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ABSTRACT

Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polariza-
tion fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide
spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are
assumed to be significantly affected by a spoiling effect known as bandwidth smearing.
Aims. We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the
CMB angular power spectra.
Methods. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric inter-
ferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this
critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with
respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary
(linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities
to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally
calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical
results.
Results. We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of
the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth
smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

Key words. instrumentation: interferometers – polarization – cosmic microwave background – submillimeter: diffuse background –
cosmology: observations

1. Introduction

The detection of B-mode polarization anisotropies in the cos-
mic microwave background (CMB) is one of the most exciting
challenges of modern cosmology. The weakness of the expected
signal requires the development of highly sensitive experiments
with an exquisite control of systematic errors. Most experiments
or projects dedicated to this quest are based on well-known di-
rect imaging technology. An appealing alternative called bolo-
metric interferometry has been proposed (Tucker et al. 2003).
This technology combines the advantages of interferometry in
handling systematic effects and those of bolometric detectors in
enhancing sensitivity. The two teams that accepted the challenge
(Timbie et al. 2006; Charlassier & the BRAIN coll. 2008) have
combined their efforts to form the QUBIC collaboration (Kaplan
& the QUBIC coll. 2009).

In (Charlassier et al. 2009), hereafter (C09), we introduced
a simple formalism for the general design of a bolometric
interferometer operating at a monochromatic frequency and
showed that its phase shifting scheme must respect a prop-
erty which we called “coherent summation of equivalent base-
lines”. This scheme was optimized further in (Hyland et al.
2009). In (Hamilton et al. 2008), hereafter (H08), we calculated
the sensitivity of a bolometric interferometer and showed that
this technology can be competitive with imaging experiments

and heterodyne interferometers for the measurement of CMB
B-mode. For the sake of simplicity, we did not deal with the
question of bandwidth in (C09) and (H08).

We know that a dedicated B-mode bolometric interferometer
will have to use the wide spectral detection band of its bolome-
ters to be competitive with imaging experiments. On the other
hand, the bandwidth is often considered as a crucial issue in
radio-interferometry; if the raw sensitivity of radio interferome-
ter detectors increases as the square root of the bandwidth, there
is a secondary effect, well known as bandwidth smearing, which
can largely degrade the global sensitivity. When the signals orig-
inating in a point source interfere after being collected by two
broadband receivers, the resulting fringe pattern is smeared by
an envelope whose amplitude depends on the bandwidth, con-
sequently leading to a degradation in the signal-to-noise ratio –
see for instance (Thompson et al. 2001). We later see that these
two main characteristics remain in bolometric interferometry:
the bolometers’ sensitivity also increases as the square root of
the bandwidth, and a bandwidth smearing of the observables,
the visibilities, degrades the global sensitivity of the instrument
(however, because the observation of CMB angular correlations
requires a poorer spatial resolution than the observation of point
sources to which classical radio-interferometers are mostly ded-
icated, this smearing will lead to a less critical sensitivity loss).
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But we also see that an additional kind of bandwidth issue oc-
curs, because in bolometric interferometry, visibilities are not
measured directly but by solving a linear problem.

We investigate how the visibilities are smeared in hetero-
dyne and bolometric interferometers with wide spectral bands
and large primary beams in Sect. 2. We investigate how the work
principle of bolometric interferometry is affected by bandwidth
in Sect. 3. We show in particular that the visibilities can be re-
constructed exactly as in the monochromatic case detailed in
(C09) if the modulation phase shifts are constant with respect to
frequency, while one has to perform the special reconstruction
scheme described in Sect. 4 when the modulation phase shifts
vary with respect to frequency. In Sect. 5, we introduce an an-
gular power spectrum estimator that accounts for the bandwidth
and estimate how the bandwidth smearing results in a degrada-
tion of the sensitivity for B-mode experiments. A numerical sim-
ulation that confirms our analytical results is presented in Sect. 6.

2. Visibilities measured by generic interferometers
with wide spectral bands and large primary
beams

2.1. Monochromatic visibilities

The observables measured by a monochomatic interferometer
working at a frequency ν0 and looking at a radiation field of spec-
tral power Iν(n), in units of [W Hz−1 sr−1], are called the visibil-
ities. A monochromatic visibility is defined for one baseline u0,
which is the vector separation between two horns in units of
the electromagnetic wavelength of the radiation. Its expression
is given by

Vν0I (u0) =
∫

Iν0 (n)Aν0 (n) exp(i2πu0 · n) dn, (1)

where Aν(n) = B2
ν(n) is the square of the beam of the input horns

(assumed to be identical), conventionally normalized to one at its
maximum. Here we can make a first important observation about
the understanding of bandwidth in interferometry: a monochro-
matic visibility defined by a pair of horns separated by a dis-
tance d0 and working at frequency ν0 is the same observable
as a monochromatic visibility defined by another pair of horns
separated by a distance d = d0

ν0
ν

and working at frequency ν.
The two visibilities indeed match the baseline u0 = d0

ν0
c . This

property, sometimes called the equivalence theorem of interfer-
ometry, is actually true only if the two pairs of horns have the
same beam (meaning that their surfaces are necessarily differ-
ent) and if the observed radiation field S (n) has the same spatial
variations at both frequencies (this is of course true in the case
of CMB observations).

2.2. Broadband visibilities for a generic interferometer

We consider now an interferometer that is sensitive to a finite
spectral band through a bandpass function J(ν − ν0), centered1

at frequency ν0. We arbitrarily define the bandwidth Δν of the
instrument as2

Δν =
1

J(0)

∫
J(ν − ν0)dν. (2)

1 The definition of the center is somewhat arbitrary. A convenient def-
inition is the barycenter of J.
2 This definition is very close to the FWHM for a Gaussian bandwidth.

We define a generic interferometer to be an instrument in which
visibilities are directly given by the outputs of the detectors (this
is the case in heterodyne interferometry, but not in bolometric
interferometry). The expression for a broadband visibility mea-
sured by a generic interferometer – in power units, for a baseline
u0 = d0

ν0
c – is then

VΔνI (u0) =
�

Iν(n)Aν(n) exp
(
i2πd0 · nνc

)
J(ν − ν0) dν dn. (3)

The baselines define a plane usually called the uv-plane. It is
better to write the visibility as a convolution in the uv-plane to
understand the bandwidth effect,

VΔνI (u0) =
�

Ĩν(w)Ãν(w′)J(ν − ν0)

×ei2π( νν0
u0−w−w′)·ndwdw′dndν, (4)

where we have introduced the Fourier transform of the signal and
that of the beam (w is the associated transform variable), i.e.,

Iν(n) =
∫

Ĩν(w) exp(−i2πw · n)dw (5)

Aν(n) =
∫

Ãν(w′) exp(−i2πw′ · n)dw′. (6)

In the flat-sky approximation, the integral over the field n gives
a delta function, and the expression of the broadband visibility
is finally

VΔνI (u0) = J(0) Δν
∫

Ĩν0(w)β̃(u0,w) dw, (7)

where we have defined the convolution kernel in the uv-plane

β̃(u0,w) =
∫

Ĩν(w)

Ĩν0(w)
Ãν

(
u0
ν

ν0
− w

)
JN(ν − ν0) dν, (8)

in which we have introduced the normalized bandpass function
JN(ν − ν0) = J(ν − ν0)/Δν. The convolution kernel (which de-
pends on u0) contains the entire effect of the bandwidth smear-
ing. For a monochromatic visibility, the convolution kernel in
the uv-plane is just the Fourier transform of the beam Ã(w).

In the following, to allow for complete analytic calculation,
we first ignore the frequency dependence of both the signal and
the beam. We write

Ã(w) = Ãν0 (w) ≈ Ãν(w) and Ĩ(w) = Ĩν0 (w) ≈ Ĩν(w). (9)

This defines the approximate form of the convolution kernel

β̃ap (u0,w) =
∫

Ã(u0
ν

ν0
− w) JN(ν − ν0) dν. (10)

This approximation allows us to obtain an intuitive idea of how
the bandwidth smearing acts with good enough accuracy to esti-
mate the sensitivity loss. We discuss in Sect. 2.5 a refined form
of the kernel that takes into account the frequency dependence
of the beam and the intensity. As shown in Fig. 2, the difference
between the approximate kernel, derived in Sect. 2.3, and the
refined kernel is small.
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R. Charlassier et al.: Bandwidth in bolometric interferometry

Fig. 1. Left: convolution kernel in the uv-plane for a monochromatic interferometer, which is actually just the Fourier transform of the primary
beam, for a 90 GHz central frequency and a Gaussian beam with 15◦ FWHM. Right: approximate convolution kernel in the uv-plane for a
baseline u0 (matching l ∼ 100), for a 20% bandwidth interferometer, for a Gaussian bandpass function centered at 90 GHz and a Gaussian beam
with 15◦ FWHM.

2.3. Approximate analytical form of the kernel

In order to perform the analytical calculation, we also assume a
Gaussian normalized bandpass function

JN(ν − ν0) =
1

σν
√

2π
exp

(
− (ν − ν0)2

2σ2
ν

)
· (11)

The instrument bandwidth is related to the standard deviation
of the Gaussian distribution by Δν = σν

√
2π. We assume a

Gaussian beam for the horns, with the usual convention A(0) =
1, leading to the following beam in the uv-plane

Ã(w) = Ω exp(−πΩw2). (12)

As previously explained, we ignore the frequency dependence
of the beam. The integral of the beam over the sky is defined for
the central frequency,Ω = Ων0

3. The expression of the kernel is
then

β̃ap(u0,w) =
Ω

σν
√

2π

×
∫

exp

⎡⎢⎢⎢⎢⎢⎣−πΩ (
u0
ν

ν0
− w

)2

− (ν − ν0)2

2σ2
ν

⎤⎥⎥⎥⎥⎥⎦ dν. (13)

This can be analytically integrated (details are given in
Appendix A) and written in the form

β̃ap(u0,w
′) = Ã(w′)

exp

⎡⎢⎢⎢⎢⎢⎢⎣ 2π2Ω2
(
σν
ν0

)2

1+2πΩ
(
σν
ν0

)2
u2

0

(u0 · w′)2

⎤⎥⎥⎥⎥⎥⎥⎦√
1 + 2πΩ

(
σν
ν0

)2
u2

0

, (14)

where we have made the variable substitution

w′ = u0 − w. (15)

3 This solid angle is then related to the rms of the Gaussian beam σ by
Ω = 2πσ2.

We can define the effective beam in real space for a broadband
interferometerΩs as the value at w′ = 0 of the Fourier transform
of the kernel4

Ωs = β̃ap(u0, 0) =
Ω

κ1
, (16)

with

κ1 =

√
1 + 2πΩ

(
σν

ν0

)2

u2
0, (κ1 ≥ 1). (17)

We can finally rewrite the kernel as

β̃ap(u0,w
′) = Ã(w′) × 1

κ1
× exp

⎡⎢⎢⎢⎢⎢⎣2π2

(
σν
ν0

)2

Ω2
s (u0 · w′)2

⎤⎥⎥⎥⎥⎥⎦ (18)

= Ã(w′) × 1
κ1
× exp

⎡⎢⎢⎢⎢⎣πΩ ⎛⎜⎜⎜⎜⎝1 − 1

κ21

⎞⎟⎟⎟⎟⎠ (u0 · w′)2

u2
0

⎤⎥⎥⎥⎥⎦ · (19)

This κ1 factor is an indicator of the importance of bandwidth
smearing. It reaches its minimal value 1 for a monochromatic
interferometer. One immediately sees that interferometers with
“small” primary beams and/or “small” baselines are less affected
by the bandwidth smearing (see Fig. 4). We compare the convo-
lution kernels of monochromatic and broadband interferometers
in Fig. 1. One can clearly see that the effect of the bandwidth
smearing is to stretch the kernel, in the baseline direction only,
by which the Fourier transform of the signal is convolved. When

κ1 is close to 1 (i.e.,
(
σν
ν0

)2
u2

0 � 1
2πΩ ), the size of the “band-

width part” of the kernel is smaller than the “beam part” and
thus the signal is not degraded by the bandwidth: this is quite
intuitive since a signal already convolved by a kernel of width
σa is not significantly degraded if it is convolved again by a ker-
nel of width σb such as σb < σa. The physical interpretation in
real space is that the bandwidth smearing makes the beam nar-
rower, by a factor κ1 that depends on the baseline length: for a
given multipole l, the fraction of sky observed by a broadband
interferometer is actually f Δνsky(l) = fsky(l)/κ1 (cf. Sect. 5).

4 Because JN is normalized to 1, the inverse transform of β̃ap equals 1
at the top of the beam.
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Fig. 2. Left: the black full line shows longitudinal profile of the kernel for monochromatic visibilities, while the color lines show the longitudinal
profile of the convolution kernel for baselines corresponding to l0 = 50, 100, 200, for an instrument with a 20% Gaussian bandwidth centered at
90 GHz and 15◦ FWHM horns. Approximate kernel: full coloured line. Refined kernel numerically computed: dotted coloured line. Kernel for
monochromatic visibilities: black full line. Right: same but with a top hat shaped bandwidth.

2.4. Broadband visibilities in temperature units
for CMB experiments

It is more convenient to work with visibilities in tempera-
ture units when studying CMB temperature and polarization
anisotropies5. If Bν is the intensity of the observed field, in units
of [W Hz−1 m−2 sr−1], the spectral power collected by a horn of
surface S is

Iν = S Bν. (20)

CMB experiments observe small spatial fluctuations over the sky

Iν(n) = Iν + ΔIν(n). (21)

The oscillating term of the visibilities washes out the constant
part of the spectral power, so the visibilities can be rewritten

VΔνI (u0)=
�
ΔIν(n)Aν(n)exp

(
i2πd0 · nνc )J(ν − ν0

)
dν dn. (22)

The temperature fluctuations over the sky are linked to the power
fluctuations by

ΔIν(n) =
∂Iν
∂T
ΔT (n) = S

∂Bν
∂T
ΔT (n). (23)

We can then define the broadband visibilities in temperature
units as

VΔνT (u0)[in K] =
VΔνI (u0)[in W]

S (∂Bν/∂T )|ν0
· (24)

Following the same arguments as previously, one can show that

VΔνT (u0) = Δν
∫
Δ̃T (w)β̃T (u0,w) dw, (25)

where we have introduced the Fourier transform of the tempera-
ture field,

ΔT (n) =
∫
Δ̃T (w) exp(−i2πw · n)dw, (26)

and a temperature convolution kernel,

β̃T (u0,w) =
∫ (

∂Bν/∂T
(∂Bν/∂T )|ν0

)
Ãν

(
u0
ν

ν0
− w

)
JN(ν − ν0) dν. (27)

5 Practically, the visibilities measured by a bolometric interferometer
will be in power units as defined in Eq. (3).

If we neglect the dependence of both the signal and the beam
on frequency, this kernel actually becomes the one defined
in Eq. (10),

β̃T
ap(u0,w)→ β̃ap(u0,w). (28)

2.5. A refined kernel

The intensity Bν of the observed field actually depends on fre-
quency for a black body source at temperature T such that

Bν =
2hν3

c2

1
exp (hν/kBT ) − 1

· (29)

Inside the bandwidth, the frequency dependence of the T deriva-
tive of Bν is approximated well by a power law

∂Bν
∂T

 ∂Bν
∂T

∣∣∣∣∣
ν0

(
ν0
ν

)α
with α =

hν0
kBT

ehν0/kBT + 1
ehν0/kBT − 1

· (30)

The beam of the horns also depends on frequency. The surface
of the horns S , the solid angle covered Ω, and the frequency of

observation ν are related by SΩ = κ c2

ν2
, leading to Ων = Ων0

ν20
ν2

.
This frequency dependence of a Gaussian beam can be modeled
by modifying its Fourier transform as

Ãν(w) = Ω
ν20
ν2

exp

⎛⎜⎜⎜⎜⎝−πΩν20
ν2
w2

⎞⎟⎟⎟⎟⎠ . (31)

Figure 2 shows for several values of l how the approximate ker-
nel of Eq. (19) is refined when one takes into account the above
frequency dependences of the beam and the intensity. The signal
and the beam dependencies largely compensate each other, and
the difference between the two kernels turns out to be negligible
considering the accuracy level required for the sensitivity loss es-
timation. The main difference is a shift in the centroid of the win-
dow function shown in the left panel of Fig. 3, which is absent
in the approximate kernel. This will introduce systematics that
have to be corrected for. We also show what happens for a more
realistic top-hat-shaped bandwidth (right panel of Fig. 2, solid
lines in Fig. 3). For the data extraction of a given instrument,
the convolution kernel has to be computed numerically; how-
ever, the approximate Gaussian kernel provides a good enough
accuracy to estimate the sensitivity loss. In the remainder of this
paper, we use the approximate analytical form of the kernel, and

Page 4 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913446&pdf_id=2


R. Charlassier et al.: Bandwidth in bolometric interferometry

Fig. 3. Left: shift of the effective l window function as a function of l0, dashed lines for a Gaussian bandwidth, solid lines for a top hat one. Right:
the variation in κ1 as a function of l0, dashed lines for a Gaussian bandwidth, solid lines for a top hat one.

Fig. 4. Left: sensitivity degradation on Cl extraction due to bandwidth smearing for multipoles between 50 and 200; the quantity Ksp is plotted for a
dedicated B-mode bolometric interferometer with a 15-degree FWHM primary beam, for, respectively Δν/ν0 = 10, 20, and 30% bandwidth. Right:
the quantity (0.20/Δν) × Ksp(l), showing the competition between smearing and broadening, is plotted as a function of bandwidth for l = 100, for
the same B-mode bolometric interferometer.

write β̃ instead of β̃ap. Finally, the right panel of Fig. 3 shows the
variation in κ1 with l0 for a Gaussian (dashed line) and a top hat
(solid line) bandwidth.

3. Visibilities measured by broadband bolometric
interferometers

The effect of the bandwidth is more subtle in a bolometric in-
terferometer than in a generic interferometer, because the vis-
ibilities are not measured directly. As described in (C09), a
time-domain modulation of the visibilities is performed by con-
trolled phase shifters – located behind each polarization channel
(twice the number of horns)- which take some well-chosen time-
sequences of discrete phase values. The corresponding time-
sequences of bolometers’ measurements will allow us to recover,
independently for each bolometer, all the different visibilities,
by solving a linear problem of the form S = A · X, where X
is a vector including the visibilities, S is a vector including a
time-sequence of one bolometer’s measurements, and A is a co-
efficient matrix depending on the phase shift sequences. In the
following, we generalize the (C09) formalism, taking the band-
width into account. As in the generic case, we assume in this
section that the detectors (here the bolometers) are sensitive to a
spectral bandwidthΔν, by means of a bandpass function J(ν−ν0)
centered on the frequency ν0.

3.1. Signal in broadband bolometers

We consider a bolometric interferometer consisting of Nh horns,
whose beams are defined by the same function B(n) and Nout
bolometers. The electric field at the output of polarization split-
ters, corresponding to horn i coming from direction n for polar-
ization η (‖ or ⊥) is

εi,η(n) = B(n)Ei,η(n). (32)

During a time sample k, each controlled phase shifter adds to its
associated input channel the phase Φk

i,η(ν). After combining, the
electric field in one output channel is then

zk(n) =
∫

zνk(n)J(ν − ν0)dν, (33)

where

zνk(n) =
1√
Nout

Nh−1∑
i=0

1∑
η=0

εi,η(n) exp[iΦk
i,η(ν)]. (34)

The power originating in each of the combiner outputs is aver-
aged on timescales given by the time constant of the detector,
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which is much larger than the EM wave period. The power col-
lected by a given bolometer during a time sample k6 is then

S k =

〈∣∣∣∣∣� zνk(n)J(ν − ν0)dνdn
∣∣∣∣∣2〉

time

. (35)

Signals coming from different directions of the sky are incoher-
ent, as are signals at different frequencies, so their time-averaged
correlations vanish to produce

〈zνk(n)zν
′�

k (n′)〉time =
∣∣∣zνk(n)

∣∣∣2 δ(n− n′) δ(ν − ν′). (36)

The signal on the bolometer is finally

S k =

�
|zνk(n)|2J(ν − ν0)dνdn. (37)

Developing this expression leads to autocorrelation terms for
each input channel and cross-correlation terms between all the
possible pairs

S k = S auto
k + S cross

k . (38)

As in the general case, one can write the visibilities as a convo-
lution in the uv-plane, where we define b = {i, j}, p = {η1, η2},
and

S cross
k =

2J(0) Δν
Nout

Re

⎡⎢⎢⎢⎢⎢⎢⎣∑
i< j

∑
η1,η2

∫
Ĩb,p(w)η̃BI

b,p(ub,w)dw

⎤⎥⎥⎥⎥⎥⎥⎦ . (39)

We have defined the Fourier transform of the physical signal
to be

Ĩb,p(w) =
∫

Ei,η1(n)E�j,η2
(n) exp(i2πn.w)dn, (40)

and the kernel η̃BI
b,p(ub,w) containing the phase modulation used

to recover the visibilities to be

η̃BI
b,p(ub,w) =

∫
Ã

(
ν

ν0
ub − w

)
JN(ν − ν0)exp[iΔΦk

b,p(ν)] dν,(41)

ΔΦk
b,p(ν) = Φk

i,η1
(ν) −Φk

j,η2
(ν), (42)

where A(n) = B2(n) defined the square of the beam of the input
horns.

3.2. Phase shifters constant with respect to frequency

We first consider the simplest case where the phase shift values
do not depend on the frequency ν. When ΔΦk

b,p(ν) = ΔΦk
b,p(ν0),

the phase shift term comes outside the integral over ν

η̃BI
b,p(ub,w) = β̃(ub,w) exp[iΔΦk

b,p(ν0)]. (43)

The signal of the cross-correlations on the bolometer is thus the
one expressed in (C09), with the broadband visibilities defined
in Eq. (24) instead of the monochromatic ones

S cross
k =

2
Nout

Re
[∑

i< j

∑
η1,η2

eiΔΦk
b,p(ν0)VΔνb,p(ub)

]
. (44)

Following (C09), we can introduce the broadband Stokes visibil-
ities

VΔνS (ub) = J(0) Δν
∫

S̃ (w)β̃(ub,w) dw, (45)

6 Recall that this is a sequence of such time samples that will be used
to invert the problem and recover the visibilities.

where S stands for the Stokes parameters I, Q, U or V and S̃
represents their Fourier transform, and rewrite Eq. (44) as a lin-
ear combination of the Stokes visibilities defined for different
baselines

S cross
k =

N�−1∑
β=0

Γk,β · VΔνβ (46)

where Γk,β is the vector, defined in (C09), encoding the phase
shifting values, and VΔνβ is a vector including the real and imag-
inary parts of the broadband Stokes visibilities. If the phase
shift values of a broadband bolometric interferometer are con-
stant with respect to frequency, the visibilities should thus be
reconstructed exactly as explained in (C09), by solving a lin-
ear problem. In this case, a broadband bolometric interferome-
ter therefore works exactly as a monochromatic one, except that
the output observables will be broadband visibilities instead of
monochromatic ones.

3.3. Phase shifters linear with respect to frequency

We now consider the more complicated case where the modula-
tion phase shifters vary linearly with respect to frequency,

ΔΦk
b,p(ν) = ΔΦk

b,p(ν0) × ν
ν0
· (47)

From a technological point of view, this may seem more natu-
ral, since it is automatically respected if for instance the phase
shifters are just constituted by delay-lines.

For the sake of simplicity, we write ΔΦk
b,p instead of

ΔΦk
b,p(ν0) in the following. As in Sect. 2, to carry out the ana-

lytical calculation, we assume both the beam and the intensity
to be independent of frequency, and we assume a normalized
Gaussian bandpass function JN . We show in Appendix B that
η̃BI

b,p is then

η̃BI
b,p(ub,w) = β̃(ub,w)

× exp
[
−(ΔΦk

b,p)2G + iΔΦk
b,p (1 − H(w))

]
, (48)

where we have defined7

G =

(
σν
ν0

)2

× 1

2κ21
, (49)

H(w) =

⎛⎜⎜⎜⎜⎝1 − 1

κ21

⎞⎟⎟⎟⎟⎠ × ub · (ub − w)

u2
b

· (50)

Thus the cross-correlation part of the bolometer signal can be
written

S cross
k =

2
Nout

Re
[∑

i< j

∑
η1,η2

e−(ΔΦk
b,p)2G + iΔΦk

b,p VLD,k,Δν
b,p (ub)

]
(51)

where we have introduced some “phase-dependent” broadband
visibilities

VLD,k,Δν
b,p (ub) = J(0) Δν

∫
Ĩb,p(w)β̃LD,k

b,p (ub,w) dw. (52)

The new kernel is linked to the generic one by a rotation in the
complex plane

β̃LD,k
b,p (ub,w) = β̃(ub,w) exp

[
−iΔΦk

b,pH(w)
]
. (53)

7 κ1 is defined in Eq. (17).
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Fig. 5. Left: reconstructed temperature and polarization power spectra for a monochromatic (black squares) and a 20% broadband (blue squares)
bolometric interferometer (16 horns with 15 degrees FWHM primary beam, phase shifters constant with respect to frequency, 12 modulation
phase shift values, no instrumental noise and Nmaps = 100 in each case). Red lines show the input theoretical spectra. Right: relative error in the
reconstruction (ĈMC

l −Cl)/Cl (squares for temperature spectra, triangles for polarization ones, black for monochromatic, blue for broadband). The
green and yellow lines shows the expected error levels 1/

√
Nmaps at one and two standard deviations.

This complex factor unfortunately depends on the phase dif-
ferences: this means that the definition of every visibility will
slightly change between two different samples k and k′! This is
of course a defect that will corrupt the linear problem.

We will show in a paper in preparation that an error vary-
ing with the modulation will lead to a dramatic leakage from
the intensity visibilities into the polarization ones (which are at
least two orders of magnitudes smaller in CMB observations).
This prediction (which is not trivial and is not proven analyti-
cally in this article) is supported by our Monte-Carlo simulation
(cf. Sect. 6): introduction of the η-kernel of Eq. (48) in the sim-
ulation leads to a huge error on the reconstructed polarization
spectrum (typically two orders of magnitude bigger than the one
on temperature spectrum), as shown in Fig. 5, when the mod-
ulation matrix used to solve the problem is the monochromatic
one defined in (C09). Fortunately, there is a way to get rid of this
leakage, as described in Sect. 4, by reconstructing the I visibil-
ities in sub-bands. Using the extended modulation matrix intro-
duced in Sect. 4.3, this dramatic error source can be put under
control, and the broadband polarization visibilities can be recon-
structed without loss of sensitivity.

3.4. Geometrical phase shifts

In the quasi-optical combiner design considered for the QUBIC
experiment (Kaplan & the QUBIC coll. 2009), some geometri-
cal phase shiftsΨk

b,p(ν) are automatically introduced by the com-

biner8. These phase shifts, stemming from path differences be-
tween rays in the optical combiner, vary linearly with respect to
frequency:

ΔΨk
b,p(ν) = ΔΨk

b,p(ν0) × ν
ν0
· (54)

But as explained in (C09), these geometrical phase shifts ought
not to be used to modulate the visibilities9. This means that

8 As mentioned in (C09), these phase shifters naturally respect the “co-
herent summation of equivalent baselines” scheme.
9 As geometrical phase shifts depend on the spatial positions of
bolometers in the quasi-optical combiner focal plane, using them to in-
vert the problem requires the use of different bolometers; this must be
avoided because of intercalibration issues.

they will not vary between the different time samples used in
a reconstruction:

∀k, k′, ΔΨk
b,p(ν) = ΔΨk′

b,p(ν) ≡ ΔΨb,p(ν). (55)

Hence they do not cause any error during the reconstruction: the
β-kernels of each different visibility are rotated in the complex
plane by the same factor independent the sample. The visibilities
are then measured by applying a rotation

VGLD,Δν
b,p (ub) = J(0) Δν

∫
Ĩb,p(w)β̃(ub,w)

× exp
[
−iΔΨb,pH(w)

]
dw. (56)

3.5. Photon noise error in reconstructed visibilities

We assume here that the modulation matrix used to reconstruct
the visibilities is the monochromatic one defined in (C09); this
is completely true in the case of frequency-independent phase
shifters, and true for the rows concerning the polarization vis-
ibilities in the case of frequency-dependent phase shifters (see
Sect. 4.3). We have shown in (C09) that the visibility covariance
matrix is, where the factor 1/[J(0) Δν]2 is caused by the dif-
ference in the definitions of the monochromatic and broadband
visibilities,

N =
σ2

0Nh

[J(0) Δν]2 Nout
×

(
At · A

)−1
, (57)

where A is a matrix including the Γk,β vectors and σ0 represents
the photon noise (in watts) that would be seen by one bolome-
ter illuminated by one horn during the time of one sample of
the phase sequence. The off-diagonal elements become zero be-
cause the angles are uncorrelated from one channel to another,
while the diagonal elements average to the variance in the ele-
ments in A, which equals 110 multiplied by the number of dif-
ferent data samples Nd. If the coherent summation of equivalent
baselines scheme is adopted, the variance in the reconstructed
visibilities is

σV [in W] =

√
Nh

Neq

σ0√
Nt
× 1

J(0) Δν
, (58)

10 A is filled with elements of the form cos(φ1)+sin(φ2) and because we
assume that the angles are uniformly distributed, they have an average
of zero and a variance of 1.
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where Nt = Nd × Nout is the total number of time samples. We
derive from Eq. (58) in Appendix E the noise in a visibility
measured during a time t by a bolometric interferometer exper-
iment, knowing the noise equivalent temperature (NET11) of its
bolometers, in Kelvin units,

σV [in K] =

√
Nh

Neq

NET Ω√
t
· (59)

4. Virtual reconstruction sub-bands in bolometric
interferometry

We show that the linear dependence in frequency of the mod-
ulation phase shifts Φk

b,p(ν) enables independent reconstruction
of the visibilities in narrower frequency subbands. This idea
was first proposed by (Malu 2007). We initially interpretted this
method as a way of reducing the smearing because the sub-
band visibilities that are reconstructed are less smeared than the
broadband ones. However we now demonstrate that its applica-
tion produces a loss in signal-to-noise ratio that thwarts the gain
in sensitivity, and thus makes this method inefficient for decreas-
ing bandwidth smearing. However, as we see, this method can
be succesfully set up to remove the dramatic effect described in
Sect. 3.3, and thus saves the frequency-dependent option for the
modulation phase shifters.

4.1. Principle

Before doing the visibility reconstruction, one can choose a
number nvsb of virtual reconstruction sub-bands of width δν =
Δν/nvsb. We emphasize that this division into subbands is purely
virtual in that the hardware design does not depend on it. The
η̃-kernel becomes

η̃BI,Δν
b,p (ub,w) =

nvsb∑
m=1

η̃BI,δν
b,p [ub,w, νm], (60)

where η̃BI,δν
b,p are defined as the sub-bands kernels

η̃BI,δν
b,p [ub,w, νm] =

∫
Ã(
ν

ν0
ub − w) JδνN (ν − νm)

× exp
[
iΔΦk

b,p(ν)
]

dν, (61)

where JδνN (ν − νm) is a bandpass function of width δν centered
on νm. The cross-correlation term is then12

S cross
k =

2
Nout

Re

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
nvsb∑
m=1

∑
i < j
η1, η2

exp
[
iΔΦk

b,p

]
Vδνb,p(ub,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (62)

where we have defined

ΔΦb,p,m = ΔΦb,p(ν0) × νm
ν0

and ub,m = ub × νm
ν0
· (63)

The sub-band visibilities Vδνb,p(ub,m) are the broadband visibilities
defined in the previous sections but for a δν bandwidth. For each
pair of horns, the nvsb sub-bands visibilities are defined for nvsb

11 See Appendix D for definition.
12 We omit here the correction terms involving G and H to simplify the
expression in the case of frequency-dependent phase shifters.

different baselines {ub,m}m=1,...,nvsb. Finally, Eq. (62) can be writ-
ten as a linear system nvsb times greater than that of Eq. (51),

S cross
k =

nvsb×N�∑
β=1

Γδνk,β · Vδνβ . (64)

The problem can thus be inverted exactly as in (C09) to recover
the nvsb × N� sub-bands visibilities.

4.2. Sensitivity issue

In every time sample k, the signal of the sub-band visibilities
is nvsb times weaker than the signal of the broadband visibilities,
and consequently their reconstruction variance is

σδνV [in K] =

√
Nh × nvsb

Neq

NET Ω√
t
· (65)

One can average offline (i.e., after the reconstruction) the sub-
band visibilities derived from the same baseline ub, to recover
the broadband visibilities:

VΔνb,p(ub) =
nvsb∑
m=1

Vδνb,p(ub,m). (66)

These broadband visibilities are equivalent to those that would
have been reconstructed without subband division but are af-
fected less by bandwidth smearing (κ1 is that of an instrument
whose bandwidth is nvsb times smaller). However, the variance
in these broadband visibilities is

σΔνV [in K] =

√
Nh × √nvsb

Neq

NET Ω√
t
· (67)

A comparison with Eq. (59) shows that the reconstruction into
virtual sub-bands comes along with a loss by a factor

√
nvsb in

sensitivity of reconstructed visibilities. Unfortunately, we find in
Sect. 5 that this loss in sensitivity is always greater than the gain
provided by smearing reduction. This ensures that this method
is inefficient in reducing bandwidth smearing.

4.3. Reconstruction scheme for instruments
with frequency-dependent phase shifters

This method, however, provides a solution for a crucial issue
described in Sect. 3.3. The idea is to estimate at the same time the
intensity visibilities in subbands (Stokes I), and the polarization
visibilities in one single broad band (Stokes Q, U, and V). This
can easily be achieved by writing an extended coefficient matrix
based on the decomposition

S cross
k =

nvsb×N�∑
β=1

Γδνk,β · VδνI,β +
∑

X=Q,U,V

N�∑
β′=1

Γk,β′ · VΔνX,β′ . (68)

Practically, this means that the part of the matrix encoding the
polarization visibilities is identical to that of the monochromatic
matrix, while the part encoding the intensity visibilities con-
tains a factor of nvsb more rows. The matrix thus has a total of
(2 × nvsb + 6) × N� rows. The corruption of the linear problem
(and then the leakage of the error in the intensity visibilities into
the polarization ones) can thus be reduced as much as necessary
by increasing the number of subbands, without loss of signal-to-
noise ratio for the polarization visibilities. This reconstruction
was performed with our numerical simulation, as described in
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Fig. 6. Left: phase shifters linear with respect to frequency and reconstruction with monochromatic modulation matrix. Reconstructed temperature
and polarization power spectra for a monochromatic (black squares and triangles) and a 20% broadband (blue squares and triangles) bolometric
interferometer (16 horns with 15 degrees FWHM primary beam, 12 modulation phase shift values, no instrumental noise and Nmaps = 100 in
each case). Red lines show the input theoretical spectra. Right: relative error on the reconstruction (ĈMC

l −Cl)/Cl (squares for temperature spectra,
triangles for polarization ones, black for monochromatic, blue for broadband). The green and yellow lines shows the expected error levels 1/

√
Nmaps

at one and two sigmas.

Fig. 7. Left: phase shifters linear with respect to frequency and reconstruction with the extended modulation matrix (5 virtual sub-bands for
I visibilities only). Reconstructed temperature and polarization power spectra for a monochromatic (black squares and triangles) and a 20%
broadband (blue squares and triangles) bolometric interferometer (16 horns with 15 degrees FWHM primary beam, 15 modulation phase shift
values, no instrumental noise and Nmaps = 100 in each case). Red lines show the input theoretical spectra. Right: relative error on the reconstruction
(ĈMC

l −Cl)/Cl (squares for temperature spectra, triangles for polarization ones, black for monochromatic, blue for broadband). The green and yellow
lines shows the expected error levels 1/

√
Nmaps at one and two sigmas.

Sect. 6; a comparison of Figs. 6 and 7 shows its efficiency. One
drawback of this method is of course that it increases the mini-
mal sequence length required to invert the problem. Finally, we
notice that this method could in principle apply just as well to
phase shifters with any arbitrary (but known) frequency depen-
dence.

5. Loss in sensitivity of CMB experiments

We have shown in Sects. 3 and 4 how the broadband visibil-
ities defined in Sect. 2 can be reconstructed, independently of
the frequency dependence of modulation phase shifters, from
the bolometer sequences measured by a broadband bolometric
interferometer. To evaluate the resulting loss in sensitivity for a
dedicated CMB experiment, it is important to understand that
it is meaningless to compare directly monochromatic visibilities
and broadband ones, because they are not the same observables
because it is meaningless to directly compare two signals that
have been convolved with kernels of different shape and/or size.
A correct way to deal with this problem is to compare the sensi-
tivities achieved for the observable of physical interest, here the

CMB power spectra. In this section, we generalize the estimator
introduced in (H08) and derive new formulae for the sensitivity
of the CMB BB power spectrum.

5.1. Generalization of the pseudo-power spectrum estimator

We make the same assumptions and follow exactly the same
arguments as in (H08), substituting the kernel β̃(u,w) for the
Fourier transform of the beam Ã(w). Assuming perfect E/B sep-
aration, one can show that

〈VB(u)V�B (u′)〉 = δ(u − u′) ×
∫

CBB
l (w)

∣∣∣β̃(u,w)
∣∣∣2 dw. (69)

We recall that in the flat-sky approximation, l � 2π|u| – see
e.g., (White et al. 1999). Assuming the power to be flat enough
to be taken out of the integral (we assume that l2Cl is flat in the
simulation, see Sect. 6), in the presence of noise,

〈VB(u)V�B (u′)〉 = δ(u − u′) CBB
l

∫ ∣∣∣β̃(u,w)
∣∣∣2 dw + N(u, u′). (70)
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In Appendix C, we show that the integral of the square modulus
of the convolution kernel in the uv-plane actually equals half of
the effective beam defined in Eq. (16)∫ ∣∣∣β̃(u,w)

∣∣∣2 dw =
Ωs

2
=
Ω

2κ1
· (71)

There is a perfect analogy with the monochromatic case where
Ω
2 =

∫ ∣∣∣Ã(w)
∣∣∣2 dw. The simplest unbiased estimator of the power

spectrum for a broadband interferometer, in presence of noise, is
thus

Ĉl =
2
Ωs
× 1

N�(l)

N�(l)−1∑
β=0

[
V(uβ)V�(uβ) − N(uβ, uβ)

]
, (72)

where N�(l) is the number of different modes probing a given l.
It is thus the ratio of the available surface of a bin πuΔu to the
effective surface of the kernel in the uv-plane Ωs/2,

N�(l) =
2πuΔu
Ωs

= 2lΔl
fsky

κ1
· (73)

The variance in the estimator for a broadband interferometer can
be derived as in (H08), leading to the error in the power spectrum

ΔCBI,HI
l =

√
2κ1

2lΔl fsky

⎛⎜⎜⎜⎜⎝Cl +
2σ2

Vκ1

Ω

⎞⎟⎟⎟⎟⎠ · (74)

The only differences from the monochromatic interferometer
formula concerns the κ1 factors.

Using the expression for σV given by Eq. (59), the error in
the angular power spectrum measured by a broadband bolomet-
ric interferometer during a time t can finally be written

ΔCBI
l =

√
2κ1

2lΔl fsky

⎛⎜⎜⎜⎜⎝Cl +
2NhNET2

BIΩ

N2
eq t

κ1

⎞⎟⎟⎟⎟⎠ . (75)

The NETBI of bolometers scales as the inverse square root of
the bandwidth, NETBI ∝ 1/

√
Δν, cf. Appendix D), which we

illustrate clearly by writing

NET2
BI = NET2

BI,20%
0.20

(Δν/ν0)
, (76)

where NET2
BI,20% is the noise equivalent temperature of 20%-

bandwidth bolometers. Equation (75) becomes

ΔCBI
l =

√
2

2lΔl fsky

×
⎛⎜⎜⎜⎜⎜⎝√κ1Cl +

2NhNET2
BI,20% Ω

N2
eq t

× 0.20
(Δν/ν0)

Ksp(l)

⎞⎟⎟⎟⎟⎟⎠ , (77)

where the smearing penalty factor is defined by

Ksp(l) = κ3/21 =

(
1 +
Ω (σν/ν0)2 l2

2π

)3/4

. (78)

If we neglect the
√
κ1 penalty on the sample variance, the fac-

tor of sensitivity degradation due to bandwidth smearing for a
bolometric interferometer is indeed given by Ksp(l). The physical
interpretation of Eq. (77) is straightforward: the sensitivity im-
provement provided by bandwidth broadening (more photons
are collected) is in competition with the sensitivity degrada-
tion caused by bandwidth smearing (the fringes are degraded).

Figure 4 (right) shows the evolution of (0.20/Δν) × Ksp(l) as a
function of bandwidth. We see that, for the typical B-mode ex-
periment considered, the smearing begins to cancel the broaden-
ing for bandwidths larger than 20% – which is fortunately the
typical bandwidth of bolometers used in CMB experiments13.
Figure 4 (left) shows that the total loss in sensitivity on power
spectra due to bandwidth smearing is about 2 for l = 150, for a
typical dedicated B-mode experiment with 20% bandwidth. This
result, which may seem unexpected considering the poor repu-
tation of radio-interferometers in terms of bandwidth, is mainly
caused by the spatial resolution required for the observation of
CMB angular correlations being poorer than that required for the
observation of point sources.

5.2. Inefficiency of the reconstruction in sub-bands
in preventing bandwidth smearing

If the visibilities were reconstructed into nvsb sub-bands, the
smearing would be reduced but the signal-to-noise ratio in each l
band would decrease, leading to a

√
nvsb additional factor in σV

as explained in Sect. 4. The smearing penalty factor would be

KSB
sp (l) = nvsb κ

3/2
1 = nvsb

⎛⎜⎜⎜⎜⎝1 + Ω (σν/ν0)2 l2

2π n2
vsb

⎞⎟⎟⎟⎟⎠3/4

· (79)

However, it can be shown that KSB
sp (l) is always greater than

Ksp(l), whatever the number of sub-bands, meaning that the loss
in signal-to-noise ratio is always more penalizing than the smear-
ing reduction.

5.3. Comparison with an imager and a heterodyne
interferometer

We now correct the ratio formulae derived in (H08). The
comparison between the sensitivities of a heterodyne and a bolo-
metric interferometer is not straigthforward since there is an im-
portant difference in hardware design between the two kind of
interferometry in terms of bandwidth. In a radio heterodyne in-
terferometer such as DASI (Kovac et al. 2002) or CBI (Readhead
et al. 2004), the analog correlators only work at low frequencies
(typically below 2 GHz), so the broadband signal collected by
each horn is divided into different channels of typically 1 GHz
bandwidth each and then downconverted before being corre-
lated. This forced division has prevented past interferometer
CMB experiments from any important bandwidth smearing ef-
fects, but the price to pay was of course the hardware complex-
ity of these systems. On the other hand, bolometers are natu-
rally broadband, and we have shown how the monochromatic
bolometric interferometer described in (C09) generalizes almost
naturally into a broadband bolometric interferometer: a broad-
band instrument only needs broadband components, e.g., horns,
filters. To correct the ratio formula obtained in (H08), one can
neglect the bandwidth smearing for heterodyne interferometers
(for a 1% bandwidth, κ1 is always very close to 1); the formula
is then only corrected by the smearing penalty factor

ΔCHI
l

ΔCBI
l

=

(
Neq

Nh

)
× NETHI

NETBI
× K−1

sp . (80)

To be completely fair, one must keep in mind that in the true state
of the technological art, it seems difficult to design heterodyne
interferometers with bandwidths larger than 10%.

13 For ground-based experiments, atmospheric emission lines exclude
the possibility of wider bandwidth.
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The comparison between a bolometric interferometer and an
imager is also only modified by the smearing penalty factor. If
the experiment is dominated by instrumental noise, the ratio of
the variances becomes

ΔCIm
l

ΔCBI
l

=

(
Neq

Nh

)2

× 1

B2
l

× K−1
sp . (81)

6. Monte Carlo simulations

We performed a Monte Carlo simulation to check the results ob-
tained in this article. Starting from CMB maps generated from
theoretical spectra, the basic principle is to compute the se-
quences of data measured by a broadband bolometric interfer-
ometer, to reconstruct visibilities from these sequences, and to
estimate power spectra from these visibilities. The comparison
between input and output spectra then allows us to check the an-
alytical calculations (and the associated assumptions) of this ar-
ticle. The code is available upon request; questions or comments
can be addressed by e-mail to the authors.

6.1. Simulation overview

We consider a “standard” bolometric interferometer (as defined
in Sect. 3) constituted by a square array of Nh horns, the associ-
ated Nh polarization splitters, the 2Nh modulation phase shifters,
a beam combiner and Nout bolometers. In this simulation, we
only compute the power measured by one of the bolometers. We
assume that the beams of the horns are all described by the same
perfect Gaussian function of Eq. (12). We assume that the phase
shift values taken by the modulation phase shifters are equally
spaced. The physical input parameters are then the number of
horns Nh, the horns radius, the distance between two adjacent
horns, the FWHM of the Gaussian beam, the number of phase
shift values taken by the modulation phase shifters Nφ, the cen-
tral observation frequency ν0, the bandwidth Δν, the form of the
bandpass function (either Gaussian or top hat) J, and the number
of data samples in one sequence Nd.

The CMB maps are generated from spectra given by the stan-
dard WMAP-5 cosmological model (although the spectra shapes
are not really important to this simulation, the only crucial fea-
ture being the ratio of the amplitude of temperature to polariza-
tion spectra). The question of the E and B mode separation in
interferometry is beyond the scope of both this article and sim-
ulation. So we consider only the TT and EE spectra, which we
refer to from now, respectively, as the temperature and polar-
ization spectra. Computation of the β and η kernels involves a
numerical integration over the frequency band, while computa-
tion of the samples measured by the bolometer involves one over
the uv-plane. The numerical input parameters are then the reso-
lution in the uv-plane, the resolution in the frequency band, and
the number of CMB map realisations Nmaps.

The simulation pipeline is the following:

1. the position of primary horns and the associated set of base-
lines are generated;

2. the β and η kernels are computed – either from analytical for-
mulas (given by Eqs. (19) and (43) or numerical integrations
(following Eqs. (10) and (41)), which enables us to check the
analytical formulae – for every different baseline and, in the
case of η, for every phase difference;

3. beginning of MAPS loop. CMB temperature and polariza-
tion maps are generated from theoretical spectra;

4. monochromatic and broadband visibilities are computed by
convolving the maps Fourier transforms and the β kernels for
every baseline. “Generalized” broadband visibilities (i.e., the
convolution of maps Fourier transforms with η kernels) are
computed for every baseline and every phase difference;

5. random phase sequences are generated for every horn and
both polarizations, respecting the coherent summation of
equivalent baselines scheme described in (C09). Phase dif-
ferences are then computed for every baseline;

6. a sequence of Nd data sets S k measured by the bolometer is
computed (Eq. (39)) by summing “generalized" broadband
visibilities, following the phase sequences;

7. the modulation matrix is generated (see (C09) for its explicit
expression in the monochromatic case);

8. the visibilities are reconstructed by solving the linear prob-
lem of Eq. (46). End of MAPS loop;

9. measured spectra are computed from the reconstructed visi-
bilities using the estimators defined in Sect. 5. Relative errors
are obtained by comparing with the input theoretical spectra.

6.2. Validation of the work principle of a broadband
bolometric interferometer and test of the broadband
estimator

In step 9, we do not average the modulus of the reconstructed
visibilities over the different baselines matching the same mul-
tipole as in Eq. (72), but for each different baseline, we average
over all the Nmaps maps realisations. Moreover, the power is ac-
tually not flat over the Δl of integration, so it cannot be taken
out of the integral in Eq. (69). Since l2Cl is nearly flat, we can
however define an unbiased estimator (assuming no instrumental
noise) for the broadband interferometer

Ĉl
MC
=

2

ΩMC
s
× 1

Nmaps

Nmaps−1∑
m=0

Vm(uβ)V�m(uβ), (82)

where Vm(uβ) is the broadband visibility defined for the baseline
uβ (l = 2π|uβ|) and the map m and where

ΩMC
s =

∫ |w|2
|uβ|2 |β̃(uβ,w)|2dw ∼ Ω

2κ1
· (83)

We thus expect the spectra reconstruction to only be affected by
the “sample” variance

ΔCMC
l = Cl/

√
Nmaps. (84)

We execute the simulations for the following input parame-
ters: 16 horns, 15 degrees FWHM primary beam, 12 modulation
phase shift values, a 90 GHz central frequency, 20% bandwidth,
Nmaps = 100. We first simulate the case of phase shifters constant
with respect to frequency (the η-kernels are computed following
Eqs. (41) and (43)) and use the monochromatic modulation ma-
trix defined in (C09) to reconstruct the visibilities. The results,
shown in Fig. 5, validate our study since our broadband estima-
tor, taking the smearing into account, reconstructs the generated
power spectra well: a broadband bolometric interferometer with
phase shifters that are constant with respect to frequency oper-
ates exactly like a monochromatic interferometer, but the recon-
structed visibilities are the predicted smeared ones. We then sim-
ulate the case of frequency-dependent modulation phase shifters,
with kernels computed following Eqs. (41) and (48). Figure 6
shows the dramatic effect described in Sect. 3.3 on the recon-
structed polarization spectrum when the monochromatic mod-
ulation matrix is used to reconstruct the visibilities. Figure 7

Page 11 of 13



A&A 514, A37 (2010)

shows the efficiency of using the extended modulation matrix de-
scribed in Sect. 4.3 to reconstruct the polarization visibilities: the
intensity visibilities have been reconstructed into 5 sub-bands,
completely removing the error in the polarization visibilities re-
construction in the configuration considered (at the level of sam-
ple variance considered of course).

7. Conclusion

We have analytically and numerically studied the work principle
of a broadband bolometric interferometer. We have defined its
(indirect) observables – the broadband visibilities – and intro-
duced numerical methods to reconstruct them. We have finally
calculated the sensitivity of such an instrument dedicated to the
B-mode.

Bolometers are naturally broadband, and consequently the
design of a broadband bolometric interferometer is identical
to the design of the monochromatic one described in (C09), a
broadband bolometric interferometer only requiring broadband
components, e.g., horns, filters. Nevertheless, we have seen that
the modulation matrix that should be used to reconstruct the
broadband visibilities depends on some hardware properties of
the modulation phase shifters. If these are constant with respect
to frequency, the modulation matrix should be that defined in
(C09) for a monochromatic instrument. If they are dependent on
frequency (this dependence should be known of course), a more
complicated scheme involving a reconstruction in sub-bands of
the intensity visibilities should be performed. We have verified
by using a numerical simulation that in both cases the visibilities
can be reconstructed without any additional loss in sensitivity to
that caused by the smearing.

Visibilities are defined as the convolution of the Fourier
transform of the signal with a kernel, which in the monochro-
matic case is defined as the Fourier transform of the primary
beam. We have shown that the effect of the smearing is to stretch
this kernel, in the baseline direction only, and that the amplitude
of the smearing depends only on three quantities: the bandwidth,
the baseline length, and the size of the primary beam. We have
finally defined, as a function of broadband visibilities, a new
power spectrum estimator and from this derived a generalized
uncertainty formula.

The main conclusion of this article is that for a bolometric
interferometer dedicated to CMB B-mode, the sensitivity loss,
due to bandwidth smearing, is quite acceptable (a factor of 2 loss
for a typical 20% bandwidth experiment).

Acknowledgements. The authors are grateful to the entire QUBIC collaboration
for fruitful discussions.

Appendix A: Analytical derivation of the β̃-kernel

The kernel of Eq. (13) can be written as a Gaussian integral:

β̃ap(u0,w) =
Ω

σν
√

2π
e

B2

4A −C
∫

e−A(ν− B
2A )2

dν (A.1)

=
Ω

σν
√

2π
exp

[
B2

4A
−C

] √
π

A
, (A.2)

where we have defined the quantities

A =
1

2σ2
ν

+ πΩ
u2

0

ν20
, (A.3)

B =
ν0

σ2
ν

+ 2πΩ
u0 · (u0 − w′)

ν0
, (A.4)

C =
ν20

2σ2
ν

+ πΩ(u0 − w′)2, (A.5)

and have made the variable substitution

w′ = u0 − w. (A.6)

It is straightforward to show that

Ω

σν
√

2π

√
π

A
=

Ω√
1 + 2πΩ

(
σν
ν0

)2
u2

0

, (A.7)

B2

4A
−C = −πΩw′2 +

2π2Ω2
(
σν
ν0

)2

1 + 2πΩ
(
σν
ν0

)2
u2

0

(u0 · w′)2. (A.8)

Thus, we can write the kernel as a function of the Fourier trans-
form of the beam as in Eq. (14).

Appendix B: Analytical derivation of the η̃-kernel

The kernel of Eq. (41) can be written as the Fourier transform of
a Gaussian:

η̃BI
b,p(u0,w) = Ωe−

B2

4A +C
∫

e−A(ν− B
2A )2

eiΔΦb,p
ν
ν0 dν (B.1)

= Ωe−
B2

4A +C

√
π

A
e
−ΔΦ2

b,p
1

4ν20 A eiΔΦb,p
B

2ν0 A , (B.2)

where A, B, and C are the quantities defined in Appendix A. It is
straightforward to show that

G =
1

4ν20A
=

(
σν

ν0

)2

× 1

2κ21
, (B.3)

B
2ν0A

= 1 − 2πΩu0 · w′(σνν0 )2

1 + 2πΩu2
0(σνν0 )2

= 1 − H(w′), (B.4)

where

H(w′) =
⎛⎜⎜⎜⎜⎝1 − 1

κ21

⎞⎟⎟⎟⎟⎠ × u0 · w′
u2

0

· (B.5)

We can finally write the kernel as in Eq. (48).

Appendix C: Integration of the β̃-kernel square
modulus in the uv-plane

We calculate this integral using the approximate kernel of
Eq. (18). The variable substitution w′ = u0 − w does not change
the integral∫ ∣∣∣β̃ap(u,w)

∣∣∣2 dw =
∫ ∣∣∣β̃ap(u,w′)

∣∣∣2 dw′. (C.1)

Using Parseval’s theorem, one obtains∫ ∣∣∣β̃ap(u,w′)
∣∣∣2 dw′ =

∫ ∣∣∣βap(u, n)
∣∣∣2 dn, (C.2)

where βap is the inverse Fourier transform of β̃ap. Because
β̃ap(u,w′) is a positive Gaussian function of w′,∫ ∣∣∣βap(u, n)

∣∣∣2 dn =
1
2

∫ ∣∣∣βap(u, n)
∣∣∣ dn =

1
2
β̃ap(u,w′ = 0). (C.3)

By definition Ωs = β̃ap(u,w′ = 0), so finally∫ ∣∣∣β̃ap(u,w)
∣∣∣2 dw =

Ωs

2
· (C.4)
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Appendix D: Noise equivalent power and noise
equivalent temperature

The spectral power Iν collected by a horn of surface S is defined
in Eq. (20). We assume for simplicity that the number of bolome-
ters equals the number of horns. The total power measured by a
bolometer is then

Ptot =

�
Iν(n)J(ν − ν0)Aν(n)dndν (D.1)


 SΩ J(0) Δν
∫
ν20
ν2

Bν JN(ν − ν0)dν. (D.2)

The noise equivalent power (NEP) caused by photon noise in a
bolometer, in units of [W Hz−1/2], is given by (Lamarre 1986)

NEP2 = 2J(0) ΔνΩ
∫

hν
ν20
ν2

IνJN(ν − ν0)dν + ...

2J(0) ΔνΩ
∫

c2

2ν2
ν20
ν2

I2
ν JN(ν − ν0)dν. (D.3)

For CMB work, bolometer sensitivity is usually quoted as a
noise equivalent temperature in units of [K s1/2], firstly to sim-
plify the comparison with the sensitivity of coherent receivers
and secondly to simplify the calculation of the sensitivity to Cl
since they are defined in temperature units. The conversion is
given by

NET =
NEP√

2(∂Ptot/∂T )
· (D.4)

It is straightforward to show that

∂Ptot

∂T
= SΩ J(0) Δν

∫
ν20
ν2
∂Bν
∂T

JN(ν − ν0)dν. (D.5)

The NET thus scales as the inverse square root of the bandwidth

NET ∝ 1√
Δν
· (D.6)

Appendix E: Noise in visibility measurement
in Kelvin

We can write the relation between σ0 in units of [W s1/2] and the
NEP in units of [W Hz−1/2] as

σ0√
Nt
=

NEP√
2
√

tS
, (E.1)

where tS is the duration of one phase sequence. Starting from
Eq. (58), the noise in Watt on a broadband visibility measured
during a time t by an experiment is then

σV [in W] = α
NEP√

2
√

t J(0) Δν
· (E.2)

Table E.1. Values of κ2 for a 20% bandwidth, for different central fre-
quencies ν0.1

30 GHz 90 GHz 250 GHz

∼1−10−3 ∼1−10−2 ∼1 + 10−2

Notes. (1) We assume that the instrument is observing, through the
Gaussian bandpass function defined in Eq. (11), a 3 K black body source
whose intensity is given by Eq. (29).

The quantity α varies depending on whether one is considering
an heterodyne or a bolometric interferometer. In the latter case,

(C09) found that α =
√

Nh

Neq
. We have defined the visibilities in

temperature units in Eq. (24). The noise in a visibility measure-
ment in Kelvin is thus given by

σV [in K] = σV [in W] × 1
S (∂Bν/∂T )|ν0

· (E.3)

Using the definition of the NET given in D.4, the noise in a visi-
bility measurement in Kelvin finally becomes

σV [in K] = α
NET Ω√

t
κ2, (E.4)

where we have introduced the substitution

κ2 =

∫
ν20
ν2

(
∂Bν/∂T

(∂Bν/∂T )|ν0

)
JN(ν − ν0)dν. (E.5)

We see in Table E.1 that κ2 
 1 is a good approximation.
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