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ABSTRACT

Intensional Logic and Topology 

Andrew Scott Buchan, M.A.

University of Nebraska at Omaha, 2003

Advisor: Scott Downing, Ph.D.

This thesis is concerned with mathematical logic, in particular it is an 

investigation of a branch of mathematical logic called modal logic. This 

branch of mathematical logic extends the propositional calculus by adding 

two unary operators □  and 0  to the standard set of logical operators. This 

extension of classical logic has many interpretations; traditionally it is said 

to be the logic of necessity, denoted by the box operator, and possibility, 

denoted by the diamond operator. The notion of necessity within modal 

logic is ubiquitous and lends itself to a vast sea of metaphysics. For example, 

if X  is necessarily true, denoted O X , then it is said to be true in all possible 

worlds. This way of understanding modalities gave imputes for a semantics
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that provided fodder for the first completeness proofs in modal logic.

Modalities in logic have its roots in philosophy and dates back as far as 

Aristotle’s Metaphysics, but was brought into the limelight with the work of 

the philosopher mathematician Saul Kripke who in 1959, as a high school 

student, published the first completeness proof for a class of modal logics 

[Kripke]. His method used the so-called semantic-tableaux which was intro

duced by Beth’s The foundations of mathematics to obtain quick complete

ness proof for the propositional and predicate calculus. In this thesis, we are 

also interested in completeness for modal logics, but will use a more modern 

method known in the.literature as canonical model constructions . Moreover, 

we wish to provide a semantics for modal logics that is not the traditional 

possible world semantics. Our models will be topological in nature. Our 

goal is to provide a completeness proof for a particular modal logic called S4 

which interprets the modal operators as the interior and closure operators 

on topological spaces. We will also prove that the logic S4 is complete with 

respect to the class of transitive and reflexive trees. This gives us two new 

completeness proof for the modal logic S4.
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1. THE BASICS

This introduction provides the basic language for our work. We shall con

struct modal logic by building model structures from a set of primitive ob

jects, boolean connectives and basic rules articulating the constructions of 

well-formed formulas. The construction of models will be dominant in the 

following chapter and is expositional in character. Our exposition will, for 

the sake of brevity, be dense. For further details on model theory for inten- 

sional logic the reader should consult [Goldblatt l][Goldblatt 2][Chellas]. To 

begin, we shall introduce the language of modal logic and then their model 

structure.

1.1 The Language £ (□ )

Modal logic is an extension of the propositional calculus together with unary 

operators □  and 0  that are defined on all atomic and non-atomic formula. 

In fact, modal logic is a fragment of first-order logic. This will become more
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clear when we introduce our relational semantics below. We introduce the 

language £ (□ )  which denotes the extension just described.-

Let PV := { p o ,p i , ' . . }  be a denumerably infinite set of propositional 

variables and add to PV the logical constant JL as an abbreviation for any 

logical contradiction such as (<f) A -<</>), and T  which corresponds to any 

tautology. It should be clear that T  and JL are dual logical constants. The 

set of formulas 3? for propositional modal logic is defined inductively on 

atomic formulas as follows:

•  PV U {J_, T } C  $

• if a, (3 G then a  * j3 G $  where * is a binary operator in {A, V —*}

• if a  E 3>, then -iq  G ^

•  if a  G then d a  G and Oa G ^

•  no other string of symbols is in $

As is customary in mathematical logic, the elements of $  are called well- 

formed-formulas, denoted w ff’s. Our construction is not the most economical 

since the elements of * are inter-definable and the so-called Box and Diamond
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operators are dual operators1. That is we can define -•□ -'a  as Qa. It is 

well known in the literature that all wff’s have an equivalent representation 

in which the only logical connectives are A and By a similar argument, 

given the duality between □  and Q, any wff of £ (□ )  has an equivalent formula 

using only □ , and A. This observation confirms the completeness of our 

logical connectives which should not be confused with the completeness of a 

logical system2. Unless otherwise stated, we let lowercase Greek letters range 

over modal formulas save A which will stand for any arbitrary normal modal 

logic.

D efin ition  1: A modal logic is a set A C $  which; (1) contains all tautologies 

of the propositional calculus, (2) satisfies modus ponens, and (3) satisfies 

universal substitution, i.e., if a  £  A and j3 is obtained from a  by uniformly

replacing some variable by some other wff, then (3 G A

1 In modal literature the operators,□  and 0  have been interpreted to mean it is necessary 

that and it is possible that, respectively. However, for this thesis we will not concern 

ourselves with any metaphysical interpretations, instead we will provide restrictions on

the types of relations and functions we define on our models.
2 We say that a set of boolean connectives is complete for a logical system iff for any

assignment of truth values to (f>, the same value can be given to a wff that contains only 

the boolean connectives in question.
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A logic is called normal iff it satisfies the definition of a modal logic and 

is closed under necessitation and monotonicity of the box operator. That is, 

□ (0  0 )  ->  (D 0 —» IH0) E A and D T  €  A.

R em ark  1: It follows from the definition of normality that in every normal 

logic A we have,

(□ (0  A 0 ) EH0 A Q 0) E A

P r o o f  Indeed, (0 A 0  —> 0) T E A. So, D (0  A 0  —* 0) D T E A. Then 

it follows that 111(0 A 0 -> 0) E A. And by monotonicity, 111(0 A 0 ) —» D 0 EE A. 

So, D (0  A 0 ) —> D 0 A Q 0 E A.

Now, (0 —> (0  —» 0  A 0 )) <-» T E A which allow us to conclude that 

□ 0  —> (O 0 —> D (0 A 0 )) E A, which is equivalent to saying D (0 A 0 ) —► 

□ 0  A D 0  E A ■



2. MODAL LOGIC: KRIPKE FRAMES AND MODELS

In this section, the model signature for modal logics and algebras is estab

lished, frames and models will be defined, and the concepts of modal com

pleteness and modal soundness are presented. To begin we shall give the 

traditional motivation for modal logic and intuitive foundations for □  and 0  

are given via possible world semantics.

2.1 Possible World Semantics

The semantical part of meta-mathematics is essentially concerned with the 

assignment of meanings or interpretations to wff’s and providing conditions 

under which a formula can be said to be true. In philosophy, the semantics 

of modal logic can be traced back to Leibnitz who claimed that a proposition 

is necessary if and only if it is true in all possible worlds. To get of sense 

of his metaphysics imagine a set of possible worlds which can have some 

alternatives. Denoting the altemativeness relation as R, we write xR y  to
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say that y  is alternative, or possible with respect to x. Every world x lives 

under the laws of classical logic. A modal formula □</> is thus said to be true 

in a world x if <f> is true in all worlds that are possible with respect to x. It 

is an easy observation to see that 0 >̂ is true in x if ^ is true in at least one 

world y  such that xR y

The most commonly studied models of modal logic are K ripke M odels. 

Kripke models, or K-models , are first-order relational structures equipped 

with a binary relation -<rC X  x X  where X  is some non-empty set. Tra

ditionally, the elements of X  in K-models are thought of as possible worlds, 

nodes, or points and the binary relation -<r is a relation that holds between 

possible worlds, nodes or points, however, the only important thing to un

derstand is that worlds are collections of propositions . If , W2 are possible 

worlds and -<r is a relation, then W\ -<r w2 if w2 is accessible from W\. This 

intuitive way of speaking about the relations between worlds lends itself to 

mathematical structures such as directed graphs which we will use latter in 

this thesis. For the moment, it is convenient to think of traversing a tree from 

node to node in an upward traversal to capture the mathematical intuition 

necessary for working in modal logic. The following series of definitions will 

be relevant throughout the this thesis; they are standard in the literature
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and can be found in [Goldblatt 1].

D efin ition  2: A K -fram e is a structure T  =  (AT, -<) where AT is a non

empty set and -< is a binary relation between ordered pairs in AT x A

We call the set X  the carrier or the base-set of JF. In this thesis, the relation 

-< is a transitive and reflexive relation, such relations are called pre-orders 

or quasi-orders. Other restrictions on -< correspond to stronger and weaker 

modal algebras and logics. A model for a basic modal language is a K-frame 

which is equipped with valuation function.

D efin ition  3: A K -m o d e l is a structure M. =  {.F, v) where T  is a frame 

and v  : $  —» V ( X )  is a valuation function, i.e., v is a function that assigns 

to each p E $ a  subset v(p ) of X .

Informally, we may think of v{p) as the set of points in our model where p  

is true. Given a model M. =  (JF, v), we say that M  is based on the frame JF 

or that T  is the frame underlying M..

2.1.1 Satisfaction and Validity

As mentioned above, we may understand the function v as saying which 

propositions are true in which world. That is to say, given some wff (f), the
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function v  provides a set of possible world in which 0  is considered to hold. 

However, we have no notion of truth in a model as of yet. To do this we 

use the machinery we have just established to define the standard Tarskian 

satisfaction relation on modal formulas.

Let M. — {T ,v )  be a K-model, x £ X  £  T  and 0  6 $ . We define the 

relation A4, x  lb 0 , read 0  is true at x  in M ,  recursively on 0  as follows:

M , X lb Pi iff X £ v(pi)

M ,'.rib  J_ iff never i.e., no contradiction is true in any model.

A4, x II— '0 iff M , X lb 0

A4, x  lb 0  A 0 iff M ,X  lb 0 and M ,x  lb 0

M ., x  lb D 0 iff (Vy 6  X ) ( x <  y ) ( M ,  y IH 0 ).

Instead of writing A4, x lb 0  we may write x  lb 0  if the model is clear. The 

truth-set of 0  in M. is defined as u(0) =  {x  £ X  :x lb 0 }.

We say that a formula is valid if it is true in all models and satisfied if it is 

true in at least one models. Moreover, a formula is valid with respect to a 

class of models if it is valid with respect to all models on the class. The case 

for satisfiability is similar. It is an easy exercise to show that 0  is valid in 

M. iff -i</> is not satisfiable in M .

We now want to say something about the meta-logical results that will
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be important throughout this thesis.

D efin ition  4: Let C be a class of modal frames. A logic is said to be strongly 

complete with respect to C if for any set of formulas T U {</>}, if T Ihe </>, then 

T b A <f), read <j> is a theorem of A. That is to say, if T semantically entails <f> 

on C, then (j> is A-deducible1 We say that a logic is sound with respect to C 

if for any (p 6  A, if <j> is a theorem then <p is valid.

For every frame T  E C, if each instance of the axiom schemes are JF-valid, 

and J- validates the rules of inference, in the sense that for all models A4 

over PF, and every instance of a rule, if A4 lb ipi for each of the premises 'ipi 

of the rule, then M. lb <f>, where <p is the consequence of that instance of the 

rule. If such a situation is the case, then this establishes the following:

T h eorem  1: T h e  Soundness th eo rem  o f  A w ith  resp ect to  C. If

\~x 0 2. then I be </>, where C is the class of frames over A

The converse this theorem is called completeness and it states:

T h eorem  2: C om p leten ess th eo rem  for A w ith  resp ect to  C. If I be

then \~x <p

1 We will define what deducibility theoremhood means below in definition 5.

2 The notation b* <p is shorthand for saying that <p is derivable in the logic A
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The completeness theorem is a non-trivial result in mathematical logic. 

Together, soundness and completeness say that C-validity can be charac

terized by theoremhood or provability in A. This thesis is concerned with 

completeness with respect to topological interpretations of modal logic and 

modal algebra so it will be advantageous for the reader to become comfort

able with these notion.

2.2 Proof Theory

Recall from basic logic that a proof system is a purely syntactical method for 

illustrating logical inferences, characterizing validity and logical consequence 

relations. In modal logic, this is done with respect to classes of frames. In 

this thesis, the logical system in which our modal logic shall be axiomatized 

is the standard Hilbert system.

2.3 Maximal Sets and The Canonical Model

In this section we shall introduce the most important concept of this thesis, 

namely the canonical model for modal logic. The canonical model is the 

main technical tool that we shall use to prove our completeness results. The 

method is derived form Henkin’s construction for completeness of the pred



2. Modal Logic: Kripke Frames and Models 16

irate calculus and proceeds by demonstrating that if A is a normal modal 

logic and a  ^ A, then there is a model of A in which a  fails in some state 

or world. This result follows from a more general results .that says that any 

A-consistent set of formulas F is simultaneously satisfiable in a model A4 

of A. In traditional modal terms, this means that there is a world in the 

model at which every member of T is true, i.e., from each consistent normal 

modal logic there is a model called the canonical model for that logic, in 

which all and only theorems of the logic are valid. We will need the following 

definitions.

D efin ition  5: Let A be a normal modal logic and $  the set of wff's of A, 

r c $  and We say that a  is A-derivable from the set T, written F a

iff for some finite set of wff’s {oo • • • &n} Q T, we have (/\™=1 a*) —► ce. We 

say that a  is a theorem of A if a  is derivable from no premises, i.e., if it follow 

from the empty set. Clearly, this is equivalent to saying that a G T .  F is said 

to be A-consistent provided there exist a formula not derivable from F, and 

A-inconsistent otherwise. F is A- maximal iff F is A-consistent and for each 

wff a , either a  or ->a is contained in the set T. If we write X \,  we shall mean 

the class of A-maximal subsets of 4>.
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We use maximally consistent sets in our completeness results for several 

reasons. Observe that every point x in every model M. for a normal modal 

logic A is associated with the set of wff’s {<f> : A 4,x  lb <fi}. One can easily 

prove that {(j> \ A i,x \\ -  <j>} is in fact a maximally consistent set; if <j> is true in 

some model M. for A, then <j> belongs to a A-maximally consistent set. Also, if 

x  and x' stand in some relatioil in A t, then the information embodied in the 

maximally consistent sets associated with x  and x' is coherently related. This 

means that models give rise to collections of coherently related maximally 

consistent sets. The main program for the canonical model is to attempt to 

turn these observations around, that is, to take a class of coherently related 

maximally consistent sets to the model we want. Below, we will prove the 

statement that claims that if 0  is an element of a maximally consistent set, 

then 4> is true in some model M. who’s points are all maximal consistent 

sets of the logic in which we are interested. This is achieved by building the 

canonical model which we will do presently. First, we want to prove that if a 

set is consistent then it can be extended to a maximally consistent set. The 

following theorem is sometimes call the Lindenbaum theorem for Boolean 

algebras. Here we provide a modal version.

T h eorem  3 (Goldblatt 1): If £  is a A-consistent set of formulas, then there
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Jn+ 1 =  <

is some x  6  X \ , so that S G l

P roof: Since our language is countable so is the set of wff’s, thus we can 

enumerate them. Consider the following sequence of sets,

2 0 — S ,

£ n U {(fin} if this is A-consistent,

£ n U {~'4>n} otherwise.

£ + =  l U ^ n

It is clear that £o is a A-consistent set and so is £ n+i provided that £ n is 

A-consistent. Now let x =  £ + . We claim that x  is A-consistent. Suppose 

toward contradiction otherwise, then there is a sequence of formulas 70 , • •• ,  7* 

so that the set {70 , . . . ,  7%} is A-inconsistent. Because the cardinality of this 

set is k, for some integer k, the set has a maximum with respect to the 

enumeration of wff’s. Let us call this maximum a n. Then {70 , . . . ,  7 *} C £ n, 

and consequently £ n would be A-inconsistent. This is a contradiction.

We claim that x is maximally consistent. Indeed; for suppose that for some a n 

that neither -ia  nor a  is in x. Then by the construction above, if a n £ x, then 

£ nU{o:n} is inconsistent, otherwise £ n+i =  £ nU {an} and thus £ nU{o:n} C x 

and a n G x and since _|o:n/€  x  then £ m U {~,o:n} is inconsistent where -*ol is
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the m th wff in the enumeration. Since n and m  are integers, either n < m  or 

m  <  n and by construction either £ m C En, or En C Em. Now consider the 

follow chain of implications: We have 

b  ~ '^ n  

and S 77JI '

and thus, '^maxin^rn) b 'OCn

a n d  S rnax(n,m ) b  ~ 1Q!n .

But this means that 'Fmax{n,m) b p A  ->p, thus x h  p A ->p, but we have shown 

that x is A-consistent. This shows that x is maximal and the x  G X \  ■

2.3.1 The Canonical Model Construction

We are now ready to build the canonical model for a general normal modal 

logic. Let A be a consistent normal logic, T  — { X \ , -<\) be a frame, where 

X \  is a maximally consistent set of well formed formulas of A and is a 

binary relations such that, for any x, y €  X \,  x -<\ y  if and only if for every 

(j) of £ (□ ) , if □</> € x then (j) G y. Let M. =  {lF ,v\)denot e the canonical 

model with carrier T  and the function v \, where v^(p) is {x  € X \  : p  G x) 

We will often drop the use of the subscript A when the logic we are working 

with is clear.
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Let us take a moment to comment on the constituents of this construction. 

First, note that the function v  equates the truth of a propositional variable 

at a point x with its membership in x. Below we will prove a generalization 

of this fact that will equate truth with membership for arbitrary formulas. 

We will prove:

T h eorem  4: Let A4 be the canonical model for a logic A. For any well 

formed formula a  and x G X \,  A4, x  lb a  iff a  G x

Secondly, the set of points or worlds of A ^are all A-maximally consistent 

sets. T h eorem  3 shows us that any A-consistent set is a subset of some point 

in A d a n d  by T h eorem  4 proved below, any A-consistent set of formulas 

is true at some point in this model. Lastly, the canonical relation says that 

if □</> is in x and x -< y, then y  contains all the information that is contained 

in (f). This transfer of information captures the intuitive claim above about 

worlds being coherently related.

We now want to prove T h eorem  4, but before we provide our proof we will 

prove the following proposition.

P ro p o sitio n  1: If A is a normal modal logic and T is a A-consistent set of 

wff’s, then for any wff (5 such that ->□/? G T, then J(r)U {-'/3} is A-consistent,
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where 1(F) =  {a  : D a  G T}

P roof: Suppose that the proposition is false, then I(F)[J{->P} is inconsistent. 

Thus there is a sequence a* G 1(F), 0 <  i <  n, so that

(ai —> ft) G A.

But this means that
n

( □ ( / \ a i  -  /?)) 6  A,
i= l

and thus since □  may be distributed across implications in any normal logic 

we get,

n

(□  / \  a 4 —> D/3) £  A.
i= l

By R em ark  1 , we get

n

( / y Devi —> □/?) G A,
i=i

and thus the set {Da:*,->□/?} is inconsistent. However, this is a subset of F 

and T is consistent so we have our contradiction. ■

Let’s return to the proof of T h eorem  4.
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P r o o f  o f  T h eo rem  4: We proceed by induction on the degree of wff’s. By 

definition of the canonical valuation function, we have for atomic proposition 

p  and x  E X \ , th a t

jW ,x lb p  iff p  E x

The cases for the boolean operators is obvious. Since we are working with 

maximally consistent sets, each x  E X Aassures us that p  E x iff ->p is not 

and that (p A ip) E x  iff p  E x  and ip E x. The only intersecting case is for 

the modal operators which we shall now consider. The induction hypothesis 

states:

A4, x lb ip iff ip E x 

Let =  □</>, we wish to establish that

iff Dp  E x

Suppose that D p  E x and that x  -< y. Then, by the definition for the relation 

we have p  E y  and thus,

M ,  y ^ P
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Since this is the case for all y  such that x -<y  we have shown

M , x  lb U 0

Now suppose that □(/> ^ x. Then by the maximal consistency of x we have 

that

-Gcj) G x

Because x is consistent we have I(x)  U {-><£} is also consistent and thus there 

is a state y  G X \  so that I(x)  U Q y. Further, because I(x)  C y  implies 

x <  y, and since ->(/) G y , then (f) i  y, thus A4, y  lb (j> and because x <  y, 

A 4 , x ¥  □  (f). This proves the inductive step and the theorem. ■

The theorem just proved provides means to establish all of main results of 

this thesis. We have show that a modal formula 4> is true at a point x iff it is 

an element of that point. From this fact it follow that there is a derivation 

of (f> at x  as well. See definition 5. Before we begin to present results, we 

shall need one more fact which is an easy corollary of the previous theorem.

C orollary 1 (Goldblatt 1): Any normal modal logic is complete with re

spect to its canonical model.
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P roof: Let —  {X\ ,  - < a , v\)  be the canonical model for a normal modal 

logic A. Let E be a consistent subset of A. We have shown that any such set 

has a maximal extension, so let E+ be that extension. By the proof of the 

theorem above, we see that A 4\, E+ lb E, thus E E E+ which is enough to 

prove the corollary. ■

What is significant about this corollary is that it allows us to get completeness 

quickly by constructing the canonical model. We now wish to use theses fact 

to establish some theorems about the logic S4. T h eo rem  5 is standard in 

the literature, but we will give a detailed proof for the reader. T h eorem  6 , 

however is an extension and provides a stronger proof than th eorem  5.

2.3.2 The Logic S4

Let S4 denote the smallest class of normal modal logics that consist of all in

stances of propositional tautologies together with the following modal axioms 

schemes:
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(T) □</> ->  </>

(4 ) □</> -> □□</>

We also have the following rules of inference:

[Modus Pones] — —— ^  ^ [Monotonicity] —

A formula (f> 6  £ (□ )  is an-S4-deductive consequence of a set of formulas 

T C £ (□ ) , denoted T I-54  (f> if there is a finite sequence of formulas 0o . . .  0 n 

in £ (□ )  so that 4> =  <fin and each fa, i <  n, is either an instance of an axiom 

scheme of S4, or in T, or the conclusion of an instance of a rule of S4 whose 

premises are contained in {(j>0 . . .  <j)n- i } .  That is, T I-54  0 iff 0  6  T

Let us use this fact to show that S4 is complete with respect to the class 

of pre-orders.

2.3.3 Completeness Proof for S4 on Pre-ordered Sets 

T h eorem  5: S4 is complete with respect to the class of pre-orders

P roof: By corollary [1], to prove this result it is enough to find an S4- 

consistent set T, a model M. — (^r, v } based on a pre-ordered set T  =  (X, -<), 

and a state x £ X  such that ^ 54, 0: lb T. To this end, let’s choose the
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canonical model for S4, M s 4 =  (•^54, ^54), and let T+ be any S4-maximally 

consistent set extending I \  It follows that A i s t ,  r + lb T by th eo rem  4. All 

that is left to show is that Fsa is a pre-order.

The frame is transitive. Indeed: the x , y , z  be states in Xsa,  so that 

x  -< y and y -< z: Then for any wff 0, if D 0 E x , then 0  €  y  and for any 0 , if 

□ 0  E y, then 0  E 2 . Now suppose that CH0 E x , then it follows that IIO0 E x 

as well, and thus □  0  E 2/ which give us 0  E 2 . That is for any 0, if D 0 E x, 

the 0 E 2 , which is to say that x  -< 2 . All that is left to establish isv that the 

frame is reflexive as well. To show that -< is reflexive it is enough to show 

that for all wff 0  and x E X g 4 , if D 0 6 x , then 0 E 1 , but this follow immedi

ately by the substitution of 0 for p  in Dp —> p and this completes the proof. ■

An obvious question now arises: What is the modal logic for partially-ordered 

sets? This is not obvious, and in fact quite novel since modal logic cannot 

tell the difference between posets and pre-sets. We will now prove that S4 

is indeed complete with respect to poset and use this fact to establish a new 

completeness results, namely S4 is complete to the class of transitive reflexive 

trees. Our plan is to transform the standard S4 frame in such a way that the 

new frame is partially ordered. To do this, we need the following definition
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of p-morphism from [Goldblatt 1] and unwinding from [Mints 1].

2.3.4 P-morphisms and Unwinding

D efin itio n  6 (Goldblatt 1): P -m o rp h ism  Given two models

M  =  (X, v) and M '  =  (.X ', V , v'),

a map /  from mathcalM  to M '  is called a p-morphism from M  into M !  if 

it satisfies the following conditions, for all x, y  G X

(a) x  and f (x )  satisfy the same propositional variables

(b) if x -< y, then f (x )  -<' f (y ) ,

(c) if f (x )  y', then there is a y  €  X  such that x  -< y  and f ( y )  =  y'

Recall from algebra that a function /  satisfying condition (b) is a homomor

phism. Further, if fi s onto, then we say that M !  is a p-morphic image of 

M .  It is not hard show by induction that for all wff’s 0 and all x E X ,

M ,x \ \~  4> iff j'V",/(x) lb 0

In other words: Modal satisfaction is invariant under p-morphisms. Our goal 

is to show that models of S4 can be transformed into trees which will make
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a new partially ordered model such that the original model is a p-morphic 

image of the new model. Subsequently, we can, as a quick corollary, obtain 

a new proof of completeness for S4 on the class of reflexive and transitive 

trees. Below, we will illustrate how we can transform a pre-ordered set into 

a tree3.

R em ark  2: Prom this point on we assume that all of the frames under con

sideration are rooted, i.e., (X , -<) has a -^-least element.

D efin ition  7: U n w in d in g  Let T  — (X , -<) be a frame generated from some 

point x G X .  We define the unwinding of JF around x  as the frame (X,  -<) 

where:

1. X  is the set of all finite sequences (x, ari..., xn) such that x, x x . . .  xn € X  

and x -< X i . . .  xn_i -< xn, and

2. If y[ and 2/2 G X  then y[-<y2 if there is some z £ X  such that y[ +  (z) =  

y*2 - Here 4- denotes the concatenation of sequences.

If M  =  {X, v) is a model and ( X , ^ )  is the unwinding around x, then we

define the function v as follows:

3 The following definition comes from a forthcoming paper by Mints where he uses the

method below to establish a completeness proof for our modal logic on R.
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v(p) =  {(a;, X! . . .  xn) 6  X  :x n € v(p)}

The unwinding clearly is a tree where the root is the sequence (x), and the 

relation is simply the family of immediate successor relation on trees. The

relation obtained by the unwinding is partially ordered since x-<y iff x is an
\

initial segment of y , so if x^<y and y^ x ,  then clearly, x — y. Consequently, 

the unwinding of a transitive and reflexive structure is also antisymmetric. 

More precisely, the unwinding has the property that:

1. There is a point x with no predecessors, namely the root.

2. The relation has no cycles.

3. Every point under the relation -3, with the exception of the root, has 

a unique predecessor.

Now consider the following theorem.

Theorem  6: Let M. =  (X, v) be the unwinding of M  =  (X , -<, v) around 

x. Then (X, -<) is a p-morphic image of (X , -3) and Ad is a p-morphic image 

of M.
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P roof: Consider the function /  : X  —» X  so that f ( x , x i . . .  x n) =  xn. It is 

routine to check the function /  is onto and satisfies condition homomorphism. 

This is clear by construction. Also, for any x  € X , x and f ( x )  satisfy the 

same propositional variables. This is all we need to establish the theorem. ■

2.3.5 ■- S4 is Complete on Partially-Ordered Trees

What does this mean for S4? It means that we can construct a tree that is 

partially ordered and get a stronger completeness proof then the one given 

above. To this end we take the reflexive transitive closure of the unwound 

model; this new model will also be a model of S4. By the reflexive transitive 

closure on a frame (X, -<), we mean the smallest reflexive transitive relation 

-<* on X  containing -<. That is, we unwind M. =  (X, -<, v) around a point x  

to get a new model M. =  (X, v). Next we look at the model and consider

the reflexive transitive closure -<*. Call this model A i*=  (X , . This

model will clearly be a model of S4 since the reflexive and transitive closure is 

still reflexive and transitive. Moreover, the new model will be antisymmetric 

since it is a tree where -<*b ecome the ancestor-of-relation. We still need to 

show that A i  is a p-morphic image of A4*.
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T heorem  7: Let M  =  (X, ^<,v)b e a reflexive transitive model generated 

by x  €  X ,  and let M  =  (X , -3, v) be the unwinding of M  around x. Let -<* 

be the reflexive transitive closure of Let M *  — (X,  -<*, v), then M  is a 

p-morphic image of M *

Proof: Let /  be as in Theorem  6. It is clear that the function is still a p- 

morphism, moreover the fact that /  is onto and satisfies condition (b) remains 

unchanged. The only thing we need to be concerned with is that the relation 

-*<* is reflexive and transitive. However, since is already reflexive and 

transitive and the transitive reflexive closure is also transitive and reflexive, 

we have nothing to worry about. ■

Theorem  8: S4 is complete with respect to the class of partially ordered 

reflexive and transitive trees

Proof: Let T be an S4-consistent set of formulas and r + its maximal ex

tension. Let M s a  be the canonical model. Then M s a ^ + lb T, and thus 

r  € T+. Now let M s be a sub-model of M s a  generated by r + . Clearly M s 

is reflexive and transitive since Msd-  s. Moreover, we have M s, r + lb T.

Now let M *  — (X,  be the reflexive and transitive closure of the

unwinding of M s around T+ . Let /  : M * —> M s be as before. Then, by
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the previous result, A4S is a p-morphic image M *  under f .  Thus for all 

sequences x  £ / -1[r], we have A4*,x  lb T. Since /  is onto there is at least 

one such x. Thus ,we have satisfied T on a reflexive and transitive tree.



3. TOPOLOGICAL INTERPRETATIONS FOR MODALITY

3.1 Topological Spaces

Let us recall what a topology is and some facts about topological spaces.

D efin ition  8: A topology on a set A  is a collection r  € V ( X )  denoted by 

the pair (X , r) and satisfying the following conditions:

1. 0 and JYare in r

2. r  is closed under arbitrary unions

3. V is closed under finite intersections

We say that elements of r  are open sets. Further, if A  is an open set, then 

X  \  A  is closed, i.e., the complement of open sets results in closed sets and 

the complement of closed sets results in open sets. If a set is both open and 

closed, then the set is call clopen. The empty set and the whole space of a
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topological space are clopen.

We now want to give a semantics for modal logic that allows us to use the 

tools of general topology. In particular, we want to impose an interpretation 

on the intensional operators □  and 0 , which are topological. To do this, let 

the atomic formulas points in a topological space, wff’s range over sets of 

points, boolean operators become their obvious set-theoretical counterparts, 

T  is taken to be the whole space, X the empty set, and the modal operator □  

and 0  get mapped to the interior and closure operators respectively. The d  

operator is called the closure operator. It is a unary operator which assigns 

to each subset A  of X  a subset d ( A )  of X .  We say that the closure of a 

set A is the smallest closed set containing A. The dual to this operator for 

a subset A  of X  is the interior operator denoted int(A),  which is defined to 

be the union of all open set included in A, or, the largest open subset of A. 

The following are the so-called Kuratowski closure axioms:
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in t (a  fl P) =  int(a)  fl int((3) cl(a  U (3) =  cl{a) U cl((3)

int(a)  C  a  cl (a ) D a

in t( int(a))  =  in t(a)  clcl(a) =  cl(a)

in t (X )  =  X  d (0 )  =  0

Note the correspondence between the axioms for S4 and the axioms above. 

There is, however,- no obvious connection to S4’s axiom R. We will show 

in the next section that we can overcome this problem; we will show that 

any topological model makes S4 valid, turning S4 into a modal logic for 

topological spaces.

3.1.1 Topological Semantics

Let X  =  {X, t )  be a topological space. The topological model for a modal 

logic is the structure M  =  (X , ?;)., where v is a valuation on X\  i.e. v : $  —» 

V ( X )  is a function from the set of propositional variables of our modal logic 

to the powerset of X .  We can now say what it means for a formula (f) to be 

true at a point x.

1. x lb p  iff v(p).C x , where p  is a propositional variable.

2. x  II— '( j)  iff x  ^
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3. X  lb <j> A ^  iff x lb (j) and x lb ijj

4. X lb □<£ iff (3U G r ) (x  G U)(Vy G U)(y  lb 0)

The last part of the definition is the only place where the topological seman

tics differs from the previous definition. It says that □</> is true just in case 

</> is true at all points in some neighborhood of x. This is consistent with 

taking the □  as the interior operator on topological spaces. We now wish to

demonstrate the connection between modal logic and topology by inducing

a topology on pre-orders. Recalling that our frames have a transitive and 

reflexive binary relation, we call a subset Y  C l i n a  frame (X , -<) upward 

closed if x G Y  and x -< y  implies y  G X .  The following theorem is easily 

established.

T h eorem  9: Every S4-frame (X, -<) induces a topological space (W, r^) where 

r < is the set of all upward closed subsets of {X,  -<)

P r o o f  Obvious. ■

The topology induced by r^ has the property that arbitrary intersections of 

open set are open. Here the least open set around a point x is {y  G X  :
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x  -< y}.  The topology induced by upward closed sets is known in computer 

science as Alexandroff topologies. See [Vickers] for its application there.

D efin itio n  9: A topological space X  is said to be an Alexandroff space iff 

Br {x) =  f ] { U  G r  :x G U}  is open (Vrr 6  X).

This definition is equivalent to the claim that a space is Alexandroff iff arbi

trary intersections of open sets are open.

L em m a 1: The family { BT(x) }xex  is a base for the topology r.

P roof: Let U 6  r  and x  G U then BT(x) C U and x  G BT(x) so { B T(x)}x^x 

is a base for r  ■

T h eorem  10: There is a one-to-one correspondence between pre-orders on 

X  and Alexandroff topologies on X .

P roof: To show this, let X  =  (A, r) be a topological space where r  G X.  

Define a relation -*<r by:

(1) x -<T y  iff (y U  G r ) {x  e U  —> y  G U)

By construction, (1) is reflexive and transitive and thus a pre-order. Indeed: 

(VC/ E r ) ( x  G U —> x  G U), and thus, the relation is reflexive. To show tran

sitivity, assume that x -<T y  and y -<T z. Then (VC/ G r ) (x  G U —> y  G U)
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and (VC/ E T)(y E U —> z  E U). Clearly this entails that (VC/ E t ) ( x  E U —> 

z E U )

Now let -< be a pre-order on X.  Call a subset U of X  open in if it is 

upward closed. That is whenever x E U we have as our basic open sets:

(2) B ^ x )  =  { y E X  :x -< y }  C U

C laim  1: T-< as defined in (2) is an Alexandroff topology on X.

Indeed. It is clear that both the empty-set and X  are in r < . We require 

proof that is closed under unions and intersections.

1. Let Ui be an open set for each i E oj. Suppose that x E \Jieu) Ui. Then 

x E Uj for some j  E u  so that,

(x ) C Uj C [ J  Ui and thus { J U t ET^
i€u>

2. Now we want to look at intersections. Let Vi E r < and x E rw vs, 
then for every i  E uj
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B ^ x )  C Vi

i.e.,

B ^ x )  C P |  Vi so P | Vi £

We now will show that applying (1) and (2) in turn bring us back to our 

starting point, and thus provides the one-to-one correspondence we require 

for the proof of the theorem.

We want to show that starting with a pre-order -< on X ,  that the order in

duced by the topology by that pre-order are the same pre-order. This shows 

that,

Suppose that -< is a pre-order on X  and that is the topology induced by 

it from (2) above. Assume that x -< y  (we want to show that x  -<Tx y), then 

y £ B ^ x ) .  Thus every open set containing x  also contains y  by (2). So, 

from (1) it follows that x  -<Ts y.
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Conversely, suppose that x  -<Tx y. That is, suppose that every open set 

containing x also contains y. Now the set B^{x)  =  {y  G X  : x  -< y }  is open.

Indeed. Assume z  €  then x z - We need to show that B^(z)  C

B^(x).  Let w  G B^(z) ,  then z ^  w  implies x -< w. By transitivity, this 

means that w  G B^{x)  and by (2), B^(x)  is open which is what we wanted 

to demonstrate. Thus, y£  B^ (x) t (since x G B^(ar)), x -< y. What this 

show is that the pre-order derived from r  by (1) coincides with This is 

equivalent to showing -<r-<=-<.

Now we want to show that starting with an Alexandroff topology r  on X  

that the topology induced by the order induced by that topology coincide, 

that is t^t =  r.

Let r  be an Alexandroff topology on X  and -<r the pre-order induced by it 

from (1). If U G r  and x  G U, then B^r (x) C U. So U is open in the sense 

of (2).
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Conversely, suppose that U is open in the sense of (2). Then x  6  U implies 

that B^t (x) C  U. Then from the definition of -<r , each set B^r is in the 

intersection of all members of r  containing x. But, because r  is Alexandroff, 

each B^r(x) is open. But by assumption, JJ is the union of the sets B^(x ) 

for all x  6 U, and the union of open sets is open. Consequently, U € r  as 

required. ■

C orollary 2: Any finite topology is Alexandroff.

P roof: Let ( X , t ) be a finite topology. Then there are only a finite 

number of open sets in r  and since in any topology finite intersections of 

open sets is open it follows that for any x  G X  there will be a least open set 

containing it. ■

C orollary 3: If X  — (X, r) .  is a topological space and X  is finite, then X  

is Alexandroff.

P roof: Suppose that the cardinality of X  is n for some integer n. Then the 

cardinality of r  is less than or equal to 2n which is finite, and by the previous 

corollary we see that X  is Alexandroff. ■
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It is interesting to see what sort of topologies we get when we impose sep

aration axioms on Alexandroff spaces. Recall that a topological space is To
\

if, given two distinct points x  and y, there is an open set containing one of 

x  or y  but not the other. A topology is Tp f there is an open set containing 

one x but not y  and an open set containing y but not x. A topology is T2 

for any distinct points x, y  if there is a pair of disjoint open sets such that x 

is in one and y  is in the other.

P ro p o sitio n  2: If an Alexandroff space X  is T\, then it is a discrete space.

P r o o f  Indeed, observe that for any y  £ X ,  the singleton { y }  is closed, thus 

for every x  £  X ,  {a:} =  C\y^x{x \  {?/}) is open. If the topology -ron X  is Tl, 

then for any x , y  £  X ,  x .̂T y iff x =  y so B(x) =  {z }  this is consistent with 

r  ̂ being discrete. ■

Since T\ C T2, it follow that imposing stronger separation axioms on Alexan

droff spaces will always be discrete.

The topological completeness proof now come almost for free. But, before 

we give the proof, we want to establish the topological soundness theorem.
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3.2 The Proof of Soundness

The soundness theorem is the claim that for any formula (j) €  £ (□ ) , if 0  is 

deducible from the axioms, then it has a topological model. Subsequently, 

we require a proof that the axioms are valid on any topological space, and 

that our rules of inference preserve validity.

We now want to establish the soundness theorem for S4 with respect to 

topological spaces:

T h eo rem  11: If 54 h <£, then (f) is topologically valid.

P r o o f  Assume the antecedent of the theorem. We will examine each axiom 

and show that it is valid topologically. To begin, let’s look at axiom K  :□ T

This axiom is equivalent to saying that the interior of a space is open. That 

is, in t (X )  =  X .  But is true for any topological space (A, r) since the whole 

space is open.

Now consider the axiom T: □<£ —> <j>

We need to show that int{<f>) C ((f)). Again, this is topologically valid and
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follows from the properties of the interior operator.

Next we consider axiom 4: □  (j> —> □□</>.

This axiom requires that we demonstrate that int{4>) C int(int(</>)). Re

call that for any set a  C X  in { X , r ) ,  that int(a)  coincides with int( int(a))  

which establishes the case for 4.

Axiom R: \2(4> —► 4>) —► (□</> —► Q 0) is the least trivial. When we trans

late logical connectives into their set theoretical analogue, we set the arrow 

equal to the subset relation, but since in topology it does not make sense to 

distribute the interior operator across the subset relation, we must do some 

work to establish the result we desire.

Recall that (p —> q) is equivalent to (-«p V q). With this in mind, we can 

get the result we need by showing the int{(f) U ip) C (int(((ff))c U int^ip)), is 

topologically valid, where c is the set-theoretical complement.

Claim : For D  and B  arbitrary subsets of a topological space X  =  ( X , t ) ,  

we have in t(D  U B)  C (in t ( (D c))c U int(B))
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If x E in t(D  U B),  then x E B  U D  then we are done

If x i  in t (D c), then x E ( int(Dc))c C ( int(Dc))cU int(B)  then we are 

done.

If x E in t (D c), then a: is in the intersection of two open sets: in t {D c) D 

in t(D  U 5 ) .  This subset is clearly a subset of D  U B.  But is any y E 

in t (D c) n  int(D),  then also y  E in t (D c) C D c. So y D,  so y  E D. This 

open set in t (D c)n in t (D U B )B .  So x E int(B)  and so x E ( int(Dc))cUin t(B) . 

Now take D  =  A c to get in t(Ac U B)  C (m t(A ))c U int(B).  This proves the 

claim and the soundness of the axiom.

All that is let to show is that the rules of inference preserve validity. The 

fact that modus ponens has this property is establish for the propositional 

calculus and is consequently invariant for modal logics. The interesting case 

is for monotonicity. The soundness of this rule is nevertheless immediate. 

Indeed, assume 0  —> ^  is topologically valid, then by monotonicity of the 

interior operator we get
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int((p) C int(ip)

and thus D<p —> Dip is also valid in J7. This completes the proof of the 

soundness theorem. ■

Now we shall provide a proof for the main theorem of this thesis. By the 

proof of theorem 10 we observed that pre-ordered sets and the corresponding 

Alexendroff spaces are essentially the same. We need to show that this 

correspondence remains in modal models. To show this, we need to prove 

the next theorem.

T h eorem  12: Let M. =  (X , -<, v) be a model on the pre-ordered frame (X , -< 

) and T  =  (X,  r, v) be the corresponding topological model based on the 

Alexandroff space ( X, r ) .  Then for any valuation function v on X , for any 

point x  G X ,  and for and formula 0, it follows that

A t, a; lb (f> iff T , x \\-(j>

P roof: We proceed by induction on the complexity of the wff cf>. The cases 

for the boolean connectives is trivial, so we consider only the modal case. 

Let <j> =  Dip Observer that the relation -< has the property that -^-successors
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of a point x  are exactly the smallest open set containing x. Moreover, in any 

Alexandroff space, Cty is true at x  if and only if x  is true in the smallest 

open set containing x. Consequently, we have shown that M .,x  lb D'tp iff 

r ,  xt t -Dip m

Now the topological completeness theorem we are after follow readily.

T h eo rem  13: S4 is complete with respect to all Alexandroff topological 

models.

P roof: Consider any S4-consistent set of formulas I \ Let T+ be the max

imally consistent extension of V. T h eorem  5 proves that T is satisfied on 

pre-ordered frames. B y  T h eorem  10, we know that there is an isomorphic 

relation between pre-orders on X  and Alexandroff spaces on X .  Thus, to 

prove this theorem it is enough to take the corresponding Alexandroff space 

as our model. This model will satisfy T and thus completes the proof.
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Here we want to give a proof of Alexandroff’s one-point Compactification
i

using the properties of our new topological interpretation of modal logic.

Recall that a topological space {X', r') is a subspace of a topological space 

(X , t )  if, (1) X ' C I  and, (2) r' =  r  \ X \  read the restriction of r  to X ' . 

We say that a topological space is compact if every open covering A  of X  

contains a finite subcover. That a space is compact is equivalent to saying 

that for every indexed family of closed subsets of ( X, r ) ,  if for every

finite J  C / ,  p| .€3 Tj ^  0, then p|i6/ r* ^  0. The if part of the conditional is 

called the finite intersection property and the consequent of the conditional 

is simply called the intersection property. Thus, compactness may be stated 

as requiring that every family of closed sets which has the finite intersection 

property also has the intersection property. We will call a topological space 

strongly compact iff for each for every indexed family of open subsets {O i}i€j, 

whenever (Ji6/ O i =  X ,  there exists an i G I  such that O i =  X.  The dual for 

closed sets is the statement that for every indexed family of closed subsets 

if for every i G I , Q  ^  0, then f ) iG/ Q  ±  0. [Rasiow 1]
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3.3 One-Point- Com pactification

Any boolean algebra with a unary operator that satisfies Kuratowski’s axioms 

is called a closure-algebra. If one wants to put the emphasis on the interior 

operator, the algebra is called an interior algebra. Boolean algebra like those 

described were introduced by Tarski and Mckinsey. It should be clear that 

there is a direct correspondence between the axioms of S4 and the and the 

interior axioms above. Given this correspondence, we wish to prove two 

topological theorems which have nice modal analogues. The first is a closure 

algebraic version of the so-called one-point Compactification theorem.

T h eorem  14 (One-point-Compactification): Every topological space is an 

open subspace of a strongly compact space X q  such that X o \  X  is a one 

point set and the class of all open subsets of X q  is composed of Xo and all 

open subsets of X

P r o o f  1: Let X  be a topological space. Let x 0 be a arbitrary element such 

that x  X.  Set X q  =  X  U { x q }  and let

(1) m^o(Xo) =  X q

(2) into(Y  U {x0}) =  in t(Y) ,  for every Y  C X,
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(3) in t0(Y)  =  in t(Y) ,  for every Y  C l

where int  is the interior operator on the space X . It is clear that intoi s an 

interior operation on X 0 and that the open sets in X q are the open subsets of 

X  and the set Xoi tself. In particular, the X is an open subset of X 0. Thus, 

if the union of an arbitrary family of open set in X 0 is equal to X 0, then x0 

belongs to this union and hence xq belongs the at least one of the sets in the 

union. However, there is only one open set containing x 0 which is the whole 

space Xo, Subsequently, it follows that at least one of the elements of the 

union must equal Xoand thus X 0i s strongly compact. ■

The modal version is the following.

T h eorem  15: Let T  — (X , cl) be a k-frame where X  is non-empty and cl 

is a the closure operator. T  =  (X, cl) is a topological space and (X , cl) is a 

subspace of a strongly compact topological space (X 7, cl') such that X '  \  X  

is a one-element set and is closed.

P r o o f  2: Let Xq be any point not in X , and let X '  =  X  U {a:o}. Define 

cl'{X)  =  c/(X ) U {:ro}- By the way we defined cl', it is clear (X ,cl) is a 

subspace of (X ' , c l ') and is closed. ■
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3.4 Conclusion

Our aim in this essay was to establish several completeness results on the 

modal logic S4. We wanted to avoid the traditional possible world semantics 

that has dominated intensional logics. With this in mind, we striped away 

the philosophical nuances inherited by the metaphysics of possible worlds and 

investigated only the underlying pre-order frame of S4. We then extended the 

standard completeness proof for this logic by showing that any pre-ordered 

frame can be transformed into a partially-ordered tree and that this new 

model is a model for S4. Consequently, we were able to establish that S4 

is complete with respect to the class of partially ordered trees. The second 

extension was the observation that there is a one-to-one relationship between 

pre-orders on a set X and Alexandroff topologies on X. Having established 

this relationship, it becomes possible to take any S4 frame who’s underlying 

frame is a pre-ordered set and substitute it for its corresponding Alexandroff 

space. We then construct a model on Alexandroff space which gives us a 

topological model for S4 and thus a new proof of completeness for S4 with 

respect to the class of all Alexandroff topological models.
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