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a  b  s  t  r  a  c  t

Compact,  mixed-use,  and  pedestrian-oriented  urban  developments  may  offer  numerous  environmental
and  health  benefits,  yet  they  may  also  facilitate  pedestrian  exposure  to air pollution  within  the near-
roadway  environment.  This  research  examines  ambient  concentrations  of fine particulate  matter  (PM2.5)
across  six  sites  situated  within  central  Omaha,  Nebraska,  a mid-sized  metropolitan  area  located  in  the
Midwest  US.  The  sites  ranged  from  a low-density,  strip-mall  development  to  moderate-density  enter-
tainment,  commercial,  and  retail  districts  with  varying  degrees  of horizontal  and  vertical  mixed-use.
Tracing  approximately  two  kilometer  routes  along  the  sidewalk,  factors  affecting  average  and  peak  PM2.5

concentrations  at each  site  were  identified  using  a mobile  data  cart  capable  of  simultaneously  recording
video  and  sampling  PM2.5. In  general,  sidewalk  PM2.5 concentrations,  averaged  for each  outing,  were  sim-
ilar  to  “background”  values  obtained  at  a nearby  fixed  monitoring  station  (FMS).  The  results  of a linear
regression  analysis  suggest  that  56% of the  variability  in  sidewalk  PM2.5 were  attributable  to  background
concentrations.  Short-duration  peak  concentrations  of  up to 360  �g  m−3 were  associated  primarily  with
vehicle  tailpipe  emissions  and  tobacco  smoke.  At  four of  the  six study  sites,  pedestrian  volume  was
higher  on  days  and  times  when  PM2.5 concentrations  were  comparatively  low.  Implications  for  policy
and  planning  are  discussed.

©  2014  The  Author.  Published  by  Elsevier  Ltd.  This  is an  open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Renewed interest in ‘traditional’ urban land use patterns and
designs, such as moderate density mixed-use development, multi-
modal transit networks, and pedestrian friendly streetscapes
with wide sidewalks and short, well-connected city blocks, has
coincided with an expanding body of literature suggesting that
pedestrian-oriented designs may  offer numerous benefits, includ-
ing the positive health outcomes associated with walking and
cycling to work and other daily destinations (Frank, Engelke, &
Schmid, 2003; Heath et al., 2006; Sallis et al., 2009). Compact,
mixed-use, pedestrian-oriented developments, however, also have
the potential to increase exposure to outdoor air pollution by
focusing pedestrian activity within transport microenvironments
that may  trap and concentrate automotive emissions (de Nazelle,
Rodriguez, & Crawford-Brown, 2009; Marshall, Brauer, & Frank,
2009). As de Nazelle et al. (2009, p. 406) observed, “air pollution
exposure is not only a matter of the concentration field, but also
where and how individuals may  inhale the pollutant.” There is

∗ Tel.: +1 402 554 2674.
E-mail address: bbereitschaft@unomaha.edu

thus a need to understand not only how different urban environ-
ments affect ambient air pollution, but also how human activity
and travel patterns interact with the physical elements of the urban
environment to shape pedestrian exposure (Boarnet et al., 2011).

Over the past decade, a substantial and growing body of research
has investigated the factors affecting pedestrian exposure to air
pollution within urban transport microenvironments. Airborne
pollutants studied have generally included those emitted or resus-
pended by motor vehicles, including particulate matter (PM), black
carbon (BC), carbon dioxide (CO), and nitrogen oxides (NOX). The
spatial scope of these examinations has primarily been limited
to single urban districts or transportation routes (e.g., Apte et al.,
2011; Greaves, Issarayangyun, & Liu, 2008; Kaur, Nieuwenhuijsen,
& Colvile, 2005; Kaur et al., 2006; McNabola, Broderick, & Gill, 2008).
Recently, however, researchers have begun to investigate near-
roadway air pollution across multiple locations to assess the effect
of site-specific characteristics such as building height, building
set-backs, roadway configuration, and sidewalk design. Buonanno,
Fuoco and Stabile (2011), for example, compared particulate matter
concentrations among four street corridors in Cassino, Italy. Particle
concentrations varied significantly between sites, owing primar-
ily to the interaction of street geometry and wind direction. While
buildings across the four sites were of similar height (∼3–5 stories),

http://dx.doi.org/10.1016/j.scs.2014.12.001
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the street corridors varied in width and traffic density. The authors
concluded that wider streets (and street canyons) that are oriented
in the direction of the prevailing wind will likely exhibit lower par-
ticulate counts owing to enhanced dispersion. Furthermore, a clear
distance decay effect was detected, with particulate concentrations
significantly higher curbside than along the building faç ade.

Using multiple linear regression, Boarnet et al. (2011) assessed
the relationships between the concentration of fine particulate
matter (PM2.5) along sidewalks and attributes of the built envi-
ronment including traffic flow, proximity to a major intersection,
number of roadway lanes, and degree of street canyon (a combi-
nation of building height and continuity) among five sites in the
Greater Los Angeles area. The five sites ranged from a low density
(∼1–2 stories), primarily residential, neighborhood in Anaheim, to
high-density (>20 stories) downtown Los Angeles. Though often
statistically significant, the number of roadway lanes and degree of
street canyon each only accounted for less than 1% of the variation
in PM2.5 concentrations. Proximity to a major intersection was not
significant, while results of traffic flow were mixed with number of
cars positively associated with, and number of heavy duty trucks
negatively associated with, PM2.5 concentrations. Day of the week
and time day alone accounted for 55% of the variation. The authors
conclude that future work in this area “should account for human
activity and travel patterns since the amount of time spent and
the level or physical activity in transportation microenvironments
could substantially alter personal exposure.”

The aim of the present study is to contribute to the on-going
effort to understand the relationships between the built envi-
ronment, site-specific activity patterns, and pedestrian exposure
to air pollution by (1) identifying specific contributors to aver-
age and short-duration peak PM2.5 concentrations in mixed-use
urban environments with varying typologies and design elements
using a concomitant mobile air quality-video sampling system,
and (2) determining the degree to which pedestrian activity along
sidewalks within these environments align with PM2.5 concentra-
tions at four separate times of day (morning, noon, afternoon, and
evening), and on weekdays versus Saturdays. The goal is to charac-
terize differences in the relative potential for personal exposure
across multiple sites and built typologies, and to evaluate how
different design elements and human activity come together in
mixed-use urban environments to affect pedestrian exposure to
fine particulates known to contribute to a range of respiratory and
cardiovascular impairments (Neuberger et al., 2004; Pope et al.,
2006). Given that pedestrian-oriented, mixed-use developments
constitute an increasingly popular component of urban redevelop-
ment strategies in the United States, even minor adjustments in the
design and use of these environments may  have substantial impacts
on personal exposure to near-roadway ambient air pollution.

2. Methods

2.1. Study area and sites

Pedestrian exposure to PM2.5 was evaluated for six sites within
Omaha, Nebraska (Fig. 1). With an estimated population of 895,151
in 2013 (U.S. Census Bureau, 2013), the Omaha-Council Bluffs
metropolitan area (i.e., ‘Greater Omaha’) is the most populous
urban area in Nebraska and the 60th most populous metropoli-
tan area in the United States. Five of the six sites were chosen to
represent a spectrum of development patterns ranging from low-
density, horizontal mixed-use to moderate density, vertical mixed
use. Exhibiting low-density segregated land use typical of many
suburban areas in the United States, the Dodge/72nd Street site
was included in the analysis primarily as a control against which
the five mixed-use sites could be compared. Based on proximity

to common daily destinations such as schools, restaurants, grocery
stores, and parks, each of the five mixed-use sites exhibited a ‘very
walkable’ environment (Walk Score, 2014).

The six study sites included:

Dodge/72nd Street: High-volume six-lane suburban arterial street
corridor flanked by low-density commercial development with
ample setbacks and off-street parking only. Sidewalks approx-
imately a meter wide on either side of the street are situated
between .5 and 2 m from the roadway.
Benson: Popular entertainment district with a traditional ‘main
street’ morphology. Sidewalks approximately 2 m wide abut a mix
of one- and two-story commercial/retail buildings. The two-way
street includes a center turning lane and space on either side for
parallel parking. The parallel parking spaces separate narrow side-
walks from the roadway.
Old Market: Located less than a kilometer southeast of the city’s
central business district (CBD), the site consists of two- to six-story
repurposed 19th century warehouses that today house retail and
entertainment on the ground floor with offices and housing above.
Sidewalks are 4–5 m wide, on average, among much of the route.
The two-lane roadway is surfaced with cobblestones that act to
reduce traffic speed. Head-in parking is available on either side
the roadway.
Midtown Crossing: New and extensive (approximately 9.3 ha of
floor space) mixed-use development with retail on the first floor,
and up-scale apartments and condos extending up four to six
additional stories. The roadway, comprised of three lanes (two
lanes uphill and west-bound, one lane downhill and east-bound),
is joined with head-in angled parking and sidewalks an average
of 2.5–3.5 m wide on either side. A separated, two-tier sidewalk
system is present along part of the walking route.
Downtown A: Along with Downtown B, located in the heart of
downtown Omaha’s CBD. A four lane one-way street serves as a
primary in-bound corridor for commuter traffic. Parallel parking
is found along either side of the roadway for much of the walk-
ing route. Office buildings and high-rise condominiums provide a
mid-to-high street canyon averaging 10 stories. Sidewalks are 5 m
wide on average.
Downtown B: Situated one block south of Downtown A, the street
handles out-bound traffic, transitioning from two  lanes with head-
in parking to three lanes with parallel parking. The ground-floor
retail options are more varied with a number of retail shops and
street cafés. Average street canyon height is 7 stories, while the
width of the sidewalks is comparable to Downtown A.

2.2. Data collection

At each of the six sites, PM2.5 and video data were collected
simultaneously by pushing a custom-built data cart along the cen-
ter of the sidewalk a distance of approximately 2 km four times each
day (morning between 8:00 and 9:00, noon between 12:00 and
13:00, afternoon between 16:30 and 17:30, and evening between
19:30 and 20:30), once on a weekday (Monday through Thursday)
and once on Saturday between June and August 2013. Each outing
involved pushing the data cart at regular walking speed (∼5 km/h)
back-and-forth 500 m along the north sidewalk (1 km total), cross-
ing the street near the beginning of the route, then again walking
back-and-forth (1 km total) along the south sidewalk, for a total
of 2 km.  Total time to complete each route varied from approx-
imately 20–30 min. In all, 48 outings (6 sites × 4 times a day × 2
days) involved walking 96 km,  and yielded about 20 h of video and
air quality data.

The data collection cart featured a 0.25 m2 steel metal base,
a vertical aluminum pole with handle approximately 1.8 m high,
and an additional metal platform suspended at 1.5 m.  The optical
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Fig. 1. Location of the six study sites and fixed monitoring station (FMS) in Omaha, NE.

particle sizer (detailed below) used to measure PM2.5 was mounted
on this second platform to approximate the height at which the
average pedestrian inhales airborne pollutants. A GoPro® HD Hero3
action camera with an ultra-wide angle (170◦) lens and waterproof
housing was used to record HD video at 30 frames per second. The
camera was attached to a monopod and secured to the left side of
the data cart at a height of 2 m.  Facing forward, the camera recorded
video in the direction of the data cart’s motion.

Fine particulate concentrations were measured at 1-s intervals
using the optical particle sizer (OPS) 3330 manufactured by TSI®.
The device is capable of detecting fine particulates between 0.3 and
10 �m in diameter, and sorting them in up to 16 size channels. The
OPS 3330 was chosen for use in this study on the basis of its portabil-
ity (2.1 kg with battery), user-friendly interface and quick response
time, ability to detect a wide range of fine particle concentrations
(0–3000 particles cm−3) at a 1-s resolution, up to 20 h of battery
life, and a combination of precision, durability, and affordability
that compares well with other portable instruments commonly
used in outdoor environmental monitoring (e.g., TSI P-TrakTM and
DustTrakTM) (Binnig, Meyer, & Kaspter, 2007; TSI®, 2012).

PM2.5 was estimated by summing the concentration of parti-
cles sorted into the OPS’ ten smallest size channels, which were
custom programmed to range from 0.3 to 2.5 �m.  Because the OPS
3330 is limited in its ability to detect the finest of particles within
the PM2.5 range, the device may  underestimate total PM2.5. How-
ever, the DustTrakTM Model 8520, a similar continuous-sampling
optical particle counter capable of detecting particles with an aero-
dynamic diameter ≥0.1 �m and utilized by Boarnet et al. (2011),
was found to overestimate particulate concentrations by as much
as three times (Chung et al., 2001). Though each device has its
strengths and limitations, mobile continuous-sampling devices in

general may be best suited to comparing particulate concentrations
across sites in relative rather than absolute terms.

The initial mass calibration of the OPS was  carried out by the
manufacturer (TSI) using traceable uniform Polystyrene Latex (PSL)
spheres. Two on-site tests (one at Dodge/72nd, one at Downtown B)
of particle density indicated good agreement (±10%) between the
OPS optical measurements and its 37 mm internal filter within the
0.3–2.5 �m range. Rubber tubes 0.3 m long were attached to both
the inlet and exhaust ports of the OPS and secured to opposite sides
of the data collection cart to assure proper ventilation (the inlet
tube faced the roadway). Video and PM2.5 data were synchronized
by carefully initiating both instruments simultaneously, with a ±2
second margin of error (sufficiently accurate to identify sources of
peak concentrations).

Because meteorology can significantly influence fine partic-
ulate concentrations in urban microenvironments, temperature
and humidity were continuously measured alongside particu-
late counts by the OPS instrument. Wind speed and direction
were assessed in an open area outside, but in close proximity to,
the street corridor (e.g., a nearby park, large parking lot, public
plaza) using a Kestrel 4500 Pocket Weather Tracker. Taken both
before and after the completion of a single walking route, the
two wind speed/direction readings were then averaged for each
outing. Across all six sites and 48 outings, average wind speed
ranged from 0.36 to 6.11 m s−1 (x̄ = 2 m s−1), average tempera-
ture from 18 ◦C to 33 ◦C (x̄ = 26 ◦C), and relative humidity from
43% to 95% (x̄ = 62%).  Average meteorological conditions observed
during sampling were well within the normal range for Omaha.
To control for background concentrations, PM2.5 data (1 h resolu-
tion) collected by a fixed monitoring station (FMS) located within
6 km of all six data collection sites (Fig. 1) were obtained through
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the U.S. Environmental Protection Agency’s (EPA) AirData database
(http://www.epa.gov/airdata/).

2.3. Data processing and modeling

Particulate data were downloaded from the OPS and imported
into a spreadsheet for analysis. An analysis of variance (ANOVA) was
used to determine whether average PM2.5 concentrations varied by
time of day and day of the week at each of the six study sites. Week-
day and weekend concentrations were compared after accounting
for average daily background concentrations. Video was exam-
ined to identify sources of peak exposures and to count vehicles,
pedestrians, and classify pedestrian activity (i.e., walking, biking,
jogging, stationary) and vehicle type (i.e., car, bus, truck). Pedes-
trian and vehicles were counted only if having crossed from one
side of the camera’s field of view to the other. This occurred both
due to the motion of the pedestrians/vehicles and the motion of the
mobile data cart. To ensure counting accuracy, all video was  scored
by at least two individuals then averaged.

A correlation and linear regression analysis were performed to
explore the potential effects of the built environment, meteorology,
and human activity on pedestrian exposure to fine particulates in
different mixed-use urban environments. Prior to modeling, four
potential independent variables including pedestrians min−1, pas-
senger vehicles min−1, buses and trucks min−1, and wind speed
were log-transformed to improve the normality of the datasets (i.e.,
all four variables exhibited significant positive skewness prior to
transformation). It was also necessary to first create dummy  vari-
ables for each of five categorical variables: time of day (morning,
noon, afternoon, evening), day of the week (weekday, Saturday),
wind direction (wind vector at an angle of 45◦ or less relative to the
street corridor), average height of the street canyon (<5 stories or
≥5 stories; similar to Boarnet et al. (2011)), and average distance
from the mid-point of the sidewalk to the roadway (<5 m or ≥5 m).

3. Results and discussion

3.1. Sidewalk PM2.5: average concentrations

Across the six study sites, average ambient PM2.5 concentra-
tions ranged from 0.9 �g m−3 on Saturday at noon and afternoon
in Midtown to 16.6 �g m−3 on a weekday morning in Midtown and
a Saturday evening in Benson (Appendix A). There were, however,
brief peak concentrations (averaged over one second) as high as
360 �g m−3. For comparison, the EPA requires that average ambi-
ent PM2.5 concentrations be no higher than 35 �g m−3 over 24-h
and no more than 12 �g m−3 over one year to ensure public health
and welfare (U.S. EPA, 2012). Fig. 2 displays PM2.5 concentrations for
four of the six study sites during select outings to highlight com-
mon  patterns and exceptions. A ten-second moving average was
used to improve readability (samples were taken every one sec-
ond). The color-coded horizontal lines and the numbers to the right
of each graph in Fig. 2 indicate the average concentration for that
outing; the capital letters beside them indicate whether the aver-
ages are significantly different (different letters indicate significant
difference at p < 0.05). At the Dodge/72nd site, for example, aver-
age PM2.5 concentrations differed significantly across all four times
of day, with the highest average concentration observed in the
morning (11.8 �g m−3), followed by afternoon (9.6 �g m−3), noon
(7.6 �g m−3), and evening (6.8 �g m−3) (Fig. 2A). The black lines
indicate the daily average “background” concentration observed
at the nearest FMS. Overall, daily average sidewalk concentrations
were similar to background levels, with ambient concentrations
averaged for each outing highly correlated (r2 = 0.748, p < 0.05;
Table 1) with hourly measurements taken at the FMS.

Concentrations of particulate matter often peak in the morn-
ings and on weekdays due to enhanced traffic flow and conducive
atmospheric conditions such as lower humidity and restricted mix-
ing depths during the morning hours (Hueglin et al., 2005; Wang &
Christopher, 2003). Though PM2.5 concentrations observed at most
sites and days conformed to these expectations (e.g., Dodge/72nd
on a weekday; Fig. 2A) there were two notable exceptions: Benson
on a Saturday (Fig. 2B), and Downtown B on a weekday (Fig. 2C). As
a popular entertainment destination with an eclectic mix  of bars,
restaurants, music venues, and coffee shops, pedestrian traffic in
Benson peaked later in the day and on Saturday (Appendix A). On
Saturday in Benson, sidewalk PM2.5 was  also significantly higher
in the evening than at other times of day; however, the average
evening concentration was  only 0.6 �g m−3 higher than at the FMS
5 km away (Appendix A). At site Downtown B, by contrast, PM2.5
recorded during the noon outing on a weekday was not only sig-
nificantly higher than at other times of day, it was also 7.3 �g m−3

(68%) higher than at the FMS  (Fig. 2C; Appendix A). Downtown B’s
2–3 lane one-way street serves as one of downtown Omaha’s pri-
mary out-bound corridors, particularly during weekdays. Similarly,
Downtown A serves as an in-bound corridor and, as anticipated,
exhibited the highest concentrations in the morning and at noon on
weekdays when commuters are entering downtown (Fig. 2D). Thus,
although conditions are typically conducive to the enhancement
of airborne PM2.5 within the near-roadway environment during
the morning hours, there exists some variability by location that
depends on site-specific hourly and daily activity patterns.

3.2. Identifying factors associated with sidewalk PM2.5 averages

The example presented above of Benson on Saturday evening is
indicative of the strong association between PM2.5 at the six study
sites and at the FMS. Although Boarnet et al. (2011) found that the
majority (55%) of the variability in sidewalk PM2.5 concentrations
at five locations in Los Angeles were attributable to day and time
of day, background FMS  values also accounted for 6%, while built
environment variables together accounted for one percent of the
variability. To assess the potential role of these factors in influ-
encing ambient sidewalk concentrations in the present study, a
regression analysis was performed in which each of the 48 outings
represent an individual data point, with all variables aggregated
at this level. A preliminary correlation analysis revealed that two
potential independent variables, background PM2.5 measured at a
nearby FMS  and relative humidity, were significantly (p < 0.05) cor-
related with ambient sidewalk PM2.5 (Table 1). The two variables
were therefore selected for inclusion in the regression analysis (dis-
cussed below) along with the categorical variables time of day, day
of the week, wind direction, average height of the street canyon,
and average distance from the mid-point of the sidewalk to the
roadway.

Table 2 presents the results of the modeling procedure. Three
alternative regression models were produced using combinations
of three significant independent variables: hourly PM2.5 averages
at the FMS, relative humidity, and Saturday (the day of the week
dummy  variable). As indicated by the model’s r2, background PM2.5
concentration recorded at the FMS  accounted for 56% of the varia-
tion in ambient sidewalk PM2.5. Contributing to modest increases in
r2, relative humidity accounted for an additional 8% of the variabil-
ity, and Saturday (vs. weekday) 4%. While the time of day dummy
variable did not prove significant in the regressions, it is important
to consider that atmospheric conditions such as relative humid-
ity and temperature often vary significantly by time of day. In fact,
over the course of the 48 outings, relative humidity was signifi-
cantly higher, and temperature significantly lower, in the morning
relative to noon, afternoon, and evening.

http://www.epa.gov/airdata/
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Fig. 2. Sidewalk PM2.5 concentrations (10-s averages) for select study sites and outings. The vertical axes are constrained to 30 �g m−3 to allow visualization and comparison
of  non-peak concentrations. Colored horizontal bars indicate average sidewalk PM2.5 concentrations at each of four times of day (morning, noon, afternoon, evening). Different
letters  (A–D) to the right indicate significantly different average sidewalk PM2.5 concentrations. Black horizontal lines indicate daily PM2.5 averages recorded at the FMS.

Table 1
Correlations between PM2.5 along the sidewalk, PM2.5 at the FMS, and site characteristics.

Sidewalk
PM2.5

FMS
PM2.5

Log(Pedestrians,
min−1)

Log(Passenger
vehicles, min−1)

Log(Buses &
Trucks, min−1)

Temperature
(◦C)

Log(Wind speed
(m s−1))

FMS
PM2.5

0.748** 1

Log(Pedestrians,
min−1)

−0.029 0.076 1

Log(Passenger vehicles,
min−1)

−0.108 −0.041 −0.425** 1

Log(Buses & Trucks,
min−1)

0.086 −0.164 −0.295* 0.470** 1

Temperature (◦C) 0.238 0.440** 0.003 0.287* −0.098 1
Log(Wind speed

(m s−1))
−0.174 0.027 −0.004 −0.271 −0.375** 0.063 1

Relative humidity 0.375** 0.130 −0.292* −0.056 0.371** −0.506** −0.326*

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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Table  2
Results of the linear regression analysis.

Model Variable Model r2 b SE b  ̌ p-value

1 Constant 0.559 2.172 1.020 0.039
FMS  PM2.5 0.689 0.090 0.748 0.000

2 Constant 0.637 −3.359 2.005 0.101
FMS  PM2.5 0.655 0.083 0.711 0.000
Relative humidity 0.095 0.030 0.282 0.003

3 Constant 0.669 −1.900 2.06 0.361
FMS  PM2.5 0.650 0.081 0.705 0.000
Relative humidity 0.085 0.030 0.252 0.007
Saturday −1.532 0.740 −0.182 0.044

The results of the regression analysis highlight the need to
control for regional background concentrations when comparing
ambient PM2.5 between sites. The higher predictive power of back-
ground concentrations observed in this study relative to Boarnet
et al. (2011) may  be due in part to aggregating variables at the time
scale of individual outings rather than every 1 min. However, both
the study area and the encompassing urban area in Omaha is appre-
ciably smaller in areal extent than those examined by Boarnet et al.
(2011) in Los Angeles, potentially resulting in more uniform values
across study sites, and between study sites and the FMS.

Although the results of the correlation and regression analy-
ses confirm the importance of time- and day-specific atmospheric
conditions, and the strong association between PM2.5 concentra-
tions observed along the sidewalk and at a FMS, the impact of
site-specific conditions on personal exposure should not be dis-
counted. Site-specific activity patterns that vary between weekdays
and weekends, and by time of day, not only have the potential to
impact variations in average PM2.5 concentrations; they may  also
affect the nature and magnitude of short-duration peak concentra-
tions, as well as the overall exposure risk to pedestrians.

3.3. Sidewalk PM2.5: peak concentrations

Fig. 3 displays the complete range of sidewalk PM2.5 concen-
trations for select study sites. Peak concentrations of PM2.5 briefly
exceeded 50 �g m−3 (using 1-s averages) over thirty separate times
during the course of the study. The highest single peaks in concen-
tration were recorded around noon on a weekday at Dodge/72nd
(Fig. 3A), where two busy six-lane suburban arterials intersect.
Here, peak concentrations exceeded 300 �g m−3 twice: once when
passing a pickup truck parked less than 2 m from the sidewalk, and
again when a motorcycle passed traveling uphill in the lane near-
est the sidewalk. In general, brief spikes in ambient PM2.5 were due
mainly to either vehicle tailpipe emissions or tobacco smoke.

Individual study sites experienced unique patterns of peak con-
centrations that varied by time of day and between weekdays and
Saturdays. For example, the popular entertainment districts Benson
and the Old Market stand out as the only two sites where spikes in
PM2.5 were recorded on Saturdays as well as weekdays. At both
locations, and for each of the four times of day, more pedestri-
ans were observed on Saturday than on a weekday (Appendix A).
The effect of this additional pedestrian volume was noticeable in
the Old Market on Saturday when the mobile data cart came in
close proximity to a number of pedestrians using tobacco products
(Fig. 3B). These interactions occurred primarily during the morning
and evening outings. Pedestrian volume in the Old Market on Sat-
urday morning was higher than may  be expected due to a nearby
Farmer’s Market. Differences in peak concentrations by time of
day were particularly striking between weekday and Saturday in
Benson (Fig. 3C and D). On a weekday, peak concentrations were
observed at all times of day except evening. On Saturday, however,
spikes in PM2.5 occurred most frequently in the evening. Notably,
the source of at least three peak concentration events in Benson

were due to idling passenger vehicles parallel parked immediately
adjacent to the sidewalk. Further examination of the video recor-
dings revealed that in each case the vehicle’s tailpipe was directed
toward the sidewalk. Given the wider and more sheltered side-
walks of the Old Market, it is perhaps not unexpected that most
peak concentrations identified there were associated with tobacco
smoke rather than vehicle tailpipe emissions.

Peak concentrations above 50 �g m−3 were noticeably absent
at Dodge/72nd, Downtown A, and Downtown B on Saturday, and
at Midtown on both Saturday and a weekday. Part of this varia-
tion was due to random chance; however, the data suggest that the
probability of encountering peak concentrations of 50 �g m−3 or
higher along the sidewalk on a Saturday versus a weekday varies
by location. In contrast with Benson and the Old  Market, the land
use at Downtown A and B consists primarily of high-rise office space
and condominiums, with retail on the ground floor catering mainly
to office workers during the business day (∼700–1800 M–F). Total
pedestrian volume and vehicular traffic were therefore markedly
reduced on Saturdays when the majority of office workers and cus-
tomers were absent. Among the highest density of bus/truck traffic
were also observed at the two  Downtown sites, which, when com-
bined with the highest street canyons in the study, likely increased
the probability of pedestrian exposure to elevated peak concentra-
tions of PM2.5 during the work week (Charron & Harrison, 2005;
Kinney et al., 2000). Buses constituted the majority of the large
vehicular traffic, with 14 recorded during a single outing at Down-
town B on a weekday afternoon. Note that all identified peak
concentrations above 50 �g m−3 at Downtown B, where vehicles
were traveling uphill, were attributable to city buses (Fig. 3E), while
at Downtown A, where vehicles were traveling downhill and thus
expending less fuel, were attributable only to smoking receptacles
(Fig. 3F). Both Downtown A and B serve as major transportation cor-
ridors for the Omaha city bus system, with some 350 buses passing
through Downtown B daily. The street corridor, however, is under-
going an overhaul that will reroute several bus lines through a new
transit center currently in the planning phase (Golden, 2013).

Midtown was  the only site in which substantially higher than
average peak concentrations were not observed (Fig. 4G and H).
Much of the Midtown site is comprised of a single planned unit
development completed in 2010. Along much of the walking route,
head-in parking and sidewalks 3–5 m wide help separate pede-
strians and tailpipe emissions. Another potentially relevant design
feature unique to this location is the presence, along certain sec-
tions of the route, of two  parallel sidewalks; one elevated and
proximate to the building, the other at street level and adjacent
to the on-street parking. This configuration not only reroutes some
pedestrian traffic further from the roadway, it also dissipates pedes-
trian density. As in the Old Market, the head-in parking found along
much of the Midtown route may  have also reduced peak sidewalk
concentrations.

Dodge/72nd exhibited the most dramatic change in peak con-
centrations between weekday and Saturday. The location had
the heaviest vehicular traffic volume, with up to 59 passenger
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Fig. 3. The full range of sidewalk PM2.5 concentrations (1-s averages) for select study sites and outings show significant short-duration peaks with often identifiable sources.

vehicles min−1 and nearly one bus or truck every minute on a week-
day. With the exception of passenger vehicle traffic on Saturday
evening, total traffic volume decreased substantially on Saturday,
reflecting a decrease in commuting trips as well as commercial

trucking activity. Flanked by one-story buildings with substan-
tial set-backs, PM2.5 and other air pollutants are likely to disperse
more easily at Dodge/72nd than at the other five study sites.
Pedestrians, if not immediately proximate to the source of PM2.5
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Fig. 4. A significant (p < 0.05) correlation between sidewalk PM2.5 concentrations
relative to background (FMS) and pedestrians min−1 was  observed at Downtown B,
indicating the potential for higher exposures.

(as demonstrated during the weekday outing), are likely to bene-
fit from the enhanced air flow at the site. While the four Saturday
outings at Dodge/72nd may  represent anomalously consistent side-
walk concentrations, it is also probable that fewer buses, trucks,
and passenger vehicles on the roadway on Saturday contributed
to fewer observed spikes in PM2.5. As the only study site not
representative of either traditional or neo-traditional mixed-use
development, the patterns in sidewalk PM2.5 at Dodge/72nd are
also instructive as a means of comparison. Similar to the other
five sites, average concentrations at Dodge/72nd were generally
comparable to background levels, while peak concentrations were
moderately higher, though no more frequent. Given the corridor’s
sparse pedestrian activity and often superior ventilation, however,
relatively few spikes in peak concentrations may  be expected from
cigarette and cigar smoke provided that the pedestrian is in motion
rather than situated at a bus stop, etc.

3.4. Assessing total exposure: concentrations vs. pedestrian
volume

While activity patterns and particulate air pollution have often
been studied independently to assess the impacts of the built
environment on human health, it is also useful to consider them
together to examine how their interaction may  affect personal
exposure. Keeping in mind the limited sample size (eight data
points gathered during eight outings at each site), a notice-
able, though non-significant, negative trend was observed at
Dodge/72nd and Benson in which fewer pedestrians were observed
on days and times with the highest sidewalk PM2.5 concentrations
relative to the FMS. The Old Market, Midtown, and Downtown
A exhibited essentially negligible trends in relative concentra-
tions versus pedestrian volume. Data collected at Downtown B,
however, suggests a strong positive and statistically significant
(r2 = 0.767, p = 0.03) correlation between relative concentrations
and pedestrians (Fig. 4). Both pedestrian volume and relative PM2.5
concentrations along the sidewalk were particularly high at noon
on a weekday when office workers took to the sidewalks for lunch.
Average concentrations and pedestrian volume at Downtown B
remained elevated in the afternoon as well, reflecting the day’s sec-
ond peak commute time. This is not to suggest a causal relationship
between pedestrian volume and sidewalk PM2.5; only that more
pedestrians within the downtown corridors (particularly Down-
town B) were outside on days and at times (i.e., around noon and
evening during the work week) when ambient PM2.5 concentra-
tions compared to the FMS  were relatively high.

With the possible exception of Downtown B, there is little
evidence from these data that pedestrians in moderate-density,
mixed-use developments will be exposed to substantially higher
average concentrations of PM2.5 relative to suburban strip-mall
environments such as Dodge/72nd Street, or within a primarily
residential area like the one encompassing the FMS. Although the
Old Market boasted the highest pedestrian counts of any site, aver-
age sidewalk PM2.5 concentrations there were lower than those
detected at the FMS  on seven of eight outings. The relatively
low traffic volume in the area, combined with wide sidewalks
and head-in parking appear to have provided a relatively shel-
tered environment for pedestrians, although peak exposures due
to tobacco smoke remains a concern. The situation at Downtown A
and B, with more pedestrians on the sidewalk at times of elevated
PM2.5, may  benefit from site design modifications discussed in the
next section.

3.5. Implications for policy and planning

Compact, pedestrian-oriented and mixed-use urban forms have
the potential to both increase personal exposure to air pollution by
bringing more people into contact with elevated concentrations,
and decrease exposures by reducing the emissions associated with
fossil-fuel dependent vehicles. At the regional level, movement
toward a more compact urban form is expected to result in fewer
emissions and improved air quality (Bereitschaft & Debbage, 2013;
Borrego et al., 2006). At the neighborhood-scale, however, the
evidence is mixed, with computer models indicating a negligible
overall change in pedestrian exposure with enhanced neighbor-
hood walkability (de Nazelle et al., 2009), while studies involving
on-site mobile measurements of PM2.5 have generally indicated
that concentrations in compact neighborhoods are higher than at
background locations (Boarnet et al., 2011; Charron & Harrison,
2005; Kaur et al., 2005). These data, however, were collected in
cities substantially larger than Omaha with higher traffic volumes
both at the local and regional scale. In the present study, although
variations in average and peak PM2.5 concentrations were observed
between some sites (as well as by time and day), average concentra-
tions were frequently comparable to background FMS values. Thus,
when taking into account the additional positive health outcomes
associated with denser, pedestrian-oriented environments, such as
greater physical activity, lower body mass indices, and lower rates
of obesity and type-2 diabetes (Lovasi, Neckerman, Quinn, Weiss, &
Rundle, 2009; Müller-Riemenschneider et al., 2013; Saelens, Sallis,
Black, & Chen, 2003), the balance appears to tip in favor of compact,
rather than dispersed, development.

Not all compact designs are equally advantageous, however. The
results of this investigation suggest that pedestrian exposure to
both peak and average concentrations of PM2.5 could be reduced
by modifying the built environment as well as reducing in situ
emissions. As mentioned in Section 3.3, a cross-street (16th Street)
to both Downtown A and B is undergoing renovations as of sum-
mer  2014 (one year following data collection). The re-routing of
bus traffic away from these corridors will likely reduce pedestrian
exposure to PM2.5, but may  also inconvenience bus passengers who
work within close proximity of existing bus stops. A more equi-
table solution would be to phase out the current diesel-powered
buses in favor of electric–gasoline hybrids or buses fueled with nat-
ural gas. Several cities have begun testing cleaner fully-electric and
hydrogen fuel cell-powered buses, which are substantially more
expensive up-front, but increasingly cost-competitive over their
life-cycle (Scott, 2013; U.S. DOT, 2012; Zimora et al., 2011). The
streetscape renovation project will also entail narrowing the side-
walk along 16th street and adding 95 parallel and back-in parking
spaces, which will likely increase pedestrian exposure to PM2.5 and
other tailpipe emissions. At both the Benson and Dodge/72nd sites,
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vehicles idling with tailpipes directed toward the sidewalk resulted
in several peak exposures exceeding 50 �g m−3. Spikes in PM2.5 at
sites with only head-in parking (i.e., the Old Market, Downtown
B), by contrast, were due to either large vehicles in the roadway
or fellow pedestrians. Head-in parking may  therefore be the best
option to minimize exposure, though commentators have argued
in favor of either method of parking, citing various safety advan-
tages (Meltzer, 2013). The efficacy of different parking methods is
in need of further study.

By smoking tobacco products on or adjacent to the sidewalk,
pedestrians and customers of open-air bars and restaurants con-
tributed significantly at times to elevated concentrations of PM2.5.
Though perhaps more challenging to address than tailpipe emis-
sions, there may  be ways to mitigate personal exposure. On the
structural side, Midtown’s two-tier sidewalk design gives pede-
strians more room to maneuver around sources of tobacco smoke.
Though certainly not practical to implement everywhere, the
advantages of this design should be considered where applicable.
A much simpler modification involves relocating smoking recepta-
cles to the least-trafficked areas, such as away from store entrances
and behind establishments. Extending indoor smoking bans to
outdoor public areas has also been gaining traction as a strategy
to reduce pedestrian exposure to second-hand smoke. In January
2011, the village of Great Neck, New York became one of the first
municipalities in the United States to ban smoking on public side-
walks, and a recent survey conducted in New York City suggests
that the nation’s largest city may  soon consider a similar measure
(Reiss & Rafferty, 2011; Saletan, 2012).

4. Conclusion

The results of this study suggest that mixed-use and pedestrian-
oriented corridors, specifically those with moderate densities and
situated within mid-sized U.S. metropolitan areas, are generally
not expected to exhibit average PM2.5 concentrations that sig-
nificantly exceed those along a busy suburban corridor or at a
nearby fixed monitoring station. Average sidewalk PM2.5 concen-
trations, however, often varied significantly by time of day and
between weekdays and Saturdays, owing primarily to differences
in site-specific activity patterns. The elevated evening concentra-
tions observed in the Old Market and Benson on Saturdays, for
example, is reflective of the increase in afternoon and evening activ-
ity typical of entertainment districts. Downtown A and B likewise
demonstrated that one-way in-bound and out-bound corridors can
expect elevated concentrations in line with peak commute times.

When comparing average PM2.5 values across sites, much of the
variability in average PM2.5 could be explained by background con-
centrations, relative humidity, and day of the week (weekday vs.
Saturday). Boarnet et al. (2011) demonstrated that certain elements
of the built environment may  contribute significantly to differ-
ences in concentrations, yet the results of their analysis, and of
this study, suggest that these features accounted for relatively little
of the overall variability observed in sidewalk PM2.5. By simulta-
neously recording video while collecting samples of PM2.5, specific
design features that influence pedestrian flow and their interac-
tions with one another and with vehicles, such as the width of
the sidewalk, average pedestrian distance from the roadway, ori-
entation of parking spaces (i.e., head-in vs. back-in vs. parallel),
placement of smoking receptacles, and the type of fuel used by
public transit, were, however, clearly implicated in the frequency
and magnitude of peak PM2.5 concentrations.

Mixed-use and pedestrian-oriented urban environments are
increasingly viewed as healthier alternatives to suburban typolo-
gies by encouraging active rather than automotive transport. One
potential downside, however, is enhanced pedestrian exposure to
air pollution in the near-roadway environment. While the results
of this study do not deny the possibility of enhanced pedestrian
exposure to PM2.5 within denser, more compact urban environ-
ments, they do suggest that such differences may  be minimal in a
mid-sized metropolitan area with moderates densities and traffic
volumes. Additionally, a significant positive relationship between
PM2.5 (relative to background concentrations) and pedestrian vol-
ume  was observed at only one site (Downtown B), while four of
the six sites generally hosted more pedestrians on days and times
during which concentrations were relatively low, or at least com-
parable to background levels. Future research could more fully
compare the relative potential for personal exposure by taking into
account the level of physical activity engaged in by pedestrians
(e.g., walking, biking, jogging, stationary) in addition to total pedes-
trian traffic counts. A GPS device could also be used to track more
precisely the movement of the data collection cart and provide
enhanced data visualization. This information may  be particularly
salient when evaluating and comparing urban microenvironments
known to exhibit concentrations well above background levels, or
in larger cities where there is likely to be greater variability in PM2.5
among study sites.

Appendix A. Data collected at each of the six study sites
organized by day and time.

No. Samples Mean Sidewalk PM2.5 SD FMS PM2.5 Passenger vehicles Buses/Trucks Walking Stationary Jog/Cycle Total Pedestrians

PM2.5 Vehicles min−1 Pedestrians min−1

Morning Week
Dodge/72nd 1800 11.8 2.1 10 54 0.93 0.10 0.00 0.00 0.10
Benson 1350 8.7 12.7 4 6 0.04 0.44 0.18 0.04 0.67
Old  Market 1330 15.9 2.2 10 2 0.14 0.86 0.41 0.05 1.31
Midtown 1255 16.6 1.9 18 14 0.24 0.86 0.96 0.10 1.91
Downtown A 1510 10.0 5.6 8 14 0.68 3.81 0.60 0.12 4.53
Downtown B 1295 7.5 2.0 6 5 0.65 2.04 1.76 0.05 3.85

Morning Saturday
Dodge/72nd 1650 13.5 2.1 13 15 0.40 0.07 0.00 0.00 0.07
Benson 1360 9.8 2.1 7 3 0.13 0.57 0.40 0.04 1.02
Old  Market 1300 7.4 16.4 11 4 0.09 4.11 0.69 0.14 4.94
Midtown 1270 3.7 2.0 5 3 0.14 0.99 0.38 0.09 1.46
Downtown A 1420 7.1 2.4 5 8 0.30 0.76 0.38 0.21 1.35
Downtown B 1215 15.8 1.9 18 5 0.10 0.69 0.30 0.20 1.19

Noon  Week
Dodge/72nd 1650 7.6 15.3 8 55 0.91 0.04 0.22 0.00 0.25
Benson 1405 8.4 8.9 8 7 0.26 1.32 0.47 0.04 1.41
Old  Market 1265 14.2 2.9 18 6 0.14 8.06 2.61 0.38 11.1
Midtown 1205 16.0 1.9 18 14 0.10 4.88 1.20 0.20 6.27
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No. Samples Mean Sidewalk PM2.5 SD FMS  PM2.5 Passenger vehicles Buses/Trucks Walking Stationary Jog/Cycle Total Pedestrians

PM2.5 Vehicles min−1 Pedestrians min−1

Downtown A 1355 10.7 7.7 10 14 0.31 7.04 1.46 0.04 8.55
Downtown B 1260 14.3 3.4 7 8 0.19 7.05 2.24 0.14 9.43

Noon  Saturday
Dodge/72nd 1670 9.9 1.9 13 38 0.22 0.14 0.07 0.00 0.22
Benson 1440 10.2 6.2 10 8 0.08 2.29 0.58 0.17 3.04
Old  Market 1400 4.9 3.0 10 8 0.00 12.8 6.30 0.09 19.2
Midtown 1260 1.7 0.9 4 10 0.10 3.29 0.52 0.19 4.00
Downtown A 1455 4.4 1.3 8 16 0.21 1.28 0.41 0.12 1.81
Downtown B 1240 14.8 1.9 20 6 0.15 1.84 0.77 0.05 2.66

Afternoon Week
Dodge/72nd 1680 9.6 7.8 9 59 0.46 0.21 0.04 0.00 0.25
Benson 1630 8.5 9.4 10 17 0.11 0.92 0.26 0.07 1.25
Old  Market 1265 14.2 2.9 18 6 0.14 8.06 2.61 0.38 11.1
Midtown 1205 16.0 1.9 18 14 0.10 4.88 1.20 0.20 6.27
Downtown A 1355 10.7 7.7 10 14 0.31 7.04 1.46 0.04 8.55
Downtown B 1260 14.3 3.4 7 8 0.19 7.05 2.24 0.14 9.43

Afternoon Saturday
Dodge/72nd 1640 7.0 1.6 11 29 0.18 0.11 0.07 0.00 0.18
Benson 1400 10.3 3.2 10 5 0.09 1.54 0.21 0.00 1.76
Old  Market 1400 4.2 1.5 9 9 0.13 10.3 6.64 0.13 17.1
Midtown 1200 2.3 0.9 5 10 0.05 2.40 0.40 0.05 2.85
Downtown A 1340 4.8 1.6 6 10 0.22 1.48 0.22 0.09 1.79
Downtown B 1280 12.5 2.0 18 6 0.09 1.41 1.31 0.00 2.72

Evening Week
Dodge/72nd 1650 6.8 3.5 9 47 0.11 0.18 0.00 0.00 0.18
Benson 1440 3.2 1.3 9 14 0.04 1.88 0.83 0.17 2.88
Old  Market 1332 8.0 8.1 17 9 0.00 8.11 5.50 0.00 13.6
Midtown 1285 12.3 1.5 11 14 0.14 2.38 0.98 0.09 3.45
Downtown A 1430 4.7 1.4 6 8 0.04 0.42 0.29 0.17 0.88
Downtown B 1230 8.9 2.4 11 5 0.05 2.24 0.88 0.15 3.27

Evening Saturday
Dodge/72nd 1600 8.1 2.2 12 54 0.15 0.53 0.04 0.00 0.56
Benson 1430 16.6 11.0 16 7 0.08 2.85 0.34 0.00 3.19
Old  Market 1430 6.8 7.8 7 11 0.00 16.7 13.5 0.00 30.1
Midtown 1310 3.5 1.1 5 15 0.00 2.79 0.69 0.00 3.48
Downtown A 1400 4.5 1.5 4 8 0.00 0.64 0.13 0.04 0.81
Downtown B 1220 12.6 2.1 15 4 0.00 0.93 0.84 0.00 1.77
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