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ABSTRACT

The detection of the primordial B-mode spectrum of the polarized cosmic microwave background (CMB) signal
may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic
errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a
complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We
employ two different methods for obtaining the power spectra from mock data produced by simulated observations:
the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods
are consistent with each other as well as, within a factor of six, with analytical estimates. Several categories of
systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors; and
beam errors, consisting of antenna pointing errors, beam cross-polarization, and beam shape (and size) errors.
In order to recover the tensor-to-scalar ratio, r, within a 10% tolerance level, which ensures the experiment is
sensitive enough to detect the B-signal at r = 0.01 in the multipole range 28 < � < 384, we find that, for a
QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of |grms| = 0.1
for antenna gain, |εrms| = 5 × 10−4 for antenna coupling, δrms ≈ 0.◦7 for pointing, ζrms ≈ 0.◦7 for beam shape, and
μrms = 5 × 10−4 for beam cross-polarization. Although the combined systematic effects produce a tolerance level
on r twice as large for an experiment with linear polarizers, the resulting bias in r for a circular experiment is 15%
which is still on the level of desirable sensitivity.

Key words: cosmic background radiation – cosmology: observations – instrumentation: interferometers –
methods: data analysis – techniques: polarimetric

1. INTRODUCTION

The cosmic microwave background (CMB) has become one
of the most fundamental tools in cosmology. High-precision
measurements of the CMB polarization, especially detecting
the primordial “B-mode” polarization signals (Kamionkowski
et al. 1997), will represent a major step toward understand-
ing the extremely early universe. These B-modes are generated
by primordial gravitational waves. A detection of these signals
would probe the epoch of inflation and place an important con-
straint on the inflationary energy scale (Hu & Dodelson 2002). In
addition, the secondary B-modes induced by gravitational lens-
ing encode information about the distribution of dark matter.
However, the B-mode signals are expected to be extremely
small and current experiments can only place upper limits
(Hinshaw et al. 2012) on the tensor-to-scalar ratio; the quest
for the B-modes is a tremendous experimental challenge.

Due to the weakness of the B-mode signals—the largest
signal of the primordial B-modes is predicted to be less than
0.1 μK—exquisite systematic error control is crucial for de-
tecting and characterizing them. Compared to imaging systems,
interferometers offer certain advantages for controlling system-
atic effects because: (1) an interferometer does not require rapid
chopping and scanning (Timbie et al. 2006) and, with simple op-
tics, interferometric beam patterns have extremely low sidelobes
and can be well understood, (2) interferometers are insensitive

to any uniform sky brightness or fluctuations in atmospheric
emissions on scales larger than the beam width, (3) without
differencing the signal from separate detectors, interferometers
measure the Stokes parameters directly and inherently avoid the
leakage from temperature into polarization (Bunn 2007) caused
by mismatched beams and pointing errors, which are serious
problems for B-mode detection with imaging experiments (Hu
et al. 2003; Su et al. 2011; Miller et al. 2009; O’Dea et al. 2007;
Shimon et al. 2008; Yadav et al. 2010; Takahashi et al. 2010),
(4) for observations of small patches of sky,9 E–B mode separa-
tion would be cleaner in the Fourier domain for interferometric
data than in real-space (Park & Ng 2004), and (5) with the use
of redundant baselines, systematic errors can be averaged out.
In addition, they offer a straightforward way to determine the
angular power spectrum since the output of an interferometer is
the visibility, that is, the Fourier transform of the sky intensity
weighting by the response of the antennas.

Interferometers have proved to be powerful tools for studying
the CMB temperature and polarization power spectra. In fact,
DASI (Kovac et al. 2002) was the first instrument to detect
the faint CMB polarization anisotropies. Pioneering attempts to
measure the CMB temperature anisotropy with interferometers
were made in the 1980s (Martin et al. 1980; Fomalont et al. 1984;

9 Ng (2005) discusses interferometric data with a small primary beam on the
full sky.
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Knoke et al. 1984; Partridge et al. 1988; Timbie & Wilkinson
1988). Several groups have successfully detected the CMB
anisotropies. The Cosmic Anisotropy Telescope (CAT) was the
first interferometer to actually detect structures in the CMB
(O’Sullivan et al. 1995; Scott et al. 1996; Baker et al. 1999).
The Cosmic Background Imager (CBI; Pearson et al. 2003)
and the Very Small Array (VSA; Dickinson et al. 2004; Grainge
et al. 2003) have detected the CMB temperature and polarization
angular power spectra down to sub-degree scales. In the next
few years, the QUBIC instrument (Qubic Collaboration et al.
2011) based on the novel concept of bolometric interferometry
is expected to constrain the tensor-to-scalar ratio to 0.01 at the
90% confidence level, with 1 yr of observing.

On the theory side, the formalism for analyzing interfero-
metric CMB data has been well-developed (White et al. 1999;
Hobson & Maisinger 2002; Park et al. 2003; Myers et al. 2003,
2006; Hobson & Magueijo 1996). A pioneering study of system-
atic effects for interferometers based on an analytic approach
has been performed by Bunn (2007). However, this approach is
of course only a first-order approximation for assessing system-
atics, since many important effects, such as the configuration of
the array, instrumental noise, and the sampling variance due to
finite sky coverage and incomplete uv coverage, are not taken
into account. Any actual experiment therefore will naturally re-
quire a complete simulation to assess exactly how systematic
effects bias the power spectrum recovery. In this respect, Zhang
et al. (2012) have presented a simulation pipeline to assess the
systematic errors, mainly focusing on pointing errors. With a full
maximum likelihood (ML) analysis of mock data, the simulation
agrees with the analytical estimates and finds that, for QUBIC-
like experiments, the Gaussian-distributed pointing errors have
to be controlled to the sub-degree level to avoid contaminating
the primordial B-modes with r � 0.01.

Nevertheless, a comprehensive and complete analysis of var-
ious systematic errors on CMB power spectrum measurements
has not been undertaken so far. In this paper, therefore, we
perform a detailed study to completely diagnose the most seri-
ous systematic effects including gain errors, cross-talk, cross-
polarization, beam shape errors, and pointing errors, on the
entire set of CMB temperature and polarization power spectra.
In order to assess the effect of the systematic errors on B-mode
detection and set allowable tolerance levels for those errors, we
perform simulations for a specific interferometric observation
with an antenna configuration similar to the QUBIC instrument.
We also extend the analytical expressions (Bunn 2007) for char-
acterizing systematic effects on the full CMB power spectra.

For verifying the power spectrum analysis, we employ two
completely independent codes based on the Gibbs sampling
(GS) algorithm and the ML technique. The use of GS-based
Bayesian inference with interferometric CMB observations has
been successfully demonstrated by Sutter et al. (2012) and
Karakci et al. (2013). It allows extraction of the underlying
CMB power spectra and reconstruction of the pure CMB signals
simultaneously, with a much lower computational complexity in
contrast to the traditional ML technique (Hobson & Maisinger
2002).

In this paper, for given input CMB angular power spectra,
we simulate the observed Stokes visibilities in the flat-sky
approximation. We believe that the flat-sky simulations are
sufficiently accurate for the study of systematic errors. First, in
our simulation, we assume single pointing observations with 5◦
beam width, corresponding to a sky coverage fraction of fsky =
0.37%. This sky patch is small enough to permit the use of the

flat-sky approximation. Second, all the data analysis processes
are established using the flat-sky approximation while the mock
visibility data are also simulated using this approximation.
Therefore, a self-consistent analysis is performed. However,
when using a patch cut from the projection of spherical sky onto
a flat image as an “input” map, one should take into account
the contamination (Bunn 2011) of “ambiguous” modes arising
from incomplete sky coverage and thus requires an appropriate
data analysis method to apply to this situation.

This paper is organized as follows. In Section 2, we briefly
summarize the effects of a variety of systematic errors on in-
terferometric CMB observations and describe the analytical
method for estimating those errors. In Section 3, we describe the
simulations’ interferometric visibilities which include system-
atic errors. In Section 4, we review the data analysis methods
used in this paper, including the GS technique and the ML ap-
proach. In Section 5, we assess the systematic effects on the
CMB power spectra. Finally, a discussion and summary are
given in Section 6. The Appendix contains the complete ana-
lytical expressions for the systematic effects on the full CMB
power spectra.

2. SYSTEMATICS

2.1. Instrument Errors and Beam Errors

In a polarimetric experiment, the Stokes parameters I,Q,U
and V can be obtained by using either linear or circular
polarizers. For a given baseline ujk = xk − xj , xk being the
position vector of the kth antenna, the visibilities can be written
as a 2 × 2 matrix Vjk (Bunn 2007);

Vjk =
∫

d2r̂Ak(r̂)R · S · R−1A†
j (r̂)e−2πiujk ·r̂, (1)

where the 2 × 2 matrix Ak(r̂) is the antenna pattern and

S =
(

I + Q U + iV
U − iV I − Q

)
. (2)

For a linear experiment, R is the identity matrix and for a circular
experiment,

R(circ) = 1√
2

(
1 i
1 −i

)
. (3)

Various systematic errors can be modeled in the definition of
the antenna pattern as follows (Bunn 2007)

Ak(r̂) = Jk · R · Ak
s (r̂) · R−1 (4)

where the Jones matrix Jk represents the instrumental errors,
such as gain errors and antenna couplings. The matrix Ak

s is the
antenna pattern that models the beam errors, such as pointing
errors, beam shape errors and cross-polarization. In an ideal
experiment Jk = I, where I is the identity matrix, and the
antenna pattern is given as Ak

s (r̂) = A(r̂)I, where A(r̂) is a
circular Gaussian function.

In this paper we will consider only two types of instrumental
errors; antenna gain, parameterized by gk

1 and gk
2 , and couplings,

parameterized by εk
1 and εk

2 . The coupling errors are caused by
mixing of the two orthogonally polarized signals in the system.
To account for the phase delays, the parameters g and ε are given
as complex numbers. The Jones matrix for the kth antenna can
be written as (Bunn 2007)

Jk =
(

1 + gk
1 εk

1

εk
2 1 + gk

2

)
. (5)

2
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For the beam errors, we will consider that each antenna
has a slightly different beam width, ellipticity (beam shape
errors), and beam center (pointing errors), as well as a cross-
polar antenna response described by off-diagonal entries in the
antenna pattern matrix (Bunn 2007);

Ak
s = Ak

0(ρ, φ)

(
1 + 1

2μk
ρ2

σ 2 cos 2φ 1
2μk

ρ2

σ 2 sin 2φ

1
2μk

ρ2

σ 2 sin 2φ 1 − 1
2μk

ρ2

σ 2 cos 2φ

)
,

(6)
where Ak

0(ρ, φ) is an elliptical Gaussian function written in
polar coordinates (ρ, φ), σ is the width of the ideal beam and
μk is the cross-polarization parameter of the kth antenna. This
particular form of cross-polarization occurs, with μk = σ 2/2,
when the curved sky patch is projected onto a plane.

2.2. Control Levels

The effect of errors on the power spectra can be described by
the root-mean-square difference between the actual spectrum,
CXY

actual, which is recovered from the data of an experiment with
systematic errors, and the ideal spectrum, CXY

ideal, which would
have been recovered from the data of an experiment with no
systematic errors;

ΔCXY =
〈(

CXY
actual − CXY

ideal

)2
〉1/2

(7)

where X, Y = {T ,E,B}.
The strength of the effect of systematics can be quantified by

a tolerance parameter αXY defined by (O’Dea et al. 2007; Miller
et al. 2009; Zhang et al. 2012)

αXY = ΔCXY

σXY
stat

(8)

where σXY
stat is the statistical 1σ error in the XY -spectrum of the

ideal experiment with no systematic errors.
The main interest in a B-mode experiment is the tensor-to-

scalar ratio r which can be estimated as (O’Dea et al. 2007)

r =
∑

b ∂rC
BB
b

(
CBB

b − CBB
b,lens

)
/
(
σBB

b,stat

)2∑
b

(
∂rC

BB
b /σBB

b,stat

)2 (9)

where b denotes the power band, CBB
b,lens is the B-mode spectrum

due to weak gravitational lensing and CBB
b depends linearly on r

through the amplitude of the primordial B-modes. The tolerance
parameter of r is given by αr = Δr/σr (O’Dea et al. 2007);

Δr =
∑

b αBB
b

(
∂rC

BB
b /σBB

b,stat

)∑
b

(
∂rC

BB
b /σBB

b,stat

)2 , (10a)

σr =
(∑

b

(
∂rC

BB
b /σBB

b,stat

)2

)−1/2

. (10b)

For good control of systematics, the value of αr is required to
stay below a determined tolerance limit.

2.3. Analytical Estimations

Analytical estimations of the effect of systematic errors on
the polarization power spectra are extensively examined in

Bunn (2007). Defining a vector of visibilities v = (VI , VQ, VU )
corresponding to a single baseline u pointing in the x direction,
for an ideal experiment, we can write

〈|VI |2〉 = CT T
�=2πu, (11a)

〈|VQ|2〉 = CEE
�=2πuc

2 + CBB
�=2πus

2, (11b)

〈|VU |2〉 = CEE
�=2πus

2 + CBB
�=2πuc

2, (11c)

〈VQV ∗
U 〉 = CEB

�=2πu(c2 − s2), (11d)

〈VIV
∗
Q〉 = CT E

�=2πuc, (11e)

〈VIV
∗
U 〉 = CT B

�=2πuc. (11f)

where c2, s2 and c are averages of cos2(2φ), sin2(2φ) and cos(2φ)
over the beam patterns:

s2 =
∫ |Ã2(k − 2πu)|2 sin2(2φ)d2k∫ |Ã2(k)|2d2k

= 1 − c2, (12)

where Ã2 is the Fourier transform of the ideal beam pattern
squared. The unbiased estimator for CXY = 〈ĈXY 〉 is obtained
as

ĈXY = v† · NXY · v (13)

where NXY is a 3 × 3 matrix involving s2 and c (see the
Appendix). For a baseline pointing in an arbitrary direction
the analysis is done in a rotated coordinate system:

vrot =
(

1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ

)
v, (14)

θ being the angle between u and the x-axis.
The effect of errors on visibilities can be described, to first

order, by vactual = videal + δv. Combining videal and δv into a
six-dimensional vector w = (v, δv), we can write the first order
approximation as (Bunn 2007)(

ΔĈXY
rms

)2 = T r[(NXY · Mw)2] + (T r[NXY · Mw])2, (15)

where Mw = 〈w · w†〉 is the covariance matrix of w and

NXY =
(

0 NXY

NXY 0

)
. (16)

The error on a particular band power is, then, given as an
expansion in terms of ideal power spectra:(

ΔĈXY
rms,b

)2 = p2
rms

∑
I,J

κ2
XY,I,J CI

bCJ
b (17)

where p is the parameter that characterizes the error, such
as gain, g, coupling, ε, or cross-polarization, μ, and I, J =
{T T , T E,EE,BB}. This expression is valid for a single
baseline. For a system with nb baselines in band b, ΔĈXY

rms,b
must be normalized by 1/

√
nb, assuming there is no correlation

between error parameters of different baselines. Analytical
estimations of the coefficients κ2

XY,I,J for various systematic
errors are presented in the Appendix.
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Figure 1. Interferometer pattern created over an observation period of 12 hr by
20 × 20 close-packed array of antennas of radius 7.89λ.

3. SIMULATIONS

The input I,Q, and U maps are constructed over 30 degree
square patches with 64 pixels per side as described in Karakci
et al. (2013) with the cosmological parameters consistent with
the 7 yr results of the Wilkinson Microwave Anisotropy Probe
(Larson et al. 2011; Komatsu et al. 2011). The tensor-to-scalar
ratio is taken to be r = 0.01. The angular resolution of
the signal maps is 28 arcmin, corresponding to a maximum
available multipole of �max = 384. The ideal primary beam
pattern, A(r̂), is modeled as a Gaussian with peak value of unity
and standard deviation of σ = 5◦, which drops to the value
of 10−2 at the edges of the patch, reducing the edge-effects
caused by the periodic boundary conditions of the fast Fourier
transformations. Although the patch size is too large for the
flat-sky approximation, the width of the primary beam is small
enough to employ the approximation.

The interferometer configuration is a close-packed square ar-
ray of 400 antennas with diameters of 7.89λ. The observation
frequency is 150 GHz with a 10 GHz bandwidth. This configura-
tion is similar to the QUBIC design (Qubic Collaboration et al.
2011). With this frequency and antenna radius, the minimum
available multipole is �min = 28. The baselines are uniformly
rotated in the uv plane over a period of 12 hr while observing the
same sky patch. The resulting interferometer pattern is shown
in Figure 1.

The noise at each pixel for the temperature data is obtained
from the total observation time that all baselines spend in the
pixel. The noise covariance for the baseline ukj is given as
(White et al. 1999)

C
kj

N =
(

λ2Tsys

ηAAD

)2 (
1

Δν tan̄

)
δkj (18)

where Tsys is the system temperature, λ is the observation
wavelength, ηA is the aperture efficiency, Δν is the bandwidth,
n̄ is the number of baselines with the same baseline vector, and
ta is the integration time. The noise value is normalized by a
constant to have an rms noise level of 0.015 μK per visibility,
yielding an average overall signal-to-noise ratio of about 5 for
the Q and U maps.

Systematic errors are introduced by calculating the visibil-
ities in each pixel according to Equation (1). Each antenna
has random error parameters for gain, coupling, pointing, beam

shape, and cross-polarization errors drawn from Gaussian dis-
tributions with rms values of |grms| = 0.1, |εrms| = 5 × 10−4,
δrms = 0.1σ ≈ 0.◦7, ζrms = 0.1σ ≈ 0.◦7, and μrms = 5 × 10−4,
respectively.10 Here δ is the offset of the beam centers of the
antennas and ζ is the deviation in the beam width along the
principal axes of the elliptical beams. As the baseline rotates,
the beam patterns of the corresponding antennas get rotated as
well. Whenever a baseline crosses a new pixel, the visibility
within the pixel, given by Equation (1), is calculated again with
the rotated beam patterns. The data in a given pixel is taken as
the average of all the visibilities calculated in that pixel.

In a circular experiment, the Stokes variables Q and U can
be simultaneously obtained for the same baseline. Thus, for a
circular experiment, pQ

circ = pU
circ. However, for a linear exper-

iment, direct measurement of Q requires perfect cancellation
of the much larger I contribution in Equation (2). Practically, a
linear experiment only measures U. Since U → Q under a 45◦
clockwise rotation, Q can be measured by measuring U with 45◦
rotated linear polarizers. Since Q and U are not measured simul-
taneously by the same baseline, in general, the error parameters
p

Q
lin and pU

lin are treated as the distinct parameters in a linear
experiment, i.e., p

Q
lin 
= pU

lin. To simulate this, we calculate VU

with a set of error parameters, pU
lin. Then Q and U in Equation (2)

are replaced by −U and Q, respectively, and VU is calculated
again with a different set of parameters, p

Q
lin, to obtain VQ. The

simulation requires 4.5 CPU hours for the circular experiment
and 13.5 CPU hours for the linear experiment.

4. ANALYSIS METHODS

4.1. Maximum Likelihood Analysis

The scheme for the ML analysis of CMB power spectra from
interferometric visibility measurements is presented in Hobson
& Maisinger (2002), Park et al. (2003), and Zhang et al. (2012),
which we briefly summarize here. The ML estimator of the
power spectrum has many desirable features (Bond et al. 1998;
Stuart & Ord 1987) and has been widely applied in CMB
cosmology (Bond et al. 1998; Bunn & White 1997; Hobson
& Maisinger 2002).

In practice, we divide the total � range into Nb spectral
bands, each of bin width Δ�. The power spectrum C� thus
can be parameterized as flat band powers Cb(b = 1, . . . , Nb)
over Δ� to evaluate the likelihood function (Bunn & White
1997; Bond et al. 1998; Gorski et al. 1996; White et al. 1999).
In each of the band-powers, we assume �(� + 1)C� to be a
constant value to characterize the averaged C� over Δ� and has
Cb ≡ 2π |ub|2S(|ub|) as the flat-sky approximation (White et al.
1999).

In our case, the CMB signals and the instrumental
noise are assumed to be Gaussian random fields. There-
fore, for a given set of CMB band-power parameters
{CT T

b , CEE
b , CBB

b , CT E
b , CT B

b , CEB
b }, the signal covariance matri-

ces can be written as

C
ij

ZZ′ =
Nb∑
b=1

∑
X,Y

CXY
b

∫ |ub2|

|ub1|

1

2π

dw

w
× W

i,j

ZZ′XY (w) , (19)

10 These specific values of error parameters were determined by a
combination of analytic estimations and a set of preliminary simulations to
obtain biases in tensor-to-scalar ratio within the tolerance level of 10%.
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where we introduced the so-called window functions W
ij

ZZ′XY

given by

W
ij

ZZ′XY (|w|) =
∫ 2π

0
dφw ωZXωZ′Y Ã(ui − w)Ã∗(uj − w) ,

(20)
where Z,Z′ = {I,Q,U} and X, Y = {T ,E,B} with ωIT = 1,
ωUE = sin 2φw, ωUB = cos 2φw, ωQE = cos 2φw, ωQB =
− sin 2φw and otherwise zero.

Due to the fact that the window functions W
ij

ZZ′XY (|w|) are
independent of Cb, the integrals of the window functions over
w in Equation (19) only have to be calculated once before
evaluating the covariance matrices. Additionally, if the primary
beam pattern A(x) is Gaussian, the window functions can be
expressed analytically (see details in Hobson & Maisinger 2002;
Park et al. 2003; Zhang et al. 2012).

We evaluate the likelihood function by varying the CMB
band powers using the above parameterization. Following
Hobson & Maisinger (2002), Park et al. (2003), Myers et al.
(2003), and Zhang et al. (2012), the logarithm of the likelihood
function for interferometric observations is given by

lnL({Cb}) = n log π − log |CV + CN | − d†
V (CV + CN )−1dV ,

(21)

where CV is the predicted signal covariance matrix and
CN is the instrumental noise covariance matrix, dV is
the observed visibility data vector constructed by dV ≡
(· · · ;VI (ui), VQ(ui), VU (ui); · · ·)(i = 1, . . . , n) where i de-
notes the visibility data contributed from the pure CMB signals
and the instrument noise at the ith pixel in the uv plane and we
have a total of n data points.

As mentioned by Hobson & Maisinger (2002) and references
therein, the combination of the sparse matrix conjugate-gradient
technique and Powell’s directional-set method give a sophisti-
cated and optimized numerical algorithm for maximizing the
likelihood function to find the “best-fitted” CMB power spec-
trum. With an appropriate initial guess to start iteration, inde-
pendent line-maximization is performed for each band-power
parameter in turn, while fixing the others. Typically, this pro-
cess requires a few iterations, of order N2

b , to achieve the ML
solution. For about 4000 visibilities in a QUBIC-like observa-
tion, the ML solution of 6×6 CMB band powers can be obtained
in around 20 CPU hours.

Assuming the likelihood function near its peak can be
well-approximated by a Gaussian, the confidence level of the
derived ML CMB power spectrum is given by the inverse of
the curvature (or Hessian) matrix at the peak. The Hessian
matrix is the matrix of second derivatives of the log-likelihood
function with respect to the parameters. This matrix is easily
evaluated numerically by performing second differences along
each parameter direction. The square roots of the diagonal
elements of the inverse of the Hessian matrix give the standard
error on each band power. This procedure requires only about
30 CPU minutes for ∼4000 visibilities.

4.2. Gibbs Sampling Method

As discussed in Karakci et al. (2013), the method of GS has
been applied to interferometric observations of the polarized
CMB signal in order to recover both the input signal and the
power spectra.

The CMB signal is described as a 3np dimensional vector,
s, of the Fourier transform of the pixelated signal maps of np

pixels; s = (. . . , T̃i , Ẽi , B̃i , . . .); i = 0, . . . , np − 1.
The GS method is employed to sample the signal, s, and

the signal covariance, S = 〈ss†〉, from the joint distribution
P (S, s, dV ) by successively sampling from the conditional
distributions in an iterative fashion (Larson et al. 2007; Karakci
et al. 2013):

sa+1 ← P (s|Sa, dV ) (22a)

Sa+1 ← P (S|sa+1). (22b)

After a “burn-in” phase, the stationary distribution of the Markov
chain is reached and the samples approximate to being samples
from the joint distribution.

To determine that the stationary distribution of the Markov
chain has been reached, the Gelman–Rubin statistic is employed
(Gelman & Rubin 1992; Sutter et al. 2012; Karakci et al. 2013).
For multiple instances of chains, when the ratio of the variance
within each chain to the variance among chains drops to a value
below a given tolerance, the convergence is said to be attained.
The convergence of the GS is reached roughly in 30 CPU hours.

5. RESULTS

5.1. Power Spectra

The mean posterior power spectra, together with the associ-
ated uncertainties at each � bin, obtained by the methods of GS
and ML for the ideal linear experiment, are shown in Figure 2.
The input power spectra, which are used to construct the sig-
nal realization, and the spectra of the signal realization are also
shown in Figure 2. Almost all of our estimates fall within 2σ of
the expected value.

5.2. Effect of Errors

In order to estimate α we ran 30 realizations of each sys-
tematic error simulation for both linear and circular experi-
ments. To keep the value of αr less than 10% tolerance limit
at r = 0.01, we set the rms values of the parameters for gain
errors to |grms| = 0.1, for coupling errors to |εrms| = 5 × 10−4,
for pointing errors to δrms ≈ 0.◦7, for beam shape errors to
ζrms ≈ 0.◦7, and for cross-polarization errors to μrms = 5×10−4.

Figure 3 shows the mean values of αXY for beam errors, aver-
aged over 30 realizations. The results from ML and GS methods
are in good agreement for both linear and circular experiments.
In all three cases αBB ∼ 0.1 at low �, as expected. Although
the cross polarization has a much smaller error parameter, its
effect on the power spectra is comparable to the pointing and
shape errors. The reason for this is the leakage from T T power
into BB power that is caused by the off-diagonal elements of
the beam pattern, whereas the source of αBB for pointing and
shape errors is the EE → BB leakage (Bunn 2007).

The mean values of αXY for instrumental errors are shown
in Figure 4. For gain and coupling errors, αXY is roughly at
the 10% level. The main contribution for the αBB comes from
the leakage from EE power into BB power for gain errors. As
in the case of cross-polarization errors, despite having a much
smaller parameter than gain, αBB ∼ 0.1 at low � for antenna
coupling errors because of T T → BB leakage.

We simulated the systematics by turning on one error at a
time. However, in a realistic experiment, all systematic errors act
together simultaneously, causing a larger effect on the spectra.
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Figure 2. Mean posterior power spectra obtained by Gibbs sampling (GS) for each � bin are shown in black. The power spectra estimations obtained by maximum
likelihood (ML) method are shown in blue. Dark and light gray indicate 1σ and 2σ uncertainties for Gibbs sampling results, respectively. The binned power spectra
of the signal realization are shown in pink. Red lines are the input CMB power spectra obtained by CAMB for a tensor-to-scalar ratio of r = 0.01.

In order to see this combined effect we ran 30 realizations with
all the systematic errors discussed in previous sections turned on
at once. The results are also shown in Figure 4. As expected, the
combined effect is almost twice as large as the individual cases.

5.3. Comparison to Analytical Estimations

Analytical estimations for αXY are obtained from the quadra-
ture difference of Equation (15), normalized by the number
of baselines. In general αXY has a polynomial dependence
on s2. For our interferometer configuration s2 is roughly

s2 ∼ 262.7/�2. The explicit forms of the unnormalized esti-
mations are given in the Appendix.

In general, our simulated results are larger than the estima-
tions in all � bins. This is expected because our analytical es-
timations are only first order approximations where it is also
assumed that the errors associated with baselines are uncorre-
lated, making them lower bounds for the estimations. In reality,
there is a correlation between errors associated with baselines
having common antennas, a fact that is captured by our sim-
ulations. Upper bounds for the estimations can be found by
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Figure 3. Beam errors. The values of αXY , averaged over 30 simulations, obtained by both maximum likelihood (ML) method (triangles) and the method of Gibbs
sampling (GS; solid dots) are shown. The three rows indicate, from top to bottom, pointing errors with δrms ≈ 0.◦7, beam shape errors with ζrms ≈ 0.◦7, and beam
cross-polarization with μrms = 5 × 10−4. Left panel shows αT T (red) and αT E (blue). Middle panel shows αEE (red) and αBB (blue). Right panel shows αT B (red)
and αEB (blue). Linear and circular experiments are shown by solid and dashed lines, respectively.

unrealistically assuming full correlation of errors between base-
lines, where each baseline has the same error. For our inter-
ferometer design, this corresponds to roughly 65 times larger
values. We expect our results to fall between uncorrelated and
fully correlated estimations. In order to compare our results with
the analytical ones, we consider the rms values of αXY averaging
over the � bins. Figure 5 shows the ratios of αXY

rms obtained by
ML and GS methods to the estimated αXY

rms. In most cases, both
methods are in agreement with the analytical results within a
factor of six.

5.4. Biases in Tensor-to-Scalar Ratio

The major goal of QUBIC-like experiments is to detect the
signals of the primordial B-modes, the magnitude of which is
characterized by the tensor-to-scalar ratio r. In this context, it is
necessary to propagate the effects of systematic errors through
to r to assess properly the systematic-induced biases in the
primordial B-mode measurements.

The shape of the primordial BB power spectrum CBB
�,prim is

insensitive to r but the amplitude is directly proportional to r. We

can straightforwardly convert the amplitude of the systematic-
induced false BB into the bias in r by writing CBB

�,prim = rCBB
�,r=1

in Equations (9) and (10) where CBB
�,r=1 is the CAMB (Lewis et al.

2000) calculated primordial BB power spectrum at r = 1. The
tensor-to-scalar ratios obtained from an ideal linear experiment
by GS and ML methods are found to be rGS = 0.026 ± 0.012
and rML = 0.006 ± 0.0095, respectively. A more conservative
estimation for r can be obtained without subtracting the lensed
spectrum in Equation (9) and by taking only the first bin where
the effect of lensing is the least; r lensed

GS = 0.038 ± 0.014 and
r lensed

ML = 0.0196 ± 0.011.
We vary each systematic error individually and also consider

the cross contributions between each error. In realistic obser-
vations, all different systematic errors are likely to occur at the
same time and we need to understand their combined effects
well. We thus evaluate such effects by simulating the system-
atic errors occurring simultaneously during the observation. The
individual and combined systematic-induced biases in r are il-
lustrated in Figure 6, evaluated by both the GS and ML methods
based on the simulations performed in the linear and circular
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Figure 4. Instrumental and combined systematic errors. The values of αXY , averaged over 30 simulations, obtained by both maximum likelihood (ML) method (triangles)
and the method of Gibbs sampling (GS; solid dots) are shown. Top row: antenna gain with |grms| = 0.1. Middle row: antenna couplings with |εrms| = 5 × 10−4.
Bottom row: combined effect of beam and instrumental systematic errors. Left panel shows αT T (red) and αT E (blue). Middle panel shows αEE (red) and αBB (blue).
Right panel shows αT B (red) and αEB (blue). Linear and circular experiments are shown by solid and dashed lines, respectively.

bases. Both methods demonstrate good agreement, within a fac-
tor of 2.5. Although the mock visibility data are simulated based
on only one realization of CMB anisotropy fields, drawn from
the power spectra with input BB for r = 0.01, the resulting false
BB band-powers for the different systematic errors are expected
to be a good approximation for other r values since the leading-
order false B-modes are contaminated only by the leakage of
T T , T E and EE power spectra, which are independent of r.

The simulations show that, due to the leakage of T T signals
into BB, even though the cross-polarization and coupling errors
are very small, e.g., μrms = 5 × 10−4 and |εrms| = 5 × 10−4,
the resulting biases in r are comparable to those induced by
relatively larger pointing, gain, and shape errors. In addition,
when increasing the cross-polarization and coupling errors by
a factor of 10, the simulations show that the resulting biases
would roughly increase by the same factor. As expected, the
systematic errors are approximately linearly proportional to
their error parameters. We also find that the combined systematic
effects (referred to as “c” in Figure 6) would increase the biases
and their values are consistent with the quadrature sum of the
individual errors within 10%.

If we set up an allowable tolerance level of 10% on r, where
r is assumed to be r = 0.01, for QUBIC-like experiments the
error parameters adopted as in Figure 6 satisfy this threshold
when each systematic error occurs alone during observations.
But if all the systematic errors are present at the same time, on
average, we require roughly two times better systematic control
on each error parameter for a linear experiment. Nevertheless,
the bias in r for a circular experiment, being around 15%, is still
within the acceptable level. Although the tolerance level for r
is chosen to be αr = 0.1, our results can directly apply to any
other desired threshold level as long as the linear dependence of
systematic effects on error parameters is a good approximation
for sufficiently small error parameters.

6. DISCUSSIONS

In this work a complete pipeline of simulations is de-
veloped to diagnose the effects of systematic errors on the
CMB polarization power spectra obtained by an interferomet-
ric observation. A realistic, QUBIC-like interferometer design
with systematics that incorporate the effects of sky-rotation is
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Figure 5. The bin-averaged ratios of the simulated and analytical systematic errors. In each panel, the results from the simulations in both the linear and circular bases
for T T , EE, BB, T E are shown. The gray and black bars correspond to the maximum-likelihood and Gibbs-sampling methods in analysis of the simulated data,
respectively.

Figure 6. The simulated systematic-induced biases in the tensor-to-scalar ratio r (left) and αr (right) for the same systematic errors as in Figures 3 and 4. All the results
derived from the maximum-likelihood (gray) and Gibbs-sampling (black) analyses based on the simulations in both the linear and circular bases are shown.

simulated. The mock data sets are analyzed by both the ML
method and the method of GS. The results from both methods
are found to be consistent with each other, as well as with the
analytical estimations within a factor of six.

In order to assess the level at which systematic effects must
be controlled, a tolerance level of αr = 0.1 is chosen. This
ensures that the instrument is sensitive enough to detect the
B-signal at r = 0.01 level (O’Dea et al. 2007). We see that,

for a QUBIC-like experiment, the contamination of the tensor-
to-scalar ratio at r = 0.01 does not exceed the 10% tolerance
level in the multipole range 28 < � < 384 when the Gaussian-
distributed systematic errors are controlled with precisions of
|grms| = 0.1 for antenna gain, |εrms| = 5 × 10−4 for antenna
coupling, δrms ≈ 0.◦7 for pointing, ζrms ≈ 0.◦7 for beam shape,
and μrms = 5 × 10−4 for beam cross-polarization when each
error acts individually. However, in a realistic experiment all the
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systematic errors are simultaneously present, in which case the
tolerance parameter of r roughly reaches the 20% level for the
linear experiment and 15% for the circular experiment. Although
this suggests that better control of systematics would be needed
for a linear experiment, for a QUBIC-like experiment with
circular polarizers, bias in r induced by combined systematic
errors would still be on the acceptable level when the systematics
are controlled with the given precisions.

Apart from the systematics presented in the paper, we also
ran simulations to analyze the effects of uncertainties in the
positions of the antennas. In order to have an effect on the
order of αBB = 0.1, we found that the uncertainty in the position
of each antenna should be on the order of 50% of the length of
the uv plane. Since such an error is unrealistically large, we
conclude that the effect of antenna position errors on power
spectra is negligible in an interferometric observation.

We have shown that a QUBIC-like experiment has fairly
manageable systematics, which is essential for the detection of
primordial B-modes. Since our interferometer design has a large
number of redundant baselines (approximately 10 baselines per

visibility), as a further improvement, a self-calibration technique
can be employed to significantly reduce the level of instrumental
errors (Liu et al. 2010; Keating et al. 2012).
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APPENDIX

Following Bunn (2007), we obtain first order approximations for the ΔĈXY
rms given, for a single baseline, in Equation (15). For a

baseline lying on the x-axis, the matrices in Equation (15) are given as

NT T =
(

1 0 0
0 0 0
0 0 0

)
, NEE = [(c2)2 − (s2)2]−1

⎛⎝0 0 0
0 c2 0
0 0 −s2

⎞⎠ , NBB = [(c2)2 − (s2)2]−1

⎛⎝0 0 0
0 −s2 0
0 0 c2

⎞⎠

NT E = 1

2c

(
0 1 0
1 0 0
0 0 0

)
, NT B = 1

2c

(
0 0 1
0 0 0
1 0 0

)
, NEB = 1

2(c2 − s2)

(
0 0 0
0 0 1
0 1 0

)
.

The covariance matrix can be written in block-matrix form as Mw = (M0 M1
M†

1 M2

)
where

M0 =

⎛⎜⎝ CT T CT Ec CT Bc

CT Ec CEEc2 + CBBs2 CEB(c2 − s2)

CT Bc CEB(c2 − s2) CEEs2 + CBBc2

⎞⎟⎠ .

For a baseline lying in an arbitrary direction, these matrices must be transformed as M0 → R−1M0R and NXY → R−1NXY R, where
R is the rotation matrix given in Equation (14). The resulting expression will, then, be averaged over θ .

For instrumental errors δv = E · v, which gives M1 = M0 · E† and M2 = E · M0 · E†.

A.1. Gain Errors

g1 = 1

2

(
gi

1 + gi
2 + g

j∗
1 + g

j∗
2

)
, g2 = 1

2

(
gi

1 − gi
2 + g

j∗
1 − g

j∗
2

)

A.1.1. Linear Basis

γ1 = 1

2

(
g

Q
1 + gU

1

)
, γ2 = 1

2

(
g

Q
1 − gU

1

)
, γ3 = 1

2

(
g

Q
2 + gU

2

)
,

Egain
linear =

(
γ1 γ3 0
0 γ1 + γ2 0
0 0 γ1 − γ2

)
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ΔĈT T

rms

)2 = 8Re{γ1}2(CT T )2(
ΔĈT E

rms

)2 = (6Re{γ1}2 + (3/4)Re{γ2}2 − (1/4)Im{γ2}2)(CT E)2 + (2Re{γ1}2 + (1/4)|γ2|2)CT T CEE(
ΔĈEE

rms

)2 = (8Re{γ1}2 + 4Re{γ2}2)(CEE)2(
ΔĈBB

rms

)2 = s2|γ2|2(CEE)2(
ΔĈT B

rms

)2 = (1/4)(3Re{γ2}2 − Im{γ2}2)(CT E)2 + (1/4)(|γ2|2 + 8Re{γ1}2)CT T CEE(
ΔĈEB

rms

)2 = Re{γ2}2(CEE)2 + (|γ2|2 + 2Re{γ1}2)CEECBB

A.1.2. Circular Basis

Egain
circular =

(
g1 0 0
0 g1 ig2
0 −ig2 g1

)
(
ΔĈT T

rms

)2 = 8Re{g1}2(CT T )2(
ΔĈT E

rms

)2 = 6Re{g1}2(CT E)2 + 2Re{g1}2CT T CEE(
ΔĈEE

rms

)2 = 8Re{g1}2(CEE)2(
ΔĈBB

rms

)2 = 2|g2|2CEE(CBB + s2CEE)(
ΔĈT B

rms

)2 = ((3/2)Im{g2}2 − (1/2)Re{g2}2)(CT E)2 + (1/2)|g2|2CT T CEE(
ΔĈEB

rms

)2 = 2Im{g2}2(CEE)2

A.2. Coupling Errors

e1 = 1

2

(
ei

1 + ei
2 + e

j∗
1 + e

j∗
2

)
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2
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ei
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2 − e
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1 + e
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)

A.2.1. Linear Basis

ε1 = 1

2

(
e
Q
1 + eU

1

)
, ε2 = 1

2
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e
Q
1 − eU

1

)
, ε3 = 1

2

(
e
Q
2 + eU

2

)
, ε4 = 1

2

(
e
Q
2 − eU

2

)
,

Ecoupling
linear =

(
0 0 ε1

ε1 + ε2 0 −ε3 − ε4
ε1 − ε2 ε3 − ε4 0

)
(
ΔĈT T

rms

)2 = (3Re{ε1}2 − Im{ε1}2)(CT E)2 + |ε1|2CT T CEE(
ΔĈT E

rms

)2 = 2(Re{ε1}2 + Re{ε2}2)(CT T )2(
ΔĈEE

rms

)2 = 2(|ε1|2 + |ε2|2)CT T CEE(
ΔĈBB

rms

)2 = 2(|ε1|2 + |ε2|2)CT T CBB + 2s2(|ε1|2 + |ε2|2)CT T CEE(
ΔĈT B

rms

)2 = 2(Re{ε1}2 + Re{ε2}2)(CT T )2(
ΔĈEB

rms

)2 = (1/2)(|ε1|2 + |ε2|2)CT T CEE + (1/2)(3Re{ε1}2 + 3Re{ε2}2 − Im{ε1}2 − Im{ε2}2)(CT E)2

A.2.2. Circular Basis

Ecoupling
circular =

(
0 e1 ie2
e1 0 0
ie2 0 0

)
(
ΔĈT T

rms

)2 = (3Re{e1}2 − Im{e1}2 + 2Im{e2}2)(CT E)2 + (|e1|2 + |e2|2)CT T CEE(
ΔĈT E

rms

)2 = (Re{e1}2 + Im{e2}2)((CT T )2 + (CT E)2 + CT T CEE)(
ΔĈEE

rms

)2 = (3Re{e1}2 − Im{e1}2 + 2Im{e2}2)(CT E)2 + (|e1|2 + |e2|2)CT T CEE(
ΔĈBB

rms

)2 = (|e1|2 + |e2|2)CT T (CBB + s2CEE)(
ΔĈT B

rms

)2 = (Re{e1}2 + Im{e2}2)(CT T )2(
ΔĈEB

rms

)2 = (1/4)(|e1|2 + |e2|2)CT T CEE + (1/4)(3Re{e1}2 + 3Im{e2}2 − Im{e1}2 − Re{e2}2)(CT E)2

11
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A.3. Pointing Errors

Defining δr̂k as the deviation of the kth antenna’s pointing center, we can write, to the first order,

Aj (r̂)Ak(r̂) = exp[−(r̂ − σδ)2/2σ 2],

where δ = (δr̂j + δr̂k)/2σ.

δVZ = −iσ

∫
d2kZ̃(k)

[
Ã2

0(k − 2πu)
]∗

[(k − 2πu) · δZ]

〈VXδV ∗
Y 〉 = 0 and 〈δVXδV ∗

Y 〉 = (1/2)(δX · δY )〈VXV ∗
Y 〉.

A.3.1. Linear Basis

δ1 = 1

2
(δQ + δU ), δ2 = 1

2
(δQ − δU )

(
ΔĈT T

rms

)2 = |δ1|2(CT T )2(
ΔĈT E

rms

)2 = (1/2)|δ1|2(CT E)2 + (1/8)(4|δ1|2 + |δ2|2)CT T CEE(
ΔĈEE

rms

)2 = (|δ1|2 + (1/2)|δ2|2)(CEE)2(
ΔĈBB

rms

)2 = |δ1|2CBB(CBB + 2s2CEE) + (1/2)|δ2|2CEE(CBB + s2CEE)(
ΔĈT B

rms

)2 = (1/2)|δ1|2CT T (CBB + s2CEE) + (1/8)|δ2|2CT T CEE(
ΔĈEB

rms

)2 = (1/2)|δ1|2CEE(CBB + s2CEE) + (1/8)|δ2|2(CEE)2

A.3.2. Circular Basis

δ2 = 0

A.4. Shape Errors

The product of two elliptic Gaussian beams can be written as a single elliptic Gaussian:

Aj (r̂)Ak(r̂) = exp

[
− (x cos β + y sin β)2

2(σ + σx)2
− (y cos β − x sin β)2

2(σ + σy)2

]
,

where β is the angle between the major axis of the resulting ellipse and the x-axis.

δVZ = − 1

σ 2

∫
d2kZ̃(k)

[(
Ã2

0ΔZ

)
(k − 2πu)

]∗

where ΔZ(x, y) = x2(ζZ
x cos2 β + ζZ

y sin2 β) + y2(ζZ
y cos2 β + ζZ

x sin2 β) + xy(ζZ
x − ζZ

y ) sin 2β, and ζZ
x,y = σZ

x,y/σ.
The only non-vanishing integrals in the covariance matrix are:∫

|Ã2|2 = πσ 2,

∫
Ã2(x̃2A2)∗ =

∫
Ã2(ỹ2A2)∗ = 1

2
πσ 4,

∫
|x̃2A2|2 =

∫
|ỹ2A2|2 = 3

4
πσ 6,

∫
(x̃2A2)(ỹ2A2)∗ =

∫
|x̃yA2|2 = 1

4
πσ 6.

ζ Z
1 = 1

2

(
ζZ
x + ζZ

y

)
, ζ Z

2 = 1

2

(
ζZ
x − ζZ

y

); ζi+ = 1

2

(
ζ

Q
i + ζU

i

)
, ζi− = 1

2

(
ζ

Q
i − ζU

i

)
Averaging over β we get 〈VXδV ∗

Y 〉 = −ζ Y
1 〈VXV ∗

Y 〉 and 〈δVXδV ∗
Y 〉 = (2ζX

1 ζ Y
1 + ζX

2 ζ Y
2 )〈VXV ∗

Y 〉.

12
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A.4.1. Linear Basis(
ΔĈT T

rms

)2 = (
10ζ 2

1+ + 2ζ 2
2+

)
(CT T )2(

ΔĈT E
rms

)2 = (
7ζ 2

1+ + (3/4)ζ 2
1− + ζ 2

2+

)
(CT E)2 +

(
3ζ 2

1+ + (1/2)ζ 2
1− + ζ 2

2+ + (1/4)ζ 2
2−

)
CT T CEE(

ΔĈEE
rms

)2 = (
10ζ 2

1+ + 5ζ 2
1− + 2ζ 2

2+ + ζ 2
2−

)
(CEE)2(

ΔĈBB
rms

)2 = (
2ζ 2

1− + ζ 2
2−

)
s2(CEE)2 +

(
12ζ 2

1+ + 12ζ 2
1− + 4ζ 2

2+ + ζ 2
2−

)
s2CEECBB +

(
10ζ 2

1+ + 5ζ 2
1− + 2ζ 2

2+ + ζ 2
2−

)
(CBB)2(

ΔĈT B
rms

)2 = (3/4)ζ 2
1−(CT E)2 + (1/4)

(
2ζ 2

1− + ζ 2
2−

)
CT T CEE +

(
3ζ 2

1+ + (1/2)ζ 2
1− + ζ 2

2+ + (1/4)ζ 2
2−

)
s2CT T CEE(

ΔĈEB
rms

)2 = (
(5/4)ζ 2

1− + (1/4)ζ 2
2− + s2

(
3ζ 2

1+ + ζ 2
2+

))
(CEE)2

A.4.2. Circular Basis

ζi− = 0

A.5. Cross-polarization

The only non-vanishing integrals in the covariance matrix are:∫
|Ã2|2 = πσ 2,

∫
| ˜A2ρ2 cos 2φ|2 =

∫
| ˜A2ρ2 sin 2φ|2 = πσ 6.

A.5.1. Linear Basis

μ1 = 1

2
(μQ + μU ), μ2 = 1

2
(μQ − μU )

δI = μ1
ρ2

σ 2
(Q cos 2φ + U sin 2φ), δQ = (μ1 + μ2)

ρ2

σ 2
I cos 2φ, δU = (μ1 − μ2)

ρ2

σ 2
I sin 2φ

(
ΔĈT T

rms

)2 = 2μ2
1C

T T CEE(
ΔĈT E

rms

)2 = (1/2)
(
μ2

1 + μ2
2

)
(CT T )2(

ΔĈEE
rms

)2 = 2
(
μ2

1 + μ2
2

)
CT T CEE(

ΔĈBB
rms

)2 = 2
(
μ2

1 + μ2
2

)
CT T (CBB + s2CEE)(

ΔĈT B
rms

)2 = (1/2)
(
μ2

1 + μ2
2

)
(CT T )2(

ΔĈEB
rms

)2 = (1/2)
(
μ2

1 + μ2
2

)
CT T CEE

A.5.2. Circular Basis

μ+ = 1

2
(μi + μj ), μ− = 1

2
(μi − μj )

δI = μ+
ρ2

σ 2
Q sin 2φ, δQ = μ+

ρ2

σ 2
I sin 2φ + iμ−

ρ2

σ 2
U cos 2φ, δU = −iμ−

ρ2

σ 2
Q cos 2φ

(
ΔĈT T

rms

)2 = μ2
+C

T T CEE(
ΔĈT E

rms

)2 = (1/4)μ2
+(CT T )2(

ΔĈEE
rms

)2 = (μ2
+C

T T − 2μ2
−CEE)CEE(

ΔĈBB
rms

)2 = (μ2
+C

T T − 2μ2
−CEE)(CBB + s2CEE)(

ΔĈT B
rms

)2 = (1/4)(μ2
+C

T T − 2μ2
−CEE)CT T(

ΔĈEB
rms

)2 = (1/4)(μ2
+C

T T − 2μ2
−CEE)CEE
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