. The second equation in~46! is trivi-
ally satisfied becausee being a pureE mode it follows that
both B•e50 andDB

†
•e50.

We have just shown that modes constructed using the bi-
Laplacian formalism solve Eq.~46! rather than Eq.~45!. This
means that the vectore5DEcE actually satisfies

~E1s2I !•e5l~B1s2I !•e1a, ~51!

wherea has to be an ambiguous mode~because it has to give
zero when acted upon by bothDE

† andDB
†). The easiest way

to understand what is happening is to look at the structure of
theE andB matrices in the basis of the eigenfunctions of the
bi-Laplacian. If we calla one of the basis vectors in the
ambiguous space and contract Eq.~51! with it we find

a t
•E•e5a•a, ~52!

where we have also used the fact thate was a pureE mode.
Thus the reason why there is an extra ambiguous mode in
Eq. ~51! is that theE matrix can have nonzero elements
mixing the pureE and ambiguous subspaces. In other words

our two formalisms are identical when restricted to the pure
E andB subspaces but differ in the ambiguous subspace.

In practice we will find that the modes calculated by solv-
ing the bi-Laplacian equation and the generalized eigenvalue
problem are almost identical. This can be understood by
looking at Eq.~51! and realizing that in most cases we will
be able to achieve very good separation, i.e.,l@1. This im-
plies that one only needs to add a very tiny amount of am-
biguous modes toe in Eq. ~51! to ‘‘correct it’’ and makea
zero ~becausel is so large!. This is especially so because
under most circumstances the matrix elements of bothE and
B in the subspace of ambiguous modes are comparable.

VI. WORKED EXAMPLES II

We begin by revisiting the cap example we solved in the
continuous case. We start by assuming that every pixel has
bothQ andU. We consider a fiducial experiment with a 0.2°
FWHM ~full width at half maximum! for the beam angular
resolution. The patch observed has a radius of 3.8° and con-
tains 351 pixels~the spacing between pixels in both the ra-
dial and the tangential directions was set to 0.2° as well!.

Figure 5 shows the eigenvalues we obtained. As expected,
the eigenvectors come in pairs with eigenvalueslE and
1/lE . The eigenvectors with very small eigenvalues corre-
spond to pureB modes and those with very large ones to
pure E modes. The particular values of the eigenvalues
should not be given much importance as they depend on the
value of the regularizing constants2. What is important is
that the large eigenvalues show the good degree of separa-
tion that we have achieved.

There is also a concentration of modes atl51. These

FIG. 5. E/B eigenvalues for a cap. In the top panel we showlE

as a function of mode number. On the bottom we show the eigen-
values as a function of bothl eff

E and l eff
B as defined in Eq.~55!. We

took s25431026, a factor 1025 smaller than the zero lag corre-
lation function.

E/B DECOMPOSITION OF FINITE PIXELIZED CMB MAPS PHYSICAL REVIEW D67, 023501 ~2003!

023501-9



modes have two origins. First, modes on small scales, where
our small s2I regularization dominates over theE and B
matrices, will havelE51. Second, as we discussed in the
previous sections, there are large-scale ambiguous modes
that receive contributions from bothE andB. Our method is
unable to separate between both types because they have the
same eigenvalues.

In Fig. 6 we show the first nine eigenvectors, correspond-
ing to the lowest nine eigenvalues. One immediately recog-
nizes in this set the pureB modes discussed in Sec. IV A.
The first eigenvector corresponds to the lowest-orderm50
mode. The next two are the lowestm51 modes, which differ
only by a rotation. Then come the secondm50 mode, then
the lowestm52 modes, then the lowestm53 modes, and
finally the secondm51 mode. The best nineE modes, cor-
responding to the largest nine eigenvalues, are simply equal
to the ones plotted in Fig. 6 but with each polarization ‘‘vec-
tor’’ rotated by 45°.

Our method for finding modes can be used for any shape
of sky patch. In Fig. 7 we show the first two modes of a
square patch 32332 pixels on a side. Comparing with Fig. 6,
it is clear that they are essentially the same modes as the two
first modes for the cap. We also show the first two modes in
a patch 16364 pixels on a side. We have also checked that
these modes for the rectangle can be derived from the bi-
Lapacian formalism.

To understand where the ordering of modes in Fig. 6 is
coming from, i.e., why the modes appear in that order in the
figure, we will introduce window functions for each mode.
We define

Wl
E5et

•

]E

]pl
•e, ~53!

Wl
B5et

•

]B

]pl
•e, ~54!

where we have introducedpl5 l ( l 11)Cl /2p. Using the
window functions we can define an effectivel for each
mode, the averagel calculated using the window function as
a weight. Specifically, we can define quantities

l eff
~E,B!5

( l lWl
~E,B!

( lWl
~E,B! ~55!

that give the averagel for theE andB contribution to a given
mode.

Figure 8 shows the window functions for the eigenvectors
that were plotted in Fig. 6. Note that the window functions
are well localized inl and each has a clear peak. Moreover,
the modes in Fig. 6 are ordered in increasing order ofl eff

B .
Both of these are a consequence of our choice of power
spectra.

VII. ALIASING

The windowsWl
E in Fig. 8 can be used to determine

where the leakage betweenE and B is coming from. The
dotted line in all the panels gives an estimate of the Nyquist
frequency in the map. The conclusion is clear: the contami-
nating power is aliased power. For power that is aliased one
cannot distinguishE from B. The remedy for this is to in-
crease the sampling in the map so as to further suppress the
aliased power.

The bottom panel of Fig. 5 shows the eigenvalues we
obtained for the cap but as a function ofl eff

E and l eff
B . We see

that the modes with large values oflE have a lowl eff
E and a

large l eff
B , indicating that most of the contamination is com-

FIG. 6. Examples of modes for a cap. We show the nine modes
with lowestlE .

FIG. 7. On the left~right! we show the best twoB type eigen-
vectors for a 32332 (16364) pixel patch.
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ing from aliasing. The opposite is true for modes with low
lE . We also see that some of the modes withlE51 receive
contributions from large scales, an indication that these are
truly ambiguous modes.

We can understand our results intuitively by considering a
simple toy model, closely following the treatment in Ref.
@21#. We work in the small-angle limit and compute the Fou-
rier components of the observed polarization field assuming
they were observed over a square patch of sizeL. Using Eq.
~23! we obtain

P̃~k!5E d2q

~2p!2 W~k2q!FE~q!S cos~2f!

sin~2f! D
1B~q!S 2sin~2f!

cos~2f! D G , ~56!

where we have defined the window function

W~k!5S Du

L D 2 sinkxL/2

sinkxDu/2

sinkyL/2

sinkyDu/2
, ~57!

with Du the separation between pixels. The Nyquist wave
number iskNyq5p/Du.

The naive way to recover theE andB components would
be to combine the Fourier coefficientsP̃ as one would do if
the patch were infinite. ForB̃ for example, we would com-
pute

B̃~k!52sin 2f Q̃~k!1cos 2f Ũ~k! ~58!

and then estimate the power spectrum by taking the square of
these variables.

In terms of the realE andB, ourB estimate can be written
as

B̃~k!5E d2q

~2p!2 W~k2q!@sin 2a E~q!1cos 2a B~q!#,

~59!

where cosa5k•q/kq. This estimate has contributions from
both E and B. Only whenW is a delta function such that
a50 do we avoid mixing. TheE contributions arise because
of two effects: the finite size of the sky patch and the pixel-
ization ~causing aliasing!. The effect of the finite patch size
manifests itself as a finite width of the peaks of the window
function, while the effect of aliasing is thatW has several
peaks.

We have shown how to construct modes that avoid con-
tamination due to the finite patch size. These modes are not
Fourier modes. In what follows we want to show that even in
the limit L→`, there is still mixing due to pixelization. If
we take this limit the window function becomes a sum of
delta functions centered atq52(m,n)kNyq , wherem and n
are integers.

To consider a concrete example, we calculate the ratio of
power inE andB in a mode with wave vectork0 produced
by an initial field that only hadE modes with a power spec-
trum Cl and assuming an infinite but pixelized sky map. All
the wave vectorsk i j 5k012(i , j )kNyq will contribute to this
mode. We get

^uB̃~k0!u2&

^uẼ~k0!u2&
5

( i j sin2 2~f i j 2f0!Cl i j
/Cl 0

( i j cos2 2~f i j 2u0!Cl i j
/Cl 0

, ~60!

where l i j [uk i j u and l 0[uk0u. Equation~60! shows that all
the aliased modes contribute toB contamination because in
general these modes do not have 2(f l i j

2f l 0
)5mp.

It is important to note that the aliased power is suppressed
by the beam. Asi and j become larger, the magnitude of the
power on those scales decreases becauseCl is proportional
to Wl

2, the beam window function. For example, if we con-
sider a mode with wave vector along the positivex axis, the
aliased mode with the smallest possible beam suppression
has a power suppressed by a factor exp@22kNyq(kNyq

2uk0u)sb
2#, wheresb is the Gaussian width of the beam@sb

is related to the full width half max of the beam~FWHM! by
sb5FWHM/A8 ln(2)]. For fixedk0 , the suppression can be
made as large as one wants by increasingkNyq , that is by
increasing the sampling of the map. If we want the beam to
produce a suppression factorS we need to choose@2kNyq

2 (1

2uk0u/kNyq)sb
2#5 ln(S), or equivalently FWHM/Du

'0.5Aln(S)/(12uk0u/kNyq).
A point worth noting about aliasing is that the power

spectrum of the polarization is a rapidly growing function of
l and that theE power spectrum is expected to be much
larger than theB one. Figure 9 shows the power spectrum for

FIG. 8. Window functions for the modes shown in Fig. 6. Solid
lines showWl

B and dashed lines showWl
E , normalized to unit peak

height.
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E andB type polarization from gravity waves in a cold dark
matter model with a cosmological constant~LCDM!. The
temperature spectra were Cosmic Background Explorer
~COBE! normalized and the tensor component was assumed
to be 10% of the temperature anisotropies on COBE scales.
The sharp increase in power betweenE andB partially com-
pensates the smearing by the beam. To give a rough feeling
of what sampling is needed to avoid aliasing we could as-
sume that we want the aliased power to be a factor of 100
smaller than the power we want to measure. For a tempera-
ture map that would correspond to a suppression factorS
;102 while for polarization we would needS;105 which
means that the ratio FWHM/Du has to be a factorA2.5 larger
for polarization than for temperature, or equivalently that one
needs a factor of 2.5 more pixels to obtain the same level of
contamination. We conclude that one has to be particularly
careful about aliasing when dealing with polarization maps if
one wants to obtain a clean separation betweenE andB.

The effect of aliasing can be decreased by increasing the
sampling of the map. It should be noted, however, that the
presence of holes, bad pixels or pixels with only one mea-
sured Stokes parameter in the map will have a similar effect.
We illustrate this by considering a toy example. We artifi-
cially increase the noise variance~the diagonal elements of
N! for a fraction of the pixels chosen at random. Figure 10
shows the window functions for the first nine modes in an
example where 20% of the measured Stokes parameter were
assumed to have the large noise. For comparison, we also
show the original window functions. On large scales, the
modes look essentially the same as the ones plotted in Fig. 6.
The effect of the missing pixels is very noticeable in theE
window function, the one that quantifies the leakage. As

might have been expected, the level of contamination com-
ing from modes of frequency around the Nyquist frequency
is greatly increased.

VIII. DISCUSSION

We have developed a formalism for measuring theE and
B components of polarized CMB maps or weak lensing maps
given the real-world complications of finite sky coverage and
pixelization.

We have shown that by expanding a map in a particular
basis, obtained by differentiating bi-Laplacian eigenfunc-
tions, it can be decomposed as a sum of three orthogonal
components that we term pureE, pureB and ambiguous. The
pureE component is orthogonal to allB modes and are there-
fore guaranteed to be caused by anE signal ~on the uncut
sky!, and conversely for the pureB component. The ambigu-
ous component is the derivative of a biharmonic function,
and the original map contains no information about whether
it is due toE or B signal in the uncut sky. We also derived a
discrete analogue of these results, applicable to pixelized sky
maps. Our results are useful both for providing intuition for
survey design and for analyzing data sets in practice.

A. Implications for survey design

To maximize our ability to separateE and B, we clearly
want to minimize the fraction of modes that are ambiguous.
We found that the ambiguous modes are specified along the
boundary of the map rather than in the two-dimensional in-
terior. This means that the number of pure and ambiguous
modes probing a characteristic angular scaleu scales as the

FIG. 9. Polarization power spectra in aLCDM model. The solid
curve is for E produced by density perturbations and the dashed
curve for theB component produced by tensor modes. The anisotro-
pies were COBE normalized and it was assumed that the tensor
component was 10% of the anisotropies on these scales.

FIG. 10. Effect of measuring only one Stokes parameter on 20%
of the pixels chosen at random. The panels show the window func-
tions for the first modes withm50,1,2,3 when both Stokes param-
eters are measured~solid lines! and when 20% are missing~dashed
lines!.
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map area overu2 and as the map boundary length overu,
respectively. It is therefore best to minimize the ratio of cir-
cumference to area, i.e., to make the patch as round as pos-
sible.

Almost all pure modes~all except the ones withm50 for
the spherical cap example! are a combination of bothQ and
U Stokes parameters, so to achieve unambiguousE/B sepa-
ration, one needs to measure both, with comparable sensitiv-
ity throughout the map.

With pixelized maps, we found that aliasing of small-
scale power was a serious problem. Although it can in prin-
ciple be eliminated by heavily oversampling the map, the
required oversampling is greater than for the unpolarized
case, both because derivatives are involved and because
CMB polarization is expected to have an extremely blue
power spectrum. This has important implications for,
e.g., the Planck satellite, where bandwidth constraints on
the telemetry have been mentioned as reasons to reduce the
oversampling. It is crucial to bear in mind that the usual
Nyquist rule of thumb that applies to unpolarized maps
may be insufficient for realizing the full scientific potential
of Planck’s CMB polarization measurements because one
needs roughly a factor of 2 to 3 more pixels in a polarization
map to achieve the same level of contamination by aliased
power.

B. Implications for data analysis

In Ref. @20#, it was shown how a quadratic estimator
method could produce uncorrelated measurements of theE
andB power spectra from real-world data sets with arbitrary
sky coverage, pixelization, and noise properties, and this
method has been applied to both the POLAR@1# and PIQUE
@5# data. The one annoying problem with this method was
that it gaveE/B leakage. Our present results allow us to
understand and eliminate this problem.

We now know that leakage is caused by the ambiguous
modes. The abovementioned scaling tells us that the fraction
of modes probing a given angular scalel;u21 that are am-
biguous scales asl 21, in good agreement with the
asymptotic behavior empirically found in Ref.@20#. Al-
though Ref.@20# presented a technique for removing most of

the leakage, we now know how to remove it completely: by
eliminating the ambiguous modes.

In practice, the way to do this is to compute two projec-
tion matricesPE and PB that project onto the subspaces
given by the eigenvectorse of Eq. ~42! with lE.l* and
lE,1/l* , respectively, for some large eigenvalue cutoff
l* , say l* 5100. The three mapsPE•P, PB•P and @ I
2PE2PB#•P will then be approximately the pureE, pure
B, and ambiguous components of the original mapP, which
can be directly used for visual inspection, cross correlation
with other maps, and systematic error tests. To measure theE
andB power spectra, one compresses the original data vector
P into two shorter onesPE andPB by expanding it into the
above-mentioned pureE and pureB eigenvectors, respec-
tively. Since this is a mere matrix multiplication, the corre-
sponding noise and signal covariance matrices~which the
quadratic estimation method takes as input! are trivially
computed as well. These two data vectors will each have less
than half the length ofP. Since the time required by the
quadratic estimator method scales asn3, the final E and B
power spectrum calculations are therefore about an order of
magnitude faster than in the original@20# approach.

It should be noted that the ambiguous modes are not use-
less in all circumstances. If it has been established thatE
dominates overB ~as is expected theoretically! by observing
the pure modes, then it is safe to assume that most of the
power in the ambiguous modes isE power as well. In this
case, the ambiguous modes can be used to reduce the errors
on estimates of theE power spectrum. This could be particu-
larly useful when attempting to constrain reionization withE
power on the very largest angular scales attainable with a
galaxy-cut all-sky map, where a substantial fraction of the
modes will be ambiguous.

ACKNOWLEDGMENTS

The authors thank Ue-Li Pen for asking questions that
stimulated this work. Support was provided by NSF Grants
No. AST-0071213, AST-0134999, AST-0098048, AST-
0098606, and PHY-0116590, NASA Grants No. NAG5-9194
and NAG5-11099, and through the David and Lucile Packard
Foundation and the Research Corporation.

@1# B. Keatinget al., Astrophys. J. Lett.560, L1 ~2001!.
@2# S. T. Staggs, J. O. Gundersen, and S. E. Church, inMicrowave

Foregrounds, edited by A. de Oliveira Costa and M. Tegmark,
ASP Conference Series, Vol. 181~ASP, San Francisco, 1999!,
p. 299.

@3# M. M. Hedman, D. Barkats, J. O. Gundersen, S. T. Staggs, and
B. Winstein, Astrophys. J. Lett.548, L111 ~2001!.

@4# J. B. Peterson, J. E. Carlstrom, E. S. Cheng, M. Kamion-
kowski, A. E. Lange, M. Seiffert, D. N. Spergel, and A. Steb-
bins, astro-ph/9907276.

@5# A. de Oliveira-Costa, M. Tegmark, M. Zaldarriaga, D. Barkats,
J. O. Gundersen, M. M. Hedman, S. T. Staggs, and B. Win-
stein, astro-ph/0204021.

@6# M. Zaldarriaga, Phys. Rev. D55, 1822~1997!.

@7# P. J. E. Peebles, S. Seager, and W. Hu, Astrophys. J. Lett.539,
L1 ~2000!.

@8# S. J. Landau, D. D. Harari, and M. Zaldarriaga, Phys. Rev. D
63, 083505~2001!.

@9# D. N. Spergel and M. Zaldarriaga, Phys. Rev. Lett.79, 2180
~1997!.

@10# M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev.
D 55, 7368~1997!.

@11# M. Zaldarriaga and U. Seljak, Phys. Rev. D55, 1830
~1997!.

@12# U. Seljak and M. Zaldarriaga, Phys. Rev. Lett.78, 2054
~1997!.

@13# M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev.
Lett. 78, 2058~1997!.

E/B DECOMPOSITION OF FINITE PIXELIZED CMB MAPS PHYSICAL REVIEW D67, 023501 ~2003!

023501-13



@14# W. H. Kinney, Phys. Rev. D58, 123506~1998!.
@15# M. Zaldarriaga and U. Seljak, Phys. Rev. D58, 023003

~1998!.
@16# J. Guzik, U. Seljak, and M. Zaldarriaga, Phys. Rev. D62,

043517~2000!.
@17# K. Benabed, F. Bernardeau, and L. van Waerbeke, Phys. Rev.

D 63, 043501~2001!.
@18# W. Hu and T. Okamoto, astro-ph/0111606.
@19# A. Jaffe, M. Kamionkowski, and L. Wang, Phys. Rev. D61,

083501~2000!.
@20# M. Tegmark and A. de Oliveira Costa, Phys. Rev. D64,

063001~2001!.
@21# E. F. Bunn, Phys. Rev. D65, 043003~2002!.
@22# A. Lewis, A. Challinor, and N. Turok, Phys. Rev. D65, 023505

~2001!.
@23# M. Zaldarriaga, Phys. Rev. D64, 103001~2001!.
@24# W. Hu and M. White, New Astron.2, 323 ~1997!.
@25# M. Zaldarriaga, Astrophys. J.503, 1 ~1998!.
@26# N. Kaiser, Astrophys. J.498, 26 ~1998!.
@27# W. Hu and M. White, Astrophys. J.554, 67 ~2001!.
@28# R. Crittenden, P. Natarajan, U. L. Pen, and T. Theuns, Astro-

phys. J.568, 20 ~2002!.

BUNN et al. PHYSICAL REVIEW D 67, 023501 ~2003!

023501-14


	University of Richmond
	UR Scholarship Repository
	1-9-2003

	E/B Decomposition of Finite Pixelized CMB Maps
	Emory F. Bunn
	Matias Zaldarriaga
	Max Tegmark
	Angelica de Oliveira-Costa
	Recommended Citation


	tmp.1399577790.pdf.can2X

