An Input Output Study for The Omaha SMSA

J. D. Stolen
University of Nebraska at Omaha
P. C. Chang
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/cparpubarchives
Part of the Demography, Population, and Ecology Commons, and the Public Affairs Commons

Recommended Citation

Stolen, J. D. and Chang, P. C., "An Input Output Study for The Omaha SMSA" (1969). Publications Archives, 1963-2000. 16.
https://digitalcommons.unomaha.edu/cparpubarchives/16

AN INPUT OUTPUT STUDY FOR THE OMAHA SMSA

J. D. Stolen
P. C. Chang
Omaha Urban Areas Research ProjectThe Center for Urban AffairsWayne Wheeler, Director
University of Nebraska at OmahaOctober 1969

THE OMAHA SMSA
J. D. Stolen
P. C. Chang

The Center for Urban Affairs Wayne Wheeler, Director University of Nebraska at Omaha Omaha, Nebraska 68101
October 1969

The Center for Urban Affairs is a joint undertaking of the College of MedicIne of the Unlversity of Nebraska, Omaha the Lincoln Campuses of the Unlversity of Nebraska, and the Universlty of Nebraska at Omaha.

Copyright, 1969, The Center for Urban Affairs, the University of Nebraska at Omaha. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the publisher.

ACKNOWJEDGEMENTS

Grateful acknowledgement is made to Masoud Hariri, Jon Empson, and Rollin Williams, for their assistance in obtaining and processing the data and to Linda Harder for her work in typing the tables and manuscript.

TABLE OF CONTENTS

PAGE
Acknowledgements ii
List of Tables iv
Introduction 1
Purpose of Study 1
General Approach 2
Basic Findings 10
Transactions Table 10
Direct Requirements Table 20
Total Requirements Table 20
Income Multipliers 21
Predictions of the Omaha Area Output for 1975 and 1990 27
Final Summary 34
Appendix A - Industry Classification for the 1963 Omaha Input-Output Study 38
Appendix B - Table XIII. A Reduced U. S. Transaction Table, 1958 (\$1,000) 41
Appendix C - Table XIV. Direct Production Requirement, Omaha SMSA, 1963 42
Appendix D - Table XV. Interindustry Transactions Table, Omaha SMSA, 1963 (\$1,000) 43
Appendix E - Table XVI. Direct Requirements Table on the Basis of Total Supply, Omaha SMSA, 1963 44
Appendix F - Table XVII. Total Requirements Table, Omaha SMSA, 1963 45

LIST OF TABLES

TABLE
PAGE
I. Hypothetical Input-Output Table (figures in millions of dollars) 3
II. Relative Importance of the Industries in the Omaha SMSA, 1963, According to Output (Stolen) 11
III. Relative Importance of the Industries in the Omaha SMSA, 1963, According to Output (Chang) 13
IV. Relative Importance of the Industries in the Omaha SMSA, According to Value-Added (Stolen) 16
V. Relative Importance of the Industries in the Omaha SMSA, According to Value-Added (Chang) 17
VI. Net Exports and Imports of the Omaha SMSA, 1963 19
VII. Income Interactions in the Omaha SMSA, 1963 22
VIII. Income Interactions - Food and Kindred Products Industry - Output Change Equals $\$ 167,947,000$ 26
IX. Projected Output of the Omaha SMSA, 1975 ($\$ 1,000$) (Stolen) 28
X. Projected Output of the Omaha SMSA, $1975(\$ 1,000)$ (Chang) 29
XI. Projected Output of the Omaha SMSA, $1990(\$ 1,000)$ (Stolen) 30
XII. Projected Output of the Omaha SMSA, 1990 ($\$ 1,000$) (Chang) 31

INTRODUCTION

Purpose of Study

This study is an extension and refinement of a previous report on the Omaha Standard Metropolitan Statistical. Area (SMSA) by Perry P. Chang. 1 The present study makes three major changes in Chang's report, in that it obtains output and value added of industries in the Omaha area, exports and imports of the industries, certain income multipliers, forecasts of output in the Omaha area for 1.975 and 1990, and compares the three results with Chang 's.

The major change in the present case deals with local output by industry, which was obtained partially by a direct sampling of firms in the Omaha SMSA and partially by recourse to regional data, as opposed to interpolation from national figures in the provisional report. A detailed breakdown of the final demand sector in this study into personal consumption expenditures, federal government purchases, state and local government purchases, gross private fixed capital, other final demand, and regional exports is another important difference. An extension of the present study is that it gives output multipliers for all industries, whereas the former report looked specifically at only the Food and Kindred Products industry. Finally, both studies forecast the output of the Omaha SMSA for 1975 and 1990.

[^0]With the exceptions mentioned above, the two models are basically the same, both being based on the Leontiff input-output system, as explained in various sources. ${ }^{2}$ Basically input-output analysis shows to whom industry sells its output, and from whom it obtains its inputs. On the one hand, the total demand or gross output of an industry comprises the output sold to other local industries (intermediate demand), the output sold to households, federal, state and local government, to business for final use (local final demand), and output sold to other regions (exports). ${ }^{3}$ On the other hand, the total supply or gross inputs for an industry constitutes the inputs from other industries in the region (intermediate supply), the inputs from primary sources (the factors of production), and inputs from other regions (imports). 4

In order to better understand these concepts, Table I presents a hypothetical numerical example of an input-output table for an economy with three industries, agriculture, manufacturing and services. The table shows the supply (or inputs) for each industry vertically and the demand (or outputs) of each industry horizontally. For example, agriculture has obtained $\$ 10$ million of inputs from itself, $\$ 25$ million from manufacturing and $\$ 15$ million from services for a total intermediate supply of $\$ 50$ million.

[^1]TABLE I
HYPOTHETICAL INPUT-OUTPUT TABLE (FIGURES IN MILLIONS OF DOLLARS)

	Intermediate Demand			Total intermediate use	$\begin{aligned} & \text { Local } \\ & \text { final } \\ & \text { demand } \end{aligned}$		Exports	Total demand
	Agriculture	Manufacturing	Services					
Agriculture	10	20	5	35	65	100	--	100
Manufacturing	25	25	15	65	45	110	5	115
Services	15	10	30	55	65	120	10	130
Intermediate Supply	50	55	50	155				
Value Added**	40	60	80					
Total Local Supply	90	115	130					
Imports	10	--	-					
Total Supply	100	115	130					345

*Local final demand $=$ Consumption plus Investment plus Government Expenditures.
** Va
Indirect $=$ Wages plus Rent plus Interest plus Profits (and in this study Depreciation plus Indirect Business Taxes).

It also obtained $\$ 40$ million worth of primary inputs and $\$ 10$ million of imports for a total local supply and total supply of $\$ 90$ million and $\$ 100$ million worth of inputs respectively. Agriculture sold $\$ 10 \mathrm{milli}$ (m wrth of goods to itself, $\$ 20$ million worth to manufacturing, and $\$ 5$ million to services, for a total intermediate output of $\$ 65$ million. It also sold $\$ 65$ million worth for final use and exported none for a total local demand and total demand of $\$ 100 \mathrm{million}$.

It should be noted that the above table also gives figures for gross national product (GNP) based on either the expenditures approach or the income approach. By the former method, GNP = consumption plus investment plus government spending plus net exports which equals (in terms of the table) local final demand plus net exports, i. e., $65+45+65+(15-10)=$ 180. The latter method defines $G N P=$ National Income + Indirect Business Taxes + depreciation, which equals (in terms of the table) value added, i. e., $40+60+80=180$.

In this study, exports are net exports; i. e., the excess of total local supply over total local demand, and imports are net imports; i. e., the excess of total local demand over total local supply. In addition, the value of the primary inputs is composed of wages, rent, interest, profit, depreciation, and indirect business taxes. Local final demand is made up of consumption, federal, state and local government purchases, gross private fixed capital formation, and other demand and regional exports. Finally, as in all input-output studies, total supply $=$ total demand.

The basic tables of input-output analysis are the transactions table, which summarizes the inputs and outputs of all industries, and the total requirements table, which shows the total effects of a change in industry final demand on the total supply of the industry. In addition,
another table--the direct requirements table--is important in obtaining the total requirements table from the transactions table. The transactions table is used in obtaining output, value added, exports and imports of industries, while the total requirements table is employed in calculating output multipliers for the industries and both are applied in securing industry forecasts.

In order to derive the Omaha SMSA transactions table, certain steps had to be carried out. First, industries in Omaha had to be aggregated into a number large enough to give sufficient detail, yet small enough to ease the mathematical calculations involved. Therefore, the Omaha area was grouped into thirty industries based on the 1958 United States inputwoutput study classification and on the Standard Industrial Classification (SIC). 5 The thirty industries and their sources are given in Appendix A, which has been reproduced from Chang's study.

Next, the eighty-seven industries of the 1958 United States Transactions Table had to be reduced to the thirty Omaha industries which gave a "Reduced United States Transactions Table" (Appendix B). 6 The "Direct Production Requirements Table" for Omaha (Appendix C) was obtained from the "Reduced United States Transactions Table" by dividing the different inputs of each industry by the total supply of the respective industries. 7
${ }^{5}$ National Economics Division Staff, "The Transactions Table of the 1958 Input-Output Study and Revised Direct and Total Requirements Data," Survey of Current Business, Vol. 45, No. 9, 1965, pp. 33ff; Fortune Marketing Division, "Fortune's 1966 Input-Output Coefficients," Fortune, 1967.

6This table is also reproduced from the Chang study, Appendix B.
${ }^{7}$ Appendix C is reproduced from the Chang study.

Two assumptions are implied by these calculations: that each industry has a linear homogeneous production function-minputs and outputs change in direct proportion to each othermand that the technology of the Omaha Area is assumed to be the same as the national average - the national relationships between inputs and outputs hold on the local level. 8

The first major methodological difference between the preliminary report and the current study occurred with the next step, which was to obtain "control totals" for local production of the industries and for local final demand for the goods or services. The former report obtained local output of industries by interpolation from national figures, whereas the latter used both sample and regional data in the majority of the industries. As discussed below, sample data (found by means of a questionnaire) was used in nine industries, regional data (obtained from Census data and previous reports) was used in thirteen industries, and national data (acquired from Chang's report) was used in eight industries.

It was decided that before sample output data for an industry could be used, it would have to satisfy certain conditions: at least a $1 / 3$ response from the firms in the industry, a composite sample of firm size in the industry, and finally, a qualitative evaluation as to the reliability of the data. If all these criteria were not satisfied, other sources were used. As a result, sample results were used for only 9 of the 30 industries. 9 With the exception of the Utilities industry, the control totals (industry
${ }^{8}$ An attempt was made to obtain local values for the technical requirements, but inadequate questionnaire and interview results precluded this.
${ }^{9}$ The industries were: Apparel and Related Products, Food and Kindred Products, Paper and Allied Products, Chemicals and Allied Products, Fabricated Metal Products, Electrical Machinery, Transportation Equipment, Miscellaneous Manufacturing and Utilities.
outputs) were calculated by first finding the value of shipment per employee from the questionnaire and then multiplying the total Omaha SMSA employment for each industry classification by the value of shipment per employee, which gave total outputs for the industries. Since there were 100% returns from the sample for the Utilities industry, the figure from the sample was used as the total output.

Total output of Other Agricultural Products and the Livestock and Livestock Products industry was obtained from a publication of the Omaha Urban Areas Research Project. ${ }^{10}$ Census data for the Northwest Central Region yielded the control totals in eleven other industries. ${ }^{11}$ It was felt that this data would be an improvement over the national figures, because it was obtained from the region in which Omaha is located. Again, the same basic methodology was used: for each industry the value of shipment/employee was obtained and then multiplied by industry employment to give the output of the industry. Finally, the remaining industry classification used the same output figures as in the Chang report. ${ }^{12}$ In these cases sample data was not reliable and regional data was not available.

Local final demand was broken down into Personal Consumption Expenditures, Federal, State and Local Government Purchases, Gross Private Fixed

10
Harold J. Retallick and Charles R. Gildersleeve, Geographic Background Report No. ㄱ, Omaha's Agricultural Core Region (Omaha: Urban Studies Center, University of Omaha, 1967).

11 Lumber and Wood Products, Furniture and Fixtures, Printing and Publishing, Petroleum and Coal Products, Rubber and Plastics, Leather and Leather Goods, Stone, Clay and Glass Products, Primary Metals, Nonelectric Machinery, Instruments and Related Products.

12 Mining, New Construction, Maintenance and Repair Construction, Retail and Wholesale Trade, Finance and Insurance, Real Estate and Rentals, Services, Undistributed.

Capital Formation, Other Final Demand and Regional Exports; and the Control totals were found for the sectors. Personal Consumption Expenditures for Omaha, for example, were estimated at 79.7% of Personal Income, this estimate being obtained from direct correspondence with the United State Department of Commerce. Personal Consumption Expenditures were allocated to the eighty-seven industry classifications of the 1958 United States inputoutput study and then aggregated to correspond to the thirty industry classifications of the study.

The Average Federal Purchases per employee was computed from the questionnaire, and then was multiplied by total federal employment in the area to give a "control total" for Federal Purchases. This total was then allocated to the various industries by the method used for personal consumption expenditures. Because State and Local Governments did not respond to the questionnaire, the Census of Governments, 1962, was used to obtain per capita local and state government expenditures. This figure was multiplied by the total population of the Omaha SMSA to give total state and local government expenditures which was then used to obtain expenditures per industry.

An estimate of Gross Private Fixed Capital Formation was computed indirectly from the Input-Output Study of Nebraska done by the University of Nebraska. ${ }^{13}$ The values for each Omaha Industry were obtained by multiplying the ratio of Omaha employment to total state employment by the value of Gross Private Fixed Capital Formation for Nebraska and allocating

[^2]this figure among Omaha industries. Other final demand--exports to foreign countries-was obtained from the 1958 United States Input-Output Study which gave the "other final demand per industry." This figure was multiplied by the percent of United States employment in the Omaha SMSA to obtain exports of the Omaha area. Finally, regional exports, which were a balancing item, were found by comparing total demand and total supply. If total demand was greater than total supply, there were net imports and a balancing figure was added to the respective column while, if total supply was greater than total demand, there were net exports and a balancing figure was added to the respective row.

When the industry control totals were multiplied by the corresponding input coefficients of the Direct Requirements Table (Appendix C) and the final demand figures (as discussed above) were appended to this table, the transactions table for the Omaha SMSA (Appendix D) was obtained. As stated above, this was one of the two major tables from which results of the study were calculated. Appendix C was then modified--to show the different inputs of the industries, including net imports, as a ratio of total supply-by dividing the original ratios by $1+m_{j}$ where m_{j} is the import ratio of the said industry. The primary reason for this calculation (Appendix E) was to obtain Appendix F--Total Requirements Table-Omaha SMSA. It was found by an inversion process (a matrix manipulation) involving Appendix E. The Total Requirements Table, the second of the major tables, shows the total effect of a change in final demand on the total supply of the respective industries.

Thus far, this study has indicated the basic similarities and differences with the Chang study. It has also explained briefly the basic
input-output model used in the study, and indicated the derivation of the two basic tables for the study. To obtain the transactions table for the Omaha SMSA, the industries had to be classified, from which a reduced United States Transactions Table and Direct Requirements Table were found. Then, after calculating control totals for industry output and final demand, the Omaha Transactions Table (Appendix D) was attained. The direct requirements table for the United States yielded a direct requirements table for Omaha (when imports were included) which, when inverted, gave the Total Requirements Table for Omaha (Appendix F), the second major table of the study.

BASIC FINDINGS

In this section the basic findings of the study are presented and compared to the findings of the provisional report. This takes the form of looking first at the output, value added and exports and imports of the industries as embodied in the transactions table, then at the income and employment multipliers as obtained from the total requirements table and finally at forecasts of output for the Omaha area for 1975 and 1990, calculated from both tables.

Transactions Table

Table II, obtained from the transactions table, shows total output for each industry, as well as for the area as a whole. It indicates that the output of Food and Kindred Products, Retail and Wholesale Trade, Finance and Insurance, and Services comprised almost 60% of the $\$ 3.5$

TABLE II
RELATIVE IMPORTANCE OF THE INDUSTRIES IN THE OMAHA SMSA, 1963, ACCORDING TO OUTPUT

Rank	Industries	$\begin{gathered} \text { Output } \\ \text { (} \$ 1,000) \\ \hline \end{gathered}$	Output as \% of Total Production
1	Food and Kindred Products	865,298	24.48
2	Retail and Wholesale Trade	470,247	13.30
3	Finance and Insurance	387,167	10.95
4	Services	356,023	10.07
5	Real Estate and Rentals	231,958	6.56
6	New Construction	172,048	4.87
7	Undistributed	161,276	4.56
8	Transportation and Warehousing	147,550	4.17
9	Electric Machinery	135,861	3.84
10	Utilities	107,517	3.04
11	Livestock and Livestock Products	97,760	2.77
12	Maintenance and Repair Construction	57,348	1.62
13	Fabricated Metal Products	43,516	1.23
14	Chemicals and Allied Products	42,140	1.19
15	Nonelectric Machinery	41,388	1.17
16	Printing and Publishing	37,426	1.06
17	Primary Metals	24,551	. 69
18	Paper and Allied Products	23,636	. 67
19	Transportation Equipment	23,526	. 65
20	Miscellaneous Manufacturing	22,539	. 64
21	Stone, Clay and Glass Products	16,349	. 46
22	Other Agricultural Products	15,513	. 44
23	Furniture and Fixtures	15,407	. 44
24	Petroleum and Coal Products	10,536	. 30
25	Apparel and Related Products	9,120	. 26
26	Rubber and Plastics	8,385	. 24
27	Lumber and Wood Products	5,493	. 16
28	Mining	3,420	. 10
29	Instruments and Related Products	1,102	. 03
30	Leather and Leather Goods	1,014	. 03
		3,535,114	99.99*

billion output of the Omaha area in 1963; while the top ten industries (excepting Real Estate and Rentals, and Undistributed) accounted for almost three-fourths of Omaha's total output. ${ }^{14}$ The fact that manufacturing industries--other than Food and Kindred Products--provided only 13\% of the total output implies that the Omaha area has not developed a strong manufacturing base. ${ }^{15}$

Thus, the conclusion that Omaha is basically a Food Processing, Trade, Insurance and Service Center with an otherwise weak manufacturing base is similar to that of Chang's study. Even though this general conclusion is the same, there are some specific divergencies that occurred in particular industries. First, Food and Kindred Products output amounted to $\$ 865$ million in this study as opposed to $\$ 629$ million in Chang's study (Table III). In the latter study, total output of the industry was found by multiplying United States average value of shipment per employee with the corresponding employment level for the Omaha SMSA in 1963, while output of the former was found by multiplying average value of shipment per employee (obtained from a sample of Omaha firms) with the corresponding employment level for the Omaha SMSA in 1963. The higher output in this study is thus due to the higher average value of shipment per employee

14
Real Estate and Rentals, and Undistributed were excluded from the above industries because their value is artifically inflated--the former because of the inclusion of imputed rents of owner occupied farm and nonfarm homes--the latter because it is really a catchall for all industries not included in the other twenty-nine.

15
These industries included: Apparel and Related Products, Lumber and Wood Products, Furniture and Fixtures, Paper and Allied Products, Printing and Publishing, Chemicals and Allied Products, Petroleum and Coal Products, Rubber and Plastics, Leather and Leather Goods, Stone, Clay and Glass Products, Primary Metals, Fabricated Metals, Nonelectric Machinery, Electric Machinery, Transportation Equipment, Instruments and Related Products, Miscellaneous Manufacturing.

TABLE TYI
RELATIVE IMPORTANCE OF THE INDUSTRIES IN THE OMAHA SMSA, 1963, ACCORDING TO OUTPUT

Rank	Industries	$\begin{gathered} \text { Output } \\ (\$ 1,000) \\ \hline \end{gathered}$	Output as \% of Total Production
1	Food \& Kindred Products	629,208	19.13
2	Retail \& Wholesale Trade	470,247	14.30
3	Finance \& Insurance	387,169	11.77
4	Services	356,020	10.83
5	Real Estate \& Rentals	231,959	7.05
6	New Construction	172,048	5.23
7	Undistributed	161,278	5.09
8	Utilities	133,991	4.07
9	Transportation \& Warehousing	112,924	3.43
10	Livestock \& Livestock Products	94,445	2.87
11	Electric Machinery	88,288	2.69
12	Chemical \& Allied Products	58,161	1.77
13	Maintenance \& Repair Construction	57,350	1.74
14	Printing \& Publishing	45,139	1.37
15	Fabricated Metal Products	39,582	1.20
16	Transportation Equipment	38,355	1.17
17	Non-electric Machinery	37,846	1.15
18	Primary Metals	36,143	1.10
19	Paper \& Allied Products	28,658	0.87
20	Miscellaneous Manufacturing	24,330	0.74
21	Other Agricultural Products	18,835	0.57
22	Stone, Clay \& Glass Products	14,776	0.45
23	Furniture \& Fixtures	14,063	0.43
24	Apparel \& Related Products	9,728	0.30
25	Petroleum \& Coal Products	9,614	0.29
26	Rubber \& Plastics	7,030	0.21
27	Lumber \& Wood Products	5,718	0.17
28	Mining	3,417	0.10
29	Instruments \& Related Products	1,182	0.03
30	Leather \& Leather Goods	1,003	0.03
		3,288,418	100.00

found in the sample, which may result from a higher level of technology in the industry locally, than in the economy as a whole.

Another difference of output in the studies arose in the Electrical Machinery industry, where the present study found output to be $\$ 135$ million compared to $\$ 88$ million in the Chang study. Since the value of output in the present study was obtained from sample returns comprising 98% of the industry, it was felt to be more indicative of local output. Sample returns of over 50% in the cases of Paper and Allied Products, Transportation Equipment, and Chemical and Allied Products gave credence to the output results of the present study, in spite of substantial differences when compared to Chang's study where the U. S. average value of shipment per employee was used.

Differences in output for Printing and Publishing, Stone, Clay and G1ass Products, and Primary Metals occurred because the present study made use of census data for the Northwest Central Region as contrasted to census data for the entire economy in the Chang study. It was felt that the geographically more specific data yielded more accurate results than the corresponding data for the nation as a whole.

In Chang's study the value of Other Agricultural Products yielded output of $\$ 9.3$ million as opposed to $\$ 7.6$ million in the present study. In this case, the difference is essentially definitional. In Chang's report, Other Agricultural Products included Forestry and Fishery Products, and Agricultural, Forestry and Fishery Services, while in the present work it included only Value of All Crops Sold. Finally, a definitional difference is also the reason for the discrepancies in the Utilities and Transportation and Warehousing industries. In the former industry, Chang's
report indicated output of $\$ 133$ million, compared to the present study's \$107 million; the Transportation and Warehousing industry had an output of $\$ 112.9$ million in Chang's study compared to $\$ 147.5$ million in the present one. The difference can be explained by the inclusion of the Communications industry in the Utilities industry in Chang's study and in the Transportation and Warehousing industry in this study. 16

Table IV yields more results reproduced from the Transactions Table (Appendix D) --total value added of the Omaha area and value added by industries. As mentioned above, total value added gives an estimate of total Gross National Product for the area, and the value added by each industry gives the contribution toward that Gross National Product by the respective industries. From the table, the top four industries-Retail and Wholesale Trade, Food and Kindred Products, Finance and Insurance and Services--yielded better than 55% of the Area's Value Added, while the top ten--excluding Real Estate and Rentals and Undistributed--contributed better than 70\%. With the exception of Food and Kindred Products, Manufacturing's share was only 10.9%. ${ }^{17}$

These results generally agree with Chang's (Table V), where the top four industries accounted for almost 55%; the top ten industries, excluding Real Estate Rentals and Undistributed, determined 69% and manufacturing (other than Food and Kindred Products) accounted for 11.7% of total value added. In both studies the ranking of industries according to value added

16 These definitional changes were necessary to maintain consistency with the previously established coefficients and industry classifications.
${ }^{17}$ See footnote 15.

TABLE IV

RELATIVE IMPORTANCE OF THE INDUSTRIES IN THE OMAHA SMSA, 1963, ACCORDING TO VALUE-ADDED

Rank	Industries	Value-Added (\$1,000)	Value-Added as Per Cent of Total
1	Retail and Wholesale Trade	340,683	19.60
2	Food and Kindred Products	220,813	12.70
3	Finance and Insurance	216,866	12.48
4	Services	187,964	10.81
5	Real Estate and Rentals	167,859	9.66
6	Undistributed	124,455	7.16
7	Transportation and Warehousing	96,495	5.55
8	Electric Machinery	61,221	3.52
9	New Construction	61,067	3.51
10	Utilities	52,532	3.02
11	Maintenance and Repair Construction	35,121	2.02
12	Livestock and Livestock Products	35,513	1.93
13	Nonelectric Machinery	18,374	1.06
14	Printing and Publishing	17,672	1.02
15	Fabricated Metal Products	17,566	1.01
16	Chemicals and Allied Products	16,610	. 95
17	Primary Metals	8,749	. 50
18	Paper and Allied Products	8,386	. 48
19	Transportation Equipment	8,379	. 48
20	Stone, Clay and Glass Products	8,156	. 47
21	Miscellaneous Manufacturing	7,697	. 44
22	Other Agricultural Products	7,684	. 44
23	Furniture and Fixtures	6,555	. 38
24	Rubber and Plastics	3,621	. 21
25	Apparel and Related Products	3,323	. 19
26	Petroleum and Coal Products	2,112	. 12
27	Mining	1,941	. 11
28	Lumber and Wood Products	1,780	. 10
29	Instruments and Related Products	573	. 03
30	Leather and Leather Goods	416	. 02
		1,738,143	99.97*

TABLE V
RELATIVE IMPORTANCE OF THE INDUSTRIES IN THE
OMAHA SMSA, 1963 , ACCORDING TO VALUE-ADDED

Rank	Industries	$\begin{aligned} & \text { Value-Added } \\ & (\$ 1,000) \end{aligned}$	Value-Added as Per Cent of Total
1	Retail \& Wholesale Trade	340,683	20.47
2	Finance \& Insurance	216,886	13.03
3	Services	187,964	11.30
4	Real Estate \& Rentals	167,859	10.09
5	Food \& Kindred Products	160,566	9.65
6	Undistributed	124,455	7.48
7	Transportation \& Warehousing	73,850	4.44
8	Utilities	65,467	3.93
9	New Construction	61,067	3.67
10	Electric Machinery	39,782	2.39
11	Maintenance \& Repair Construction	35,121	2.11
12	Livestock \& Livestock Products	32,377	1.95
13	Chemicals \& Allied Products	22,926	1.38
14	Printing \& Publishing	21,315	1.28
15	Non-electric Machinery	16,802	1.01
16	Fabricated Metal Products	15,969	0.96
17	Transportation Equipment	13,660	0.82
18	Primary Metals	12,880	0.77
19	Paper \& Allied Products	10,166	0.61
20	Other Agricultural Products	9,331	0.56
21	Miscellaneous Manufacturing	8,370	0.50
22	Stone, Clay \& Glass Products	7,372	0.44
23	Furniture \& Fixtures	5,984	0.34
24	Apparel \& Related Products	3,545	0.21
25	Rubber \& Plastics	3,036	0.18
26	Mining	1,941	0.12
27	Petroleum \& Coal Products	1,927	0.12
28	Lumber \& Wood Products	1,852	0.11
29	Instrument \& Related Products	561	0.03
20	Leather \& Leather Goods	412	0.02
		1,664,070	100.00

was similar to that of output with the exception of the Food and Kindred Products, and Retail and Wholesale Trade. The former accounted for 24.5% of output and only 12.7% of value added, while the latter accounted for 13.3% of output but 19.6% of value added in the present report. In Chang's study, output in the Food and Kindred Products industry was 19.1% of output and only 9.7% of value added, while the Retail and Wholesale Trade accounted for 14.3% of output, but 20.5% of value added.

The Transactions Table also provides figures on net exports and net imports for the area (Table VI). The figures show net exports--totaling \$1.04 billion--for seven of the thirty industries and net imports--totaling \$865 milifon-for twenty-three of the thirty industries, leaving a net export surplus of $\$ 177$ million for 1963. The largest exporter in that year was the Food and Kindred Products industry, followed by Finance and Insurance and Retail and Wholesale Trade. Food and Kindred Products exports amounted to 52.4%, while the three together had 86.2% of all the net exports. In addition, the weakness of the Omaha area's manufacturing base is evidenced by the 43.5% of net imports by this (other manufacturing) segment. These figures again emphasize the importance of Food Processing, Finance and Insurance and Retail and Wholesale Trade to the area.

The fact that since 1963 there has been an exodus of food processing firms from the Omaha area implies that the area is no longer enjoying an export surplus. As a result, an effort should be made to maintain and bolster the export surplus industries and improve import substitution, particularly where local demand is quite heavy (e. g., Miscellaneous Manufacturing, Apparel and Related Products and Nonelectric Machinery). This will be discussed in greater detail in the section entitled, "Prediction of the Omaha Area Output for 1975 and 1990."

TABLE VI
NET EXPORTS AND IMPORTS OF THE OMAHA SMSA, 1963

Exports		Imports	
Description	$\begin{gathered} \text { Value } \\ (\$ 1,000) \end{gathered}$	Description	$\begin{gathered} \text { Value } \\ (\$ 1,000) \\ \hline \end{gathered}$
Food \& Kindred Products	545,608	Livestock \& Livestock Products	146,956
Finance \& Insurance	229,680	Other Agricultural Products	109,008
Retail \& Wholesale Trade	122,238	Transportation Equipment	94,659
Electric Machinery	58,785	Undistributed	83,294
Services	52,552	Petroleum \& Coal Products	46,274
Utilities	26,440	Miscellaneous Manufacturing	44,815
New Construction	6,562	Apparel \& Related Products	44,316
		Primary Metals	34,448
		Fabricated Metal Products	30,183
		Paper \& Allied Products	26,095
		Nonelectric Machinery	24,802
		Transportation \& Warehousing	24,190
		Mining	23,340
		Stone, Clay \& Glass Products	18,017
		Real Estate \& Rentals	18,011
		Rubber \& Plastics Products	17,853
		Printing \& Publishing	16,804
		Lumber \& Wood Products	15,387
		Instruments \& Related Products	15,603
		Chemicals and Allied Products	14,728
		Leather \& Leather Goods	8,785
		Maintenance \& Repair Construction	- 6,029
		Furniture \& Fixtures	1,449
		Total Imports	864,606
		Export Surplus	177,259
Total	1,041,865		,041,865

The direct requirements table, Appendix E, was obtained next. Reading down the columns of this table, the figures indicate the dollar amounts of inputs necessary to produce $\$ 1$ worth of output. For example, the elements in the Livestock and Livestock Products column (in the Transactions Table), when divided by the total supply of livestock and livestock products, indicate that in order to produce one dollar's worth of output, the industry must purchase 33 c worth of intermediate inputs from within the industries; 18¢ worth of primary inputs such as land, labor and capital and import 49¢ worth of inputs from outside the Omaha SMSA.

Total Requirements Table

In order to estimate the total effects resulting from the buying and selling activities of different industries in the area, recourse is made to the following type of reasoning:

Total Output - Output for Intermediate Use $=$ Output for Final Use $\mathbf{T}-\quad \mathbf{I} \quad=\quad \mathbf{F}$
where T, I and F are 30×1 column vectors representing the 30 industries. In addition, $I=A \cdot T$ where A is the 30×30 matrix of interindustry transactions in the direct requirements table (Appendix E) above. Therefore, $T-A \cdot T=F$ and $(I-A) T=F$ where I is a 30×30 identity matrix. Thus, $(I-A)^{-1} F=T$ and $(I-A)^{-1}$ shows the direct and indirect requirements per dollar of final demand. In other words, the total requirements table is obtained from the direct requirements table by subtracting the interindustry transactions matrix from an identity matrix and inverting the resulting matrix.

The Total Requirements Table (Appendix F) shows the direct and indirect requirements per dollar of final demand. Thus, the column headed Livestock and Livestock Products indicates the gross output from each of the industries required to produce one dollar of final demand in the output of livestock and livestock products. The other columns have a similar interpretation. In this study the total requirements table is used to obtain income multipliers for each industry, and predictions of Omaha's output in 1975 and 1990 , at 3.5% and 4% growth rates of final demand for each year. Turning first to the income multipliers, their calculation will be discussed, their results will be presented, and their application will be studied within the context of the Armour closing.

Income Multipliers. The initial impact of a change in final demand on an industry is on the income of the industry; the idea being that as output falls, less is paid out in the form of wages, rent, interest and profit. A value for this can be computed by multiplying the change in demand by the value added coefficient. Thus, if there is a $\$ 1$ million change in final demand in the Livestock and Livestock Products industry, there will be a drop of $\$ 136,950$ in income originating in the industry. This direct income change--change in final demand multiplied by the value added coefficients-is shown for the 30 industries in column one of Table VII.

There is also a secondary impact on an industry which arises because the change in output of the industry will affect the output of the industry's suppliers and their supplier's suppliers. Thus, a change in output of a given industry will affect, and in turn be affected by, changes in output of other industries.

TABLE VII
INCOME INTERACTIONS IN THE OMAHA SMSA, 1963

Industry*	1 Direct Income Change	2 Indirect Income Change	3 Direct** and Indirect Income Change	```Simple** Multi- plier```	5 Direct,** Indirect and Induced Income Change	6 Induced** Income Change	7 Tota1** Multiplier
1	. 14	. 08	. 22	1.63	.37	. 15	2.73
2	. 06	. 03	. 09	1.49	. 15	. 06	2.50
3	. 07	. 03	. 10	1.44	. 18	. 07	2.42
4	. 35	. 32	. 67	1.90	1.13	. 46	3.19
5	. 55	. 18	. 73	1.32	1.23	. 50	2.22
6	. 26	. 31	. 57	2.23	. 95	. 38	3.73
7	. 06	. 03	. 09	1.45	. 11	. 02	1.74
8	. 09	. 06	. 14	1.69	. 24	. 10	2.84
9	. 39	. 22	. 61	1.56	1.02	. 41	2.61
10	. 17	. 13	. 30	1.79	. 51	. 20	3.00
11	. 33	. 19	. 52	1.59	. 87	. 35	2.67
12	. 29	. 23	. 52	1.79	. 88	. 35	3.00
13	. 04	. 04	. 07	1.99	. 12	. 05	3.34
14	. 14	. 08	. 22	1.60	. 37	. 15	2.69
15	. 04	. 02	. 06	1.44	. 10	. 04	2.41
16	. 24	. 11	. 35	1.48	. 59	. 24	2.47
17	. 15	. 11	. 26	1.75	. 43	. 18	2.93
18	. 24	. 14	. 38	1.58	. 63	. 26	2.66
19	. 28	. 16	. 44	1.59	. 74	. 30	2.67
20	. 45	. 29	. 75	1.66	1.26	. 51	2.79
21	. 07	. 04	. 11	1.60	. 19	. 08	2.68
22	. 03	. 02	. 05	1.58	. 08	. 03	2.54
23	. 11	. 07	. 18	1.65	. 32	. 13	2.76
24	. 56	. 19	. 75	1.34	1.26	. 51	2.24
25	. 49	. 30	. 79	1.62	1.32	. 54	2.73
26	. 72	.19	. 92	1.27	1.54	. 62	2.13
27	. 56	. 36	. 92	1.64	1.54	. 62	2.75
28	. 67	. 17	. 84	1.26	1.41	. 57	2.11
29	. 53	. 28	. 81	1.53	1.35	. 55	2.56
30	. 51	. 09	. 60	1.17	1.00	. 40	1.97

*For listing of industries, see Appendix A.
**Any errors are due to rounding.

The coefficients in a particular column of the total requirements table (Appendix F) show this direct plus indirect effect on the output of all other industries of a change in output of the particular industry. For example, the element in row 2, column 1 , indicates that there would be a $\$ 122,980$ change in output of other agricultural products for a $\$ 1$ million change in output of livestock and livestock products. From this it follows that the direct plus indirect effects on income of a \$1 change in final demand for the particular industry is found by multiplying the various value added coefficients by their respective direct plus indirect effects on output and summing.

These direct and indirect effects on income due to a \$1 change in final demand are given in column three of Table VII. Column two gives the indirect effect-me direct and indirect effects minus the direct effect-and column four gives the simple income multiplier, the direct and indirect effect divided by the direct effect. This multiplier shows how much total income will change per unit change in income in the various industries; e. g., the Food and Kindred Products industry has a multiplier of 2.23, which indicates that if output in the industry changes by enough so that income changes by $\$ 1$ million this would result in a change in total Omaha income of $\$ 2.23$ million.

There is still a third and final impact on industries and the economy which must be considered. Thus far, the assumption has been made that the initial change in final demand leads to changes in output and income, but not to further changes in final demand. This, however, is an oversimplification, since, when a change in income occurs, it leads to a further change in some (or all, depending on the assumptions) components of final
demand. For example, as consumer income changes, one would expect a change in consumption to follow, and as business incomes change, one would expect a change in investment spending. For purposes of this study, the assumption is made that only consumption changes, i. e., investment and government expenditures are autonomous.

Thus, in addition to the direct and indirect changes in income discussed above, there are further induced changes resulting from changes in consumption, which lead to changes in output, which lead to changes in induced income, which lead to further changes in consumption, which lead to further changes in output and so on, round after round. There are two ways in which this information can be obtained: a direct method, used in this study, and an iterative procedure, used in the Chang study. In the former, the consumption and income relationships are directly integrated into the model by adding the consumption column and value added row to the intermediate use matrix. In effect, the consumer sector becomes another industry which supplies labor services and uses consumer goods as inputs.

This matrix corresponds to the intermediate transactions matrix discussed above, with the exception that now another row and column have been added. When it is subtracted from an identity matrix of the same order, and the result inverted, a matrix similar to the total requirements table above is obtained, with the exception that the matrix has an additional row and column. (This matrix has not been reproduced.) It has an interpretation similar to the Total Requirements Table discussed above. For example, the values in the first column indicate the output in each industry required per dollar of final demand for livestock and livestock products. The element in the household row--value added--of the column
indicates the direct, indirect and induced income effect of a dollar change in final demand.

This figure (element in the household row) is given in column five, Table VII, for the thirty industries. The induced effect--direct, indirect, and induced impact minus the direct and indirect impact, is given in column six and the total income multiplier, direct, indirect, and induced impact divided by the direct impact, is given in column seven. This multiplier gives the total change in income of the respective industries after all changes in output, income and consumption have occurred. For example, the Food and Kindred Products multiplier of 3.73 indicates that, for a dollar change in income in the Food and Kindred Products industry, there will be a $\$ 3.73$ change in income in the Omaha SMSA.

The analysis of multipliers in this study differed from the Chang study in two ways: the present study developed multipliers in all thirty industries, whereas the Chang study obtained them only for the Food and Kindred Products industry; this study calculated the total impact--direct plus indirect plus induced--and the total multiplier directly, whereas the Chang study computed the information from an iterative process. His method involved obtaining the initial change in demand which led to changes in output, which led to changes in income (the direct and indirect income effect), which in turn led to changes in consumption of the various industries' goods (based on a homogeneous consumption function), which led to changes in output, which led to changes in income (first round induced income change), which led to further changes in consumption, output and income, etc. Chang carried this procedure through three rounds, and the total induced effect was added to the direct and indirect effects; the
total multiplier was found by dividing this total impact by the direct impact.

Chang's purpose in carrying out these derivations was to obtain information pertaining to the closing of the Armour plant in Omaha. He found the direct income effect of the closing to be equal to Armour's output times the value added ratio for the Food and Kindred Products industry:

$$
167,947,000 \times .25519=42,858,395
$$

which is identical to the direct impact on income found in this study.
There is a slight discrepancy between the two studies with regard to the indirect and induced effects, and the simple and total multipliers. In the Chang study the direct and indirect impact is $\$ 100,385,000$; in this study it is $\$ 95,437,000$; the simple multiplier in the latter study was 2.23 and in the former 2.34. Finally, the total effect and total multipliers differed: in the Chang study the former was $\$ 167,823,000$, to $\$ 159,996,000$ in the present. The latter was 3.73 in this study and 3.91 in Chang's. Table VIII presents the relevant results for the two studies.

Table VIII
INCOME INTERACTIONS - FOOD AND KINDRED PRODUCTS
INDUSTRY - OUTPUT CHANGE EQUALS \$167,947,000
Chang's Study Present Study

Direct Income Effect	$\$ 42,858,000$	$\$ 42,858,000$
Indirect Income Effect	$57,527,000$	$52,579,000$
Direct and Indirect Income Effect	$100,385,000$	$95,437,000$
Induced Effect	$67,438,000$	$64,559,000$
Direct, Indirect and Induced Effect	$167,823,000$	$159,996,000$
Simple Multiplier	2.34	2.23
Total Multiplier	3.91	3.73

Predictions of the Omaha Area Output for 1975 and 1990. In order to predict Omaha's output for 1975 and 1990 certain heroic assumptions must be made. First, it is assumed that the final demand since 1963 of all the industries will increase uniformly at either 3.5% or 4%. These figures are based on recent growth of the United States economy and Omaha respectively. Second, it is assumed there will be no change in the technical coefficients over the time periods involved. Third, it is assumed that the import ratios of the industries will remain unchanged. These assumptions are admittedly oversimplifications of reality, but they will a11ow the arrival at certain conclusions about the area's future.

Predictions about Omaha's future output in this and Chang's study were derived in the same way. First, industry final demands for 1975 and 1990 were found by compounding the 1963 final demands at 3.5% and 4% per year. These compounded final demands were then multiplied by the total requirements ratios of each industry and summed to give the total supply of the industries. These total supply figures were then multiplied by ($1-m_{j}$), where m_{j} is the import ratio, to give the total local output of each industry. Finally, the change in total output was found by subtracting the total local outputs of the industries in 1963 from their respective total local outputs in 1975 and 1990. Tables IX and XI summarize these results for this study; Tables X and XII present similar data reproduced from Chang's study. ${ }^{18}$

With minor exceptions to be discussed below, both studies arrived at similar conclusions. Chang found that the total volume of business in
${ }^{18}$ Chang, op. cit., pp. 26-27.

TABLE IX. PROJECTED OUTPUT OF THE OMAFA SMSA, 1975 ($\$ 1,000$)

Industry Number*	Final Demand		Total Supply		Total Local Output		'Increase in Output		Rank of Increase		
	$3{ }^{\frac{1}{2} \%} \%$	4\%	312\%	4\%	3 $\frac{1}{2} \%$	4\%	$3 \frac{1}{2} \%$	4\%	$3 \frac{1}{2} \%$	4\%	
1	12336	13071	287064	304156	114679	121507	16919	23747	15	14	
2	27890	29550	154450	163645	19243	20389	3730	4876	26	25	
3	4192	4441	39384	41728	5015	5313	1595	1893	28	28	
4	259976	275454	259976	275454	259976	275454	87928	103406	6	6	
5	23089	24464	92685	98203	83868	88862	26520	31514	11	12	
6	808286	856408	999316	1058811	999316	1058811	134018	193513	4	4	
7	70463	74658	79925	84684	13639	14454	4519	5334	24	24	
8	1507	1596	30640	32464	8061	8541	2568	3048	27	27	
9	19952	21140	25431	26946	23246	24632	7839	9225	21	21	
10	6720	7120	67534	71555	32096	34007	8460	10371	20	20	
11	15871	16816	79737	84484	55030	58307	17604	20881	14	16	
12	34561	36625	82213	87108	60920	64547	18780	22401	13	15	
13	44691	47352	83204	88158	15431	16350	4895	5814	23	23	
14	11046	11704	38164	40437	12220	12948	3835	4563	25	26	
15	13621	14432	14779	15659	1530	1621	516	607	30	30	
16	2934	3109	48525	51414	23061	24459	6712	8110	22	22	
17	5120	5424	86524	91674	36000	38149	11455	13589	18	18	
18	11199	11865	101918	107985	60180	63762	16664	33844	16	11	
19	61186	64829	99102	105003	61999	65691	20611	24303	12	13	
20	143681	152236	204415	216481	204315	216481	68454	80620	8	8	
21	138084	146306	177547	188118	35343	37447	11817	13921	17	17	
22	12247	12976	24160	25598	1651	1749	549	647	29	29	
23	64214	68037	96858	102625	32411	34341	9872	12449	19	19	
24	93304	98859	242374	256804	208238	220636	60688	73086	9	9	
25	91634	97099	159082	168553	159082	168553	51565	61036	10	10	
26	552339	585212	692663	733900	692663	733900	222416	263653	1	1	
27	414935	439639	581272	615880	581272	615880	194105	228713	1	2	
28	237454	251529	373050	395260	346183	366793	114225	134835	5	5	
29	326802	346258	524270	555483	524270	555483	168247	198460	3	3	
30	170031	180155	350732	371615	231266	245035	69990	83759	7	7	
Total			6096696	6459885	4902210	5494102	1367096	1367096			∞
*For list	ng of in	ustries	see Appe	endix A .							

TABLE X. PROJECTED OUTPUT OF THE OMAHA SMSA, 1975 ($\$ 1,000$)

Industry Number*	Final Demand		Total Supply		Total Local Output		Increase in Output		Rank of Increase		Rate of Growth	
	3 $\frac{1}{2} \%$	4\%	312\%	4\%	31픙	4\%	31 $\frac{1}{2} \%$	4\%	312\%	4\%	312\%	4\%
1	10445	11066	193327	204828	99157	105056	4712	10611	23	20	. 005	. 009
2	23375	24747	118371	125414	21709	23001	2874	4166	26	25	. 012	. 017
3	5445	5769	40253	42648	4498	4766	1081	1349	28	28	. 023	. 028
4	263273	278936	263273	278936	259986	275454	87938	103406	5	5	. 035	. 040
5	18523	19625	86200	97329	83595	88569	26245	31219	10	11	. 032	. 037
6	509610	539929	641149	679294	644149	679294	11941	50086	17	10	. 003	. 008
7	68375	72443	77295	81894	14543	15408	4815	5680	22	23	. 034	. 039
8	1535	1626	30236	32035	8468	8866	2650	3148	27	27	. 032	. 037
9	21157	22415	26052	27061	21219	22481	7156	8418	20	21	. 035	. 040
10	8209	8698	65477	69373	38450	40737	9792	12079	19	19	. 025	. 030
11	15449	16368	79935	84690	66330	70276	21191	25137	12	13	. 033	. 038
12	35296	37396	84790	89835	83763	88749	25604	30588	11	12	. 031	. 036
13	44272	46908	80818	85626	14054	14890	4440	5276	24	24	. 032	. 037
14	12610	13360	38162	40433	10222	10830	3192	3800	25	26	. 032	. 037
15	14878	15763	16012	16934	1513	1603	510	600	30	30	. 035	. 040
16	4709	4989	46194	48942	20784	22020	6008	7244	21	22	. 029	. 035
17	7542	7991	86521	91669	52917	56066	16774	19923	15	16	. 032	. 037
18	13527	14332	92895	98422	54226	57453	14644	17871	16	17	. 027	. 032
19	82277	87172	118499	125549	56743	60119	18897	22273	14	15	. 034	. 039
20	82620	87535	132459	140339	132459	140339	44171	52051	9	9	. 034	. 039
21	161292	170888	204945	217138	57677	61109	19322	22754	13	14	. 035	. 040
22	17572	18618	28827	30542	1770	1875	588	693	29	29	. 034	. 039
23	72397	76704	108341	114787	36165	38316	11835	13986	18	18	. 034	. 039
24	96653	102403	229015	. 242640	158561	177995	45637	55071	8	8	. 029	. 033
25	126656	134191	199008	210847	199008	210847	65017	76856	7	7	. 033	. 039
26	567188	600932	695127	736483	695127	736483	224880	266236	1	1	. 033	. 038
27	417297	442142	581212	615791	581212	615791	194043	228622	2	2	. 034	. 040
28	222400	235631	355372	376408	345783	366356	113824	134397	4	4	. 034	. 039
29	338995	359163	524169	555354	524169	555354	168149	199334	3	3	. 033	. 038
30	181545	192346	349723	370530	231094	244844	69816	83566	6		. 030	. 035

Total
$55935575926341 \quad 4516253478494712277461496440$
*For description of industries, please see Table V.

TABLE XI. PROJECTED OUTPUT OF THE OMAHA SMSA, $1990(\$ 1,000)$

TABLE XII. PROJECTED OUTPUT OF THE OMAHA SMSA, 1990 ($\$ 1,000$)

Indus try Number*	Final Demand		Total Supply		Total Local Output		Increase in Output		Rank of Increase		Rate of Growth	
	312\%	4\%	31 $\frac{1}{2} \%$	4\%	3플\%	4\%	312\%	4\%	$3 \frac{1}{2} \%$	4\%	31 $\frac{1}{2} \%$	4\%
1	17499	19931	323887	368897	166122	189206	71677	94761	13	13	. 021	. 027
2	39131	44569	198312	225870	36371	41425	17536	22590	23	23	. 024	. 028
3	9123	10390	67438	76809	7536	8584	4119	5167	28	28	. 029	. 034
4	441072	502365	441072	502365	435573	496103	263525	324055	6	6	. 035	. 040
5	31033	35346	144415	164484	140054	159517	82704	102167	11	11	. 034	. 039
6	853769	972412	1074141	1223408	1074141	1223408	444933	594200	4	4	. 020	. 025
7	114552	130471	129497	147492	24364	27750	14636	18022	24	24	. 035	. 040
8	2572	2929	50657	57696	14020	15968	8302	10250	27	27	. 034	. 039
9	35445	40371	43646	49712	35550	40491	21487	26428	21	21	. 035	. 040
10	13754	15665	109698	124942	64418	73369	35760	44711	20	19	. 030	. 035
11	25883	29480	133918	152528	111125	126568	65986	81429	14	14	. 034	. 039
12	59133	67350	142052	161792	140336	159838	82175	101677	12	12	. 033	. 038
13	74173	84481	135397	154213	23544	26816	13930	17202	25	25	. 034	. 039
14	21126	24062	63935	72820	17126	19506	10096	12476	26	26	. 033	. 038
15	24926	28390	26825	30553	2535	2888	1532	1885	30	30	. 035	. 040
16	7889	8986	77390	88145	34820	39659	20044	24883	22	22	. 032	. 037
17	12636	14392	144953	165096	88656	100975	52513	64832	17	17	. 034	. 039
18	22663	25812	155631	177258	90848	103472	51266	63890	18	18	. 037	. 037
19	137841	156996	198524	226112	95064	108274	57218	70428	16	16	. 035	. 040
20	138416	157651	221913	252751	221913	252751	133625	164463	10	10	. 035	. 040
21	270219	307770	343352	391066	96629	110057	58274	71702	15	15	. 035	. 040
22	29440	33531	48295	55006	2965	3377	1783	2195	29	29	. 035	. 040
23	121290	138145	181509	206732	60589	69008	36259	44678	19	20	. 035	. 039
24	161927	184429	383679	436996	265647	302562	152723	189638	9	9	. 032	. 037
25	212197	241678	333404	379736	333404	379736	199413	245745	8	8	. 034	. 039
26	950231	1082279	1164573	1326407	1164573	1326407	694326	856160	1	1	. 034	. 039
27	699114	796265	973728	1109040	973728	1109040	586559	721871	2	2	. 035	. 040
28	372594	424372	595200	677912	579313	659818	347354	427859	5	5	. 035	. 039
29	567931	646852	878160	1000192	878160	1000192	522140	644172	3	3	. 034	. 039
30	304149	346415	585905	667324	387165	440967	225887	279689	7	7	. 033	. 038
Total			9371107	10673354	7566289	8617732	4277782	5329225				

the Omaha area in 1975 would be between $\$ 5.5$ billion and $\$ 5.9$ billion, while total local output would be between $\$ 4.5$ billion and $\$ 4.8$ billion, depending on whether the growth rate would be 3.5% of 4%. Comparable figures for the present study are $\$ 6$ billion to $\$ 6.4$ billion for the total volume of business, and $\$ 4.9$ billion to $\$ 5.5$ billion for the total local output. Chang found that in 1990 the total volume of business would be between $\$ 9.4$ billion and $\$ 10.7$ billion, and total local output to be between $\$ 7.6$ billion and $\$ 8.6$ billion, again depending on whether the growth rate of final demand would be 3.5% or 4%. Similar figures for this study are $\$ 10.2$ billion to $\$ 11.1$ billion for the total volume of business, and $\$ 8.2$ billion to $\$ 9$ billion for the total local output.

Both studies found the area will remain a trade, insurance, service and food processing center. The drawback to these studies is that they do not take into considexation the closing of the Swift and Cudahy plants in the Food and Kindred Products industry. The output for this industry is overstated; therefore, when Chang indicates that the industry will rank fourth in 1975, and this study indicates it will rank first in terms of increased output, both are optimistic estimates which assume that the rest of the food processors will fill the void left by the departure of the aforementioned meat packers.

Assumptions two and three, mentioned earlier in this section, i. e., constant technological coefficients and constant import coefficients, deserve special discussion. The former assumption does not imply that there will be no growth, but rather that what growth that does occur will be a natural growth to meet the continuous expansion of final demand in the area. When the increases in output through 1975 and 1990 are examined,

Food and Kindred Products, Retail and Wholesale Trade, Finance and Insurance, and Services will continue to rank among the leaders. But there are other industries which indicate great potential for growth such as New Construction, Electrical Machinery, Maintenance and Repair Construction, Nonelectric Machinery, and Chemicals and Allied Products. They are expected to expand their production by $\$ 88$ million to $\$ 103$ million, $\$ 68$ million to \$81 million, and $\$ 26$ million to $\$ 32$ million by 1975 , with correspondingly larger increases by 1990. That these industries will grow this much simply as a result of natural growth implies that efforts to promote them will have even a more favorable impact on the area's overall output in the future. The assumption of constant import coefficients over the period in question also has implications with regard to the reliability of the predictions. Jo the extent that import substitution can take place, the total output of the area will be higher. Such industries as Nonelectric Machinery and Maintenance and Repair Construction which have a high final demand should be studied with the idea of increasing their total local output (i. e., reducing imports). It may also be possible to have more import substitution in such industries as Transportation Equipment, Miscellaneous Manufacturing, and Apparel and Related Products, since they are among the leaders in imports now. Finally, industries such as Electrical Machinery and New Construction, which already enjoy an export surplus, may be able to increase that surplus. Alternatively, to the extent that import substitution does not take place, the economy will stagnate and the predictions for the future will be overstatements.

The basic purpose of this study has been to compare this study with Chang's to determine whether different data sources make any basic differences in the results obtained. Theoretically, the use of only local and locally obtained data would be the better methodology, but this has the disadvantage of being very time consuming. The fact that the two studies, the one making use of national information, the other using predominately primary local and regional data, arrived at the same general conclusions, indicates that future studies can make use of the time saving national information with little loss of validity. (This, of course, assumes that the Omaha area's economic development remains typical for that of the United States as a whole.) The studies were compared as to their conclusions on basic industries, total business volume, gross income, trade relations, the impact of Armour's closing, and the predictions of future Omaha output. In general, there was little difference. Both studies concluded that Omaha is basically a Food Processing, Trade, Insurance and Service center with an otherwise weak manufacturing base. These industries accounted for almost 60% of the Omaha output in 1963 in this study and about 55% in the Chang project. The gross income of the area was also found to be similar in the two studies: in Chang's work total income was $\$ 1.6$ billion with about 55% attributed to the basic four industries while the present study found total income to be $\$ 1.7$ billion with the same percent going to the same largest industries.

When trade relations were studied, both came to similar conclusions. Food and Kindred Products, Finance and Insurance, and Retail and Wholesale

Trade were the largest exporters, followed by Electrical Machinery, Utilities and Services. The major difference between the studies was the larger value of Electrical Machinery exports in this study ($\$ 59$ million), as opposed to Chang's study ($\$ 11$ million). Since the present study used sample data comprising 98% of the industry, it was felt to be the better estimate. Also, Utilities exports were larger in Chang's study ($\$ 52$ million to $\$ 26$ million). Finally, New Construction had a slight import surplus in Chang's study--\$2 million--and a slight export surplus in the present study--\$6 million.

The present study examined income multipliers in greater detail than the Chang study, developing multipliers for all 30 industries whereas the latter examined only the Food and Kindred Products multipliers. Table VIII (above) presents the data concerning this industry from both studies. Again there does not seem to be any significant difference.

Both studies indicate that the area will be a Trade, Finance, Service, and Food Processing area well into the future. They found that Electrical Machinery, Chemical and Allied Products, and Nonelectrical Machinery have good growth potentials due to high final demands in the area. In addition, Chang's study indicated that Printing and Publishing, and Transportation Equipment may share this future; in the present study, Maintenance and Repair Construction have high growth potentials for the same reasons. Finally, both studies agree that import substitution, particularly in such industries as Miscellaneous Manufacturing, Apparel and Related Products, and Nonelectric Machinery, will have favorable effects on future outputs.

Additional studies in the area can make use of some of the refinements in this study and add new ones. For example, they could continue with the detailed breakdown of final demand and rework the study using current data. This would enable comparisons to be made over time between the industries. This would be most helpful in determining structural and technological changes in the area over recent years. Finally, employment multipliers could be calculated and employment projections into the future could be obtained; both of which were contemplated in the present study, but ruled out because of data limitations.

APPENDIX A

INDUSTRY CLASSIFICATION FOR THE 1963 OMAHA INPUT-OUTPUT STUDY

Industry No. \& Industry Title	Related 1.958 U.S. Study No.	Related SIC Codes ('57 ed.)
Agriculture, Forestry \& Fisheries		
1 Livestock \& Livestock Products	1.	013, pt. 014, 0193, pt. 02, pt. 0729
2 Other Agricultural Products	2, 3, 4.	$\begin{aligned} & 011,012, \text { pt. 014, 0192, } \\ & 0199, \text { pt. 02, 074, 081, } \\ & 082,084,086,091,071, \\ & 0723,085,098 . \end{aligned}$
Mining		
3 Mining	$\begin{aligned} & 5,6,7,8,9, \\ & 10 . \end{aligned}$	$\begin{aligned} & 1011,106,102,103,104, \\ & 105,108,109,11,12, \\ & 1311,1321,141,142, \\ & 144,145,147,148,149 . \end{aligned}$
Construction		
4 New Construction	11.	$\begin{aligned} & \text { 138, pt. 15, pt. 16, } \\ & \text { pt. } 17, \mathrm{pt} .656 \mathrm{i} . \end{aligned}$
5 Maintenance \& Repair Construction	12.	pt. 15, pt. 16, pt. 17.
Manufacturing		
6 Food \& Kindred Products	14.	20.
7 Apparel \& Related Products	18, 19.	225, 23, 3992.
8 Lumber \& Wood Products	20, 21.	24.
9 Furniture \& Fixtures	22, 23.	25.
10 Paper \& Allied Products	24, 25.	26.
11 Printing \& Publishing	26.	27.
12 Chemicals \& Allied Products	27, 29, 30.	281 (excluding alumina pt. of 2819), 283, 284, 285, 286, 287.
13 Petroleum \& Coal Products	31.	29.
14 Rubber \& Plastics	28, 32.	282, 30.

Industry No. \& Industry Title	Related 1958 U.S. Study No.	Related SIC Codes ('57 ed.)
15 Leather \& Leather Goods	$33,34$.	31, 311, 312.
16 Stone, Clay \& Glass Products	35, 36.	$\begin{aligned} & 321,322,323,324,325, \\ & 326,327,328,329 . \end{aligned}$
17 Primary Metals	37, 38.	331, 332, 3393, 3399, 2819 (alumina only), $333,334,335,336,3392$.
18 Fabricated Metal Products	39, 40, 41, 42.	$\begin{aligned} & 3411,3497,343,344, \\ & 345,346,342,347,348, \\ & 349 \text { (excluding } 3491 \text {). } \end{aligned}$
19 Nonelectric Machinery	$\begin{aligned} & 43,44,45,46, \\ & 47,48,49,50, \\ & 51,52 . \end{aligned}$	$\begin{aligned} & 351,352,353,354,355, \\ & 356,357,358,359 . \end{aligned}$
20 Electric Machinery	$\begin{aligned} & 53,54,55,56, \\ & 57,58 . \end{aligned}$	$\begin{aligned} & 361,362,363,364,365, \\ & 366,367,369 . \end{aligned}$
21 Transportation Equipment	59, 60, 61.	$\begin{aligned} & 371,372,373,374,375, \\ & 379 . \end{aligned}$
22. Instrument \& Related Products	62, 63.	$\begin{aligned} & 381,382,383,384,385, \\ & 386,387 . \end{aligned}$
23 Miscellaneous Manufacturing	$\begin{aligned} & 13,15,16,17, \\ & 64 . \end{aligned}$	$19,21,221,222,223,$ 224, 226, 227, 228, 229. 39 (excluding 3992).

Transportation, Communication,
Electric, Gas, and Sanitary Services

24 Transportation \& Warehousing	65, 66, 67.	$\begin{aligned} & 40,41,42,44,45,46, \\ & 47,487,482,483,489 . \end{aligned}$
25 Utilities	68.	49.
Retail \& Wholesale Trade		
26 Retail \& Wholesale Trade	69.	$\begin{aligned} & 50 \text { (excluding manufac- } \\ & \text { turers' sales offices), } \\ & 52,53,54,55,56,57, \\ & 58,59, \text { pt. } 7399 . \end{aligned}$

Finance, Insurance \& Real Estate

27 Finance \& Insurance
70.
$60,61,62,63,64,66$, 67.

Industry No. \& Industry Title \quad| Related 1958 |
| :--- |
| 28 Real Estate \& Rentals |

Services

29 Services
$72,73,74,75, \quad 6541,70,72,73$ (ex76, 77. cluding 7361, 7391 and pt. 7399), 75, 76, 78, $79,80,82,84,86,89$.

Others
30 Undistributed
$78,79,80 \mathrm{a}$,
$80 \mathrm{~b}, 81,82$,
$83,84,85$,
$86,87$.

1 Livestock $\frac{8}{\text { Livestock }}$ Prowucts

destr nouets	4,153	1,998				10,033																											
	7,093	2,334	-	237		5,075	149	998	-	-		30		-	1	4		-	3			4	2,293	${ }_{5}$		153	-	1,323	8	704	20,44	5,971	26,415
3 Mining	7	97	1,129	${ }_{624}$	131	52	1	2	2	125		57	9,365	47	3	623	2,463	9	18	15	${ }^{20}$	3	${ }^{21}$	${ }^{29}$	1,715	8	6	150	${ }^{41}$	148	17,431	904	18,335
4 Nen Construction	-	-	-	-	-	-	-	-	-	-	-	-		-		-		-				-	-								-	52,415	52,415
5 Maintenance \& Re- pair Construction	234	379	10	7	1	233	8	15	2	55	44	9	25	33		4	132	14	${ }^{30}$	19	95	2	${ }^{23}$	1,550	551	775	120	5,899	971	1,206	12,446	4,427	16,873
6 Food akindred	2,964	36	-	17	-	10,574	-	-	28	76	-	390	11	18	209	6	8	-	1	-	-	12	165	100	-	530	=	63	187	2,24	17,619	47,547	${ }^{65,166}$
7 Apparel 1 R Related	8	35		-	1	139	2,997	12	8	${ }^{34}$	-	40	4	${ }^{23}$	19	6	${ }^{24}$	${ }^{21}$	${ }^{23}$	19	180	12	89	${ }^{27}$	-	91	31	${ }^{29}$	353	22	4,047	12,535	16,582
8 L Lumber ${ }_{\text {proucts }}$ Hod	2	102	${ }^{31}$	3,280	418	102	-	2,597	499	670	1	43	2	13	30	69	33	107	60	${ }^{47}$	126	4	117	${ }^{26}$	3	150	-	26	8	2	8,568	322	8,990
9 Furniture \& Fixtures	-	-	-	501	16	-	13	${ }^{26}$	146	2	5	-	-	2	1	5	2	${ }^{1}$	12	157	69	15	13	-	-	26	-	4	14	-	1,060	3,739	4,799
${ }^{10}$ Paper $\frac{8}{\text { alllied }}$ Proucts	14	28	35	323	68	1,254	153	96	106	${ }^{3,948}$	2,240	483	91	295	69	410	98	194	96	264	128	107	628	52	17	811	126	19	${ }^{361}$	395	12,099	1,240	14,149
11 Printing, Publi ishing	5	8	3	8	1	123	17	${ }_{3}$	3	126	1,597	61	1	25	19	18	${ }^{38}$	31	18	19	${ }^{24}$	2	59	195	5	235	394	57	5,817	${ }^{89}$	9,835	2,816	12,651
	63	1,148	181	564	950	439	45	107	92	374	187	4,255	579	1,857	${ }^{88}$	302	351	190	86	175	220	115	329	${ }_{88}$	11	244	11	112	1,087	69	14,319	6,294	20,613
${ }_{13}{ }_{\text {Petroleumm }}^{\text {prouicts }}$ coal	${ }^{48}$	920	150	${ }^{986}$	${ }^{375}$	284	8	79	10	146	11	738	1,243	${ }^{73}$	5	92	189	101	109	${ }^{38}$	94	9	60	1,556	245	127	94	363	372	56	9,161	8,837	17,998
14 Ruber \& Plastics	${ }^{21}$	167	${ }_{91}$	311	${ }_{6}^{66}$	158	${ }^{236}$	${ }_{10}$	150	${ }^{278}$	15	638	22	1,378	194	169	197	${ }^{138}$	286	495	828	62	1,937	264	10	240	53	55	510	22	9,101	2,052	11,153
15 Leather g Leather	1	5	-		-	-	55	1	7	2	1	-		13	1,036	1	-	5	10	8	9	7	69	3	-	20	1	5	${ }^{20}$	${ }^{28}$	1,307	2,723	4,030
	4	25	118	4,70	630	609	-	${ }^{43}$	115	56	-	217	37	71	15	1,087	${ }^{347}$	165	177	324	399	69	85	9	24	226	-	${ }^{26}$	198	18	9,264	557	9,821
17 Primery Metals	1	1	166	3,095	555	${ }^{37}$	2	28	266	18	15	402	3	29	1	${ }_{51}$	1,474	6,126	3,143	1,221	3,541	${ }^{258}$	697	110	68	23	-	${ }^{31}$	40	244	28,345	1,145	29,491
18 Fabricated Metal Products	${ }^{56}$	${ }^{64}$	98	6,149	954	1,785	${ }^{23}$	${ }^{94}$	${ }^{313}$	${ }^{151}$	${ }^{24}$	419	315	118	${ }^{28}$	${ }^{126}$	714	1,289	1,080	942	2,207	157	285	${ }^{60}$	158	212	-	${ }^{24}$	200	150	18,195	2,207	20,402
19 Nonelectric Machinery	7	199	452	899	70	17	1	${ }^{33}$	${ }^{41}$	${ }_{6}$	43	158	4	49	1	30	549	788	3,657	573	1,523	161	604	143	12	243	5	107	1,193	151	11,779	13,250	25,029
20 Electric Macchinery	8	22	70	1,479	289	${ }^{34}$	-	12	14	19	12	17	7	32	6	49	251	285	1,230	3,240	1,356	318	410	314	17	${ }^{188}$	2	49	1,492	166	11,388	9,921	21,309
21 Transportation	${ }^{24}$	57	${ }^{38}$	4	-	-	1	8	7	-	19	1	-	19	-	3	73	255	625	164	9,641	${ }^{113}$	1,022	559	2	289	10	38	2,934	187	16,993	23,099	40,002
22 Instrument \& Related		.	1	191	16	-	9	-	9	6	52	${ }^{34}$	1	22	9	7	12	103	${ }^{83}$	258	${ }^{329}$	${ }^{328}$	115	${ }^{26}$	-	${ }^{78}$		13	${ }^{881}$	72	2,655	2,572	5,227
23 Misc. Manufacturing	7	${ }^{61}$	10	${ }^{93}$	49	40	5,463	15	299	87	${ }^{58}$	${ }^{28}$	7	643	134	${ }^{37}$	50	67	78	222	867	162	6,189	95	8	156	${ }^{43}$	42	1,905	504	17,419	12,136	29,555
	575	408	534	1,915	316	2,784	189	468	122	547	${ }^{34} 9$	${ }^{663}$	${ }_{931}$	312	71	545	1,334	412	${ }^{445}$	344	758	${ }^{84}$	629	2,545	419	1,008	647	625	2,913	3,497	26,789	18,167	44,956
25 utilities	91	${ }^{173}$	253	150	25	${ }^{356}$	${ }_{5}$	${ }^{58}$	27	207	${ }_{5}$	${ }^{323}$	262	112	17	${ }^{293}$	683	145	135	114	201	19	184	210	3,380	1,916	125	249	1,092	449	${ }^{11,357}$	8,934	20,291
	936	1,057	368	4,962	1,379	2,405	617	${ }^{388}$	${ }^{263}$	534	302	607	185	${ }^{323}$	114	${ }^{322}$	1,040	717	978	${ }^{873}$	1,157	232	${ }^{1,076}$	1,071	240	1,582	256	1,068	2,115	462	27,629	67,621	95,250
27 Finance \& Insurance	189	${ }^{321}$	180	${ }^{435}$	49	344	105	56	${ }^{26}$	${ }^{85}$	122	180	114	${ }^{69}$	${ }^{28}$	${ }_{98}$	217	150	174	85	153	${ }^{28}$	174	768	117	1,580	5,389	2,064	1,099	${ }^{53}$	14,446	12,029	26,475
28 Real Estate \& Rentals	${ }^{303}$	1,864	1,622	210	35	291	186	59	${ }^{56}$	${ }^{78}$	462	199	${ }^{138}$	97	31	${ }^{76}$	114	126	235	181	152	55	174	1,253	56	5,048	2,059	1,267	3,624	112	20,163	41,774	61,937
29 Services	${ }^{248}$	966	${ }^{424}$	2,876	${ }^{92}$	1,993	215	${ }^{143}$	94	194	608	1,263	${ }^{394}$	256	109	195	${ }^{340}$	314	${ }^{447}$	${ }^{650}$	${ }^{74}$	157	644	1,931	267	5,997	1,253	1,788	5,175	1,265	${ }^{31}, 045$	47,144	89
30 undistributed	238	${ }^{854}$	1,956	325	${ }^{54}$	3,105	194	${ }_{5} 5$	52	1,245	455	708	${ }^{649}$	407	${ }^{85}$	293	2,248	${ }^{388}$	678	560	${ }^{932}$	${ }^{248}$	1,212	2,555	3,058	3,288	1,019	770	2,882	1,263	31,650	31,384	63,034
Intermediate Input Total	17,300	13,329	7,920	33,811	6,540	48,536	10,540	6,010	2,757	9,129	6,677	12,488	14,390	6,336	2,375	4,921	18,981	12,171	13,917	11,707	25,756	2,743	19,461	15,556	10,377	26,244	111,644	17,116	36,908	14,391	440,031		
Value Added	9,024	13,086	10,415	18,604	10,333	16,630	6,042	2,880	2,042	5,220	5,974	8,125	3,608	4,817	1,655	4,900	10,510	8,231	11,112	9,602	14,246	2,484	10,094	29,400	9,914	69,006	14,831	44,821	41,281	48,643		447,330	
Total	26,324	26,41	18,33	52,415	16,873	65,166	16,582	8,890	4,799	14,149	12,651	20,613	17,998	11,153	4,030	9,821	29,491	20,402	25,029	21,309	40,002	5,227	29,555	44,956	20,291	95,250	475	${ }^{61,937}$	78,189	63,034			${ }^{887,361}$

1 Livestock $\&$ Livestock Products
2 Other Agricultural Products

 1 Livestock
Livestock
Products
. $\underset{\substack{2 \text { other Agrit cultural } \\ \text { propuctis }}}{3 \text { Mning }}$
5 Naintenance \& Repair

8 Lumber $\begin{gathered}\text { thood } \\ \text { rrotucts }\end{gathered}$
9 Furniture \& Fixtures

$\underset{11}{\substack{\text { Products } \\ \text { Printing, } \\ \text { Pub } \\ \text { Pubishing }}}$

14 Rubber $\&$ Plastics

${ }_{17}$| Criassary Metalats |
| :---: |

${ }^{18} \begin{gathered}\text { pabricated Metal } \\ \text { products }\end{gathered}$
19 Nonelececric Machinery 20 Electric Machinet
21

2

22 Tnstrument | Related |
| :---: |
| products |

${ }_{2}^{23}$ Misc. Manufacturic

Trasapor tation
warenosing

27 Frinance \& Insurance

28 Real $\left.\begin{array}{c}\text { Retate } \\ \text { Rentals } \\ \text { o } \\ \hline\end{array}\right)$

29 services
30
30 Value Added
rotal Local production
Imports
$\underset{\text { Total Suply }}{\text { Inport Ratio }}$

15,423
$26,34 i$
${ }_{26}$ 1,173
1,370
57 ${ }_{210}^{-}$ 778
2,047

216,478
67,389 617
1
19
${ }_{19}$
234
178
18

\square

\square

Tasie xv. intrerimussray treassactrons taste, omatas snsa, 1963 ($\$ 1,000$) (cont)

- $\frac{20}{\frac{20}{20}}$

-	-	-	121	6	-	-	-	3,183	${ }^{71}$	74	236,552	6,342	-17	43	-	1,796	-	244,716	$1{ }^{1}$ Livestock ${ }_{\text {d }}$ Livestock Products
-	-	1	1,748	115	-	757	-	4,955	${ }^{36}$	1,801	106,064	8,878	3,220	-144	-	6,503	-	124,52	2 Other Agricultural Products
95	12	1	16	8	9,087	${ }^{38}$	${ }^{89}$	561	185	379	24,086	${ }_{846}$	675	216	-	1,037	-	26,860	3 Mining
-	-	-	-	-	-	-	-	-	-	-	-	-	10,654	42,08	111,988	6	6,562	172,48	4 New construction
${ }^{121}$	56		18	5,088	$\xrightarrow{2,919}$	${ }^{3,828}$.	1,754.	22,092	4,422	3,085	$\stackrel{48,097}{ }$	-	3,338	11,942				63,377	5 Maintenance \& Repair Construction
-	-	3	126	328	-	2,615	-	237	851	5,690	162,441	151,246	691	966	-	4,346	545,608	865,288	
121	106	${ }_{3}$	${ }_{68}$	${ }^{89}$	-	451	453	109	1,606	${ }_{56}$	6,805	45,765	438	332	-	96	.	53,436	$7{ }^{\text {Apparel \& }}$ (elated
300	74	1	${ }^{89}$	-	16	${ }^{738}$	-	97	${ }^{36}$	5	19,883	${ }_{528}$	-17	-	19	467	-	20,880	
1,001	40	3	10	86	-	127	-	14	${ }^{64}$	-	3,652	9,512	${ }^{168}$	${ }^{649}$	2,797	78	-	16,856	9 Furnture \& Pixtures
${ }^{1,683}$,	- 23	499.	${ }^{171}$	90	4.002	1,843	72	1,645	1,011	45, 278 -	-3,277	${ }^{236}$			${ }^{776}$	-	49,731	10 Paper \& Allied
121	14	--	4_{45}	640	${ }_{27}$	$\overline{1,162}{ }^{-}$	5,761	213	26,488	2,285	$43,727{ }^{-}$	9,301 ${ }^{-}$	287	${ }_{620}$		295	-	54, 230	
1,115	129	${ }^{24}$	251	289	58	1,204	162	420	4,949	176	33,992	15,643	2,764	1,500	-	2,969	-	56,868	
${ }^{242}$	55	2	46	5,042	1,298	3,588	1,374	1,359	1,695	14.	27,234	24,626	2,276	1,356	-	${ }^{1,318}$	-	56,810	
3,156	487	13	1,477	866	${ }_{5}$	1,185	774	206	2,321	56	18,928	5,179	${ }^{388}$	260	151	1,332	-	26,238	14 Rubber 8 plastics
			5_{5}^{5}	10			15	19	93	${ }^{71}$	${ }^{785}$	8,677	6		19	261		9,799	15 Leather 8 Leather
2,065	235	15	65	${ }^{30}$	127	1,115	-	97	${ }^{901}$	47	32,424	1,374	17	${ }^{14}$	-	537	-	34,366	
12,248	2,083	54	531	362	360	113	-	${ }^{116}$	182	${ }^{624}$	55,611	106	1,399	-	-	1,883	-	58,999	17 Primary Metals
6,007	1,298	${ }^{33}$	217	196	838	1,049	-	90	911	384	${ }_{66,2}$	2,853	692	173	2,683	1,010	-	,699	18 Fabricated Metal Products
3,653	${ }^{896}$	${ }^{34}$	461	469	63	1,199	${ }^{4}$	${ }_{401}$	5,433	${ }_{38} 8$	25,698	2,008	3,287	965	28,928	5,304	-	66,190	19 Nonelectric Machinery
,658	${ }^{798}$	67	313	1,030	90	${ }^{926}$	31	${ }^{183}$	-6,793,	${ }^{424}$	40,775	764.	${ }_{6,120}$	${ }^{374}$	8,636	1,407	58,785	135,861	20 Electric Machnery
1,046	5,671	${ }^{24}$	779	1,834	11	1,425	147	142	13,358	479	26,803	48,197	23,466	1,688	15,475	2,556	-	118,185	$2 \overline{1}$ Transportation
1,645	193	69	88	${ }^{86}$	-	386	-	49	4,012	184	8,060	2,748	2,140	361	2,097	759	-	16,165	${ }^{22} \underset{\text { Instrument }}{\text { proucts }}$ \& Related
1,416	510	${ }^{34}$	4,719	311	42	771	${ }^{627}$	158	8,673	1,290	24,858	${ }^{31,180}$	7,435	678	982	${ }^{2,221}$	-	67,354	23 Misc. Manueacturing
2,193	446	18	480	,53	2,220	6,950	9,462	2,340	13,265	8,488	109,933	44,814	5,091	2,106	2,627	7,109		171,740	$24 \begin{gathered}\text { Transportation \& } \\ \text { Warehousing }\end{gathered}$
- ${ }^{727}$.	${ }^{118}$	4	${ }^{140}$	${ }^{689}$ -	${ }^{17,910}$	9,461	-1,827-	-932	4,974.	-1,1488	- $46,869$.	${ }^{31,285}$	1,096	1,731	-	96	440	107, 517-	${ }^{25}$ vetilities..-
5,566	680	49	821	3,515	1,272	7,811	3,744	3,999	9,630	1,182	104,725	225,020	2,073	649	${ }^{11,366}$	4,186	122,238	470,247	${ }^{26}$ Retail ¢ Trade Wholesale
542	90	6	${ }^{133}$	2,520	588	7,801	78,807	7,729	5,006	135	112,570	44, 180	-	678	-	59	229,680	387,167	27 Pinance \& Insurance
1,153	${ }^{89}$	12	133	4,112	297	24,923	30,110	4,746	16,502	${ }^{287}$	92,826	151,564	${ }^{354}$	${ }^{837}$	3,666	122	-	249,969	28 Real Estate \& Rentals
4,144	439	${ }^{3}$	491	6,337	1,415	29,67	18,325	6,697	23,65	3,237	139,751	138,987	19,690	3,533	-	1,510	52,52	356,023	29 Services
3.570	${ }_{-548}$	$\stackrel{52}{2}$	-924	8 8,385	${ }^{16,204}$	$\stackrel{16,233}{-}$	$\stackrel{14,902}{-}$	${ }_{-}^{2,883}$	$\stackrel{10,392}{-}$	$\xrightarrow{3,232}$	- ${ }^{132,046}$	$\stackrel{23,358}{-}$	- ${ }^{70,516}$	- ${ }^{69,734}$.	$\stackrel{-2,456}{ }$	$-48,628$		244,570	30 Und stri ibuted
74,640	15,147	579	14,842	51,055	54,985	129,564	170,281	64,099	168,059	36,821	1,796,971	$\underline{\underline{1,055,248}}$	$\underline{\underline{168,544}}$	$\underline{\underline{144,183}}$	$\underline{\underline{188,988}}$	$\xlongequal{\underline{20.011}}$	$\underline{\underline{1041,865}}$	$\underline{\underline{4,399,720}}$	
${ }_{61,221}$	8,379	523	7,697	96,495	52,532	340,683	216,886	167,859	187,964	124,455	1,738,143								
135,861	23,526	1,102	22,539	147,50	107,517	470,247	387,167	231,958	356,023	161,276	3,535,114								
-	94,659	15,063	44,815	24,190	-	-	-	18,011	-	83,294	${ }^{864,606}$								
135,861	118,185	16,165	67,34	171,740	107,517	470,247	387,167	249,969	356,023	244,570	$\underline{4,399,720}$								
-	4.0236	13.6688	1.9883	0.1639	-	-	-	0.0776	-	0.5165									

		Other atroul- grraul rroducts	$\xrightarrow{\text { Mrining }}$					$\begin{gathered} \text { Lumber } \\ \text { Prodocts } \\ \text { Prodect } \end{gathered}$	FurniFixtures	$\begin{gathered} \text { Paper }{ }^{\text {and }} \\ \text { Prodectact } \end{gathered}$					$\begin{aligned} & \text { Leather, } \\ & \text { Leather } \\ & \text { coods } \end{aligned}$
sucts	${ }^{06302}$.00942				. 2018			-	-	-	.00018	-		.0133
2 Other Agricultu	. 1076	. 01101		00452		.0778	. 0153	${ }^{02953}$. 00108			.0003
3 Mini	. 00011	.00046	. 0778	.01190	.0772	.0088	.0001	.0006	00038	00420		02074	09650	00135	8
4 Neev constructio															
5 Maintenance 8 Repair cone	355	0179	.0007	0013	0004	0338	.0008	0004	.0038	00185	00240	.0003	000	00095	
	04498	00017		.00032		1.6226			-00533	.0025		.01402	.000011	.000s ${ }^{-1}$.00537
7 Apparel \& Related Products	.00012	.00017	-	-	.0005	.0021	2289	.003	00153	. 0114		.0144	.0004	.0066	.0049
8 Lumber 8 hod Products	.0000	. 00	.0022	.0625	.02241	. 0157	-	.0768	. 09505	.02250	.0000	. 00155	.0002	0037	.0077
9 Purniture \& Fixtures	-			. 00956	.00086		.00013	.00077	.02781	.00007	.0028			00006	.0003
10 Paper 8 Alliled Products	.0021	00013	.0024	.00616	.0036	01924	.00158	00284	. 22019	. 132	.1221	01736	0009	.0884	. 0177
11 Printing \& Publishing	.00008	.0000	.00002	.00015	.00005	.00189	.00018	.00098	.000s8 ${ }^{-1}$.00423	. 08712	.00219	.00001	.00072	-0049
12 Chemicals $\&$ Alited Products	.00095	.00541	.0126	. 01076	. 05095	.0674	00046	. 00317	01752	. 01256	. 1022	. 15296	. 059	. 05321	.0226
13 Petrolema \& Coal Products	.00073	.00434	.00104	.01881	. 2021	.00436	00008	. 00234	00190	. 0499	.0060	.0263	.0128	.02210	2013
14 Ribber \& Plastics	.0032	.0079	.0063	.0593	.00354	.0242	.0223	25	. 0285	.00934	. 0088	.0293	.0023	.03488	.0448
Eather 8 Leather Goods	0002	.0002					00057	.00003	0013	.0000	.00006			.0037	.02660
16 Stone, clay \% class Prouncts	.0006	.0002 ${ }^{-1}$.00082	07956	03379	00935	-	.00127	.02990	.00188 ${ }^{-}$		- 780	00038	.00204	.000
17 Primary Metals	.00002		115	5905	. 0297	.0005	0002	.0083	. 05067	.00660	00082	. 0144	.0000	.0008	.0003
18 Fabricated Metal Proder	.00085	.0030	.0066	.1731	. 05116	.02739	00024	.00278	. 05962	.00507	.00131	. 01506	.0325	.0038	.00072
19 Monelectric Machinery	.00011	.0094	.00314	01715	.0037	.0026	0001	о0098	00781	. 00221	.0235	.00568	.00064	. 0140	.0003
20 Electric Machinery	00012	.00010	.00049	822	. 01552	.0052	-	${ }^{0036}$.0267	00064	.0066	.00661	.0007	.00092	.00015
21.2 Trasportation Equipment	.0036	.0027	.0026	.0000			.0001	0^{0024}	.00133		. 010104	.00004		.008	
22 Instruments \& Related Products		-	.00001	.00364	.00086		.0009	-	. 0172	.0020	.0284	. 0012	.0001	.0063	.0023
23 Miscellaneous Manufactur ing	.00011	.0029	.0007	. 0177	. 02262	.0061	.05623	.00064	. 05695	. 02922	. 00316	.0101	.00007	.01842	.0034
24 Trangortation \& Warehousing	.0872	.00192	.00371	. 03654	. 01695	.04272	.00195	01385	. 02324	.01837	.01904	.0283	.00959	.00958	.00182
25 veilities	.0138	.0082	.0176	00286	. 00134	.0546	.0055	. 0172	.00515	. 00695	. 0300	.01161	.00270	. 03221	.00044
	.01421	.0499	.00256	. 0446	.0736	. $0369{ }^{-}$. 00635	.01148	.05009	.01794 ${ }^{-1}$.01647	.02182	.0019 ${ }^{-}$.0022 ${ }^{-}$.0023
${ }^{27}$ Frinance \& Insurance	.00287	.00151	.00125	.0083	.0262	.00528	.00108	. 00166	.0495	. 0288	.00665	.00667	.00117	. 00198	.0072
28 Reai Estate \& Rentals	.00460	.0879	.01126	.00601	.00187	. 00447	.00191	. 00175	.01067	. 02662	.02520	.00715	.00142	.00278	.00080
29 services	.0376	.0446	.0295	.05487	.0043	03058	.00221	. 00423	. 01791	. 00652	${ }^{03317}$.04440	. 02406	.00733	00280
30 Undistrituted	.00361	.0043	1358	${ }_{-}^{00620}$.00290	. 04775	.00200	. 01566	0099	${ }^{04182}$.02482	. 22345	.00669	.01166	.022
Inputs from Industries	.26254	.06287	. 05501	.6405	. 35072	.74482	. 10849	. 17787	. 52516	. 30663	. 36426	.44891	${ }^{14828}$. 18218	. 06100
value Added	.13695	.06172	. 02733	. 34944	. 54416	. 25519	. 06219	. 08523	. 38895	. 16883	. 32589	. 2929	. 03718	. 13802	.04250
Total Local Production	. 3949	.12459	.12734	1.00000	.90488	1.00000	.17068	. 26310	.9411	47526	. 69015	. 74100	. 18546	${ }^{32020}$. 10350
Imports	.60051	.87541	.87266		. 09512		. 82932	. 73690	.08589	.52474	.30985	.2500	${ }^{81454}$	${ }^{67788}$.89650
Total Supply	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000	1.00000	1.0000	1.0000	1.00000	1.00000	1.00	1.00000

appanix e
table dvi. dirger regurbemerts table on the basis of toral strpli, omata shas, 1963 (cont.)

-	Netals		Machinery				$\frac{\operatorname{tarring}}{.00179}$	$\frac{\text { housing }}{.00003}$				$\frac{\text { Rentals }}{01273}$	$\frac{\text { ervicece }}{.00020}$	$\frac{\substack{\text { Uributed }}}{.00030}$	1 Livestock \& Livestock Products
.0020	-	-	.0008	-		.0005	. 02596	.00067	-	. 00161	-	. 01982	.00010	. 00737	2 Other Agricultural Products
. 03018	. 03776	.0026	.0004	.0070	00010	.0004	.0022	.00056	.08452	.00008	.00023	.0225	.00052	. 00155	3 Mning
-	-	-	-	-		-	-	-	-	-	-	-			Construction
.0020	.00186	.0064	.0075	0089	20047	.000 3	.0026	.02962	${ }^{02715}$.08814	.0453	.0838	.01242	. 01261	5 hanintenance \& Reparar
. 0022	.00011-	--	00003			.00016	.00187	.00191	--'	.ooss6		-00095	.00239	. 02326	
.0029	.0034	.00061	.00058	00089	0090	.00016	.00101	.00052	-	.0099	.0017	.00044	.0445	.0023	7 Apparel \& Related Products
.00334	.00047	. 0309	.00150	.00221	.00063	.0005	.00133	-	.00015	.00157	-	.00039	.00010	. 0002	8 Lumber 8 Wood Products
.00024	.0003	.0090	.0030	. 0073	.00034	.0020	.00015	.00050	-	.00027	-	.0006	.00018	-	9 Furniture \& Fixtures
${ }^{01986}$.	.0138	.0062	.0220	.1239	.00064	.00140	.00711	.00100	.00084	. 0885	. 04476	.0029-	.00662	.00413	${ }^{10}$ Paper 8 dilited Products
. 00088	.00054 ${ }^{-1}$.00090	.00045	.00089	.00012	.00003	-00067	.00373	.00025	.02247	.014888	.00085 ${ }^{-1}$.07440	.00934	
.01463	.0049	.0055	.00215	.00821	.00109	00150	.00372	.00168	.00054	.0256	.00042	.00168	. 01390	.0072	12 Chenicals \& A11ied Products
.00446	. 022	.00292	.00272	.00178	.00047	.000	.00068	. 02336	. 01207	.0076	.0035	.00544	.0476	.0059	13 Petroleem \& Coal Producs
. 0819	.0278	.0039	.00715	.0233	. 00412	.00081	.02193	.00504	.00049	.0252	.0220	.0003	.00652	.0023	14 Rubber \& Plastics
.0005		.00015	.0025	.00038	.00004	.0009	.0078	.00066	-	.00021	.0004	.0007	.0026	.0022	15 Leather 8 Leather coods.
.$^{052} 565$. 00490	.0478	.00442	.01520 ${ }^{-1}$.00198	.00090	.00096 ${ }^{-1}$. 00017	. 00118	.00237		.00039 ${ }^{-1}$.00253	.00019	
.0247	.10546	. 1729	.0785	. 09015	.01762	.0336	. 0078	.0210	.0035	.0022		.0046	.00051	.0255	${ }_{17}$ Primary Metals
.06610	. 01007	.03731	. 22698	.04421	.01098	.0205	.0032	.0014	.0079	.00223		.0036	.0256	. 00157	18 Fabricated Metal Product
.0014	.0775	.02280	. 09136	2689	.00758	.02210	.00684	.0273	.00059	.0225	.00019	.00161	. 01526	.00158	19 Monelectric Machinery
. 00237	¢0334	.00825	.03073	.15205	.0067	.00415	O2664	.06600	. 0088	.00197-	.0008	.00073	.1908	.00173	${ }^{20}$ Electric Machinery
. 000015	. 000103	. 00738	.01561	.0077 ${ }^{-1}$.04798	.00147	.0157	.01068	.0000	.00303	.00038 ${ }^{-1}$.0005 ${ }^{-1}$. 03752	. 00196	${ }_{21}{ }^{-1}$ Transportation E- Equpument
.00034	. 00017	.0228	.0208	. 12211	.00164	.0428	.00130	.00050		.0088	-	.00019	.01127	. 00075	22 Instruments \& Related Produc
. 00179	.00071	. 0194	.00195	.01042	.00431	.00211	.0708	.00181	.0039	. 00164	. 0162	.00063	.02436	.00528	23 Miscell aneous Manufacturing
. 02640	. 01882	. 01192	.0112	.01614	.0037	.00110	.00712	. 04864	. 2026	.01478	.02444	.00936	. 03726	. 03658	24 Transportation $\&$ warehoust
.0149	.00964	420	.0033	.00535	.00100	.00025	.0028	.00401	.16658	.02012	.00472	.00373	. 1339	.0470	25 veilities
.$^{01556}{ }^{-1}$.01467 ${ }^{-}$. 22075	.0243	. 04097	.00576	.0030 ${ }^{-1}$	-01218	.20047	.0183	.01661-	-00967	. 01600	. 02705	.00483	
. 00475	.0036	.00434	.00435	.0039	.0076	.0037	. 00197	. 01467	.00547	. 01659	.2035	.03922	. 01406	.0005	${ }^{27}$ Finance \& Tnsurance
. 00367	.0061	.00365	.00587	. 08849	.0076	.00072	.00197	.0239	.00276	.0530	.0777	. 01899	. 04635	. 0117	28 Real Estate \& Rentals
. 0045	.00480	.60909	. 01117	. 0350	.00372	. 02025	. 0072	. 0369	.01316	.06296	. 04733	. 22679	. 06619	. 01323	29 services
.01419	. 03172	.01123	.01694	. 02628	. 00664	. 00323	.01372	.04833	.15071	.0345	.03849	.01153	.02919	.01321	30 Undistrriluted
. 23837	. 26784	. 3222	. 3471	.54339	.12808	.03593	.22034	.2978	.5141	. 27552	.43982	.25644	.47204	. 15052	Inputs from Industries
. 23736	.14830	.23821	.27760	. 45061	.07899	. 03240	.11429	.56188	. 48859	. 12447	. 56019	.67154	. 2779	. 5088	Value Added
. 47573	${ }_{41614}$.59647	. 62531	1.00000	. 19906	. 06833	. 33463	. 89916	1.00000	1.00000	1.00000	. 9278	1.0000	. 65938	Total Local Production
. 52427	. 58386	.4093	.37439		. 80094	. 93167	. 66337	${ }^{14084}$	-			. 07202		. 34062	Imports
. 00000	1.00000	1.00000	1.00000	.0000	.00000	.00000	1.00000	.00000	1.00000	1.00000	1.00000	1.00000	1.0000	1.00	rotal suppl,

appandx :

.00102
.003
.003

. 003

.$\begin{array}{r}.0148 \\ -.003 \\ \hline\end{array}$

Total
$\frac{1020}{1020}$ $\frac{\substack{\text { couis } \\ .0 \text { mose }}}{\text { sen }}$ $\frac{\substack{\text {.oneng } \\ \text {.ouse }}}{}$.one On

-

.0033
.02

.0021
.00103
$-$

| 1.00849 | .02240 | .00169 | .13283 |
| :---: | :---: | :---: | :---: | :---: |
| | .0144 | .00469 | |

 $\begin{array}{llll}.00065 & .00033 & .00759 & .02338 \\ .00001 & .00001 & .01042 & .0017\end{array}$ \begin{tabular}{llll}
\& .00001 \& .01042 \& .00238

\& .00066 \& -0417 \&

\hline

1

-

-

-1

\hline

.00075

.00699

.00500

.0017

.00002

-.00038

.00060

.00080

.0033

.00046

-.00667

.00011

.00056

.0037

.00155

-.06636

.00279

.01022

.00660

\hline
\end{tabular}

 $\overline{4}-\stackrel{.00885}{.00259}-$
\qquad
\qquad
$\begin{array}{r}\text {.00732 } \\ .0006 \\ -.0364 \\ \hline\end{array}$

1.00006
-.03764
08895

 .01029

$$
\begin{gathered}
2.13225 \\
\end{gathered}
$$ $\begin{array}{ll}1.1325 & 1.13836\end{array}$

coll

 .00336
.00115
.0036

 $\begin{array}{r}.00000 \\ -.0045 \\ -.0069 \\ .00058 \\ \hline\end{array}$ \begin{tabular}{l}
-.0699

.00058

\hline

.00058

.00098

\hline
\end{tabular} .00098

.00004
.0068 .00268
-.00102

.00339 | .00102 |
| :--- |
| .0039 |
| .0048 | .00048

.0054 $\begin{array}{r}.00564 \\ 1.02733 \\ .1 \\ \hline\end{array}$ \begin{tabular}{l}
1.0273

.000098

.0048

\hline

0.0408 \& .0048

\hline .0552 \& .0018

\hline

 $\begin{array}{ll}.00552 & .0011 \\ .0028 & .00026 \\ .00207 & .0033\end{array}$

.00039

-.0029

.00031

\hline

1.00103

\hline

\hline

.00031

.00409

.00308

\hline
\end{tabular}

.01360
.0049
.0059
.01440
.00997
.00136
.00160$\begin{array}{llll}1.13836 & 1.22687 & 1.73712\end{array}$
\qquad1.17672$1.26449 \quad 1.08104$
appravix F

SELECTED BIBLIOGRAPHY

A. Statistical Information

State of Nebraska. Biennial Report of the Auditor of Public Accounts, 1962-64.

State of Nebraska, Department of Labor. Labor Area News. 1963.
State of Nebraska, Department of Labor. Labor Force Trends. 1963.
State of Nebraska. Nebraska Agricultural Statistics, Annual Report, 1963.
State of Nebraska. Report of the Department of Banking, 1963-64.
United States Bureau of the Census. Census of Governments: 1962.
\qquad - County Business Patterns. 1962, 1963, 1964.
\qquad - 1963 Census of Business.
\qquad - 1963 Census of Mineral Industries.
\qquad - Survey of Current Business, October, 1965.

United States Department of Labor, Bureau of Labor Statistics. Consumer Expenditures and Income, Survey of Consumer Expenditures, Urban Places in the North Central Region, 1960-61, BLS Report 237-35 (Washington: U. S. Government Printing Office, 1964).
\qquad - Consumer Expenditures and Income, Survey of Consumer Expenditures, Urban United States, 1960-61, BLS Report 237-38 (Washington: U. S. Government Printing Office, 1964).

- Consumer Expenditures and Income, Detail of Expenditures and Income, Urban United States, 1961, BLS Report 237-38, Supplement 3, Part C (Washington: U. S. Government Printing Office, 1964).
. Employment and Earnings Statistics for States and Areas 1939-66. Bulletin 1370-4.

United States Federal Communications Commission. Statistics of Communication. 1963.

United States Federal Power Commission. Statistics of Electric Utilities in the United States. 1963.

United States Internal Revenue Service. Statistics of Income, 1963: Individual Income Tax Returns.
\qquad - Statistics of Income, 1963: U. S. Business Tax Returns.

Correspondence with Department of Commerce, Regional Economic Division, April-May 1968.

Correspondence with the Federal Reserve Bank, Kansas City, February 1968.

B. Articles and Books

Anon. "Maintenance and Repairs, 1915-63," Construction Review, Sept. 1965. p. 7.

Chenery, H. B. and P. G. Clark. Interindustry Economics. New York: John Wiley \& Sons, 1959.

Chu, Kong. Principles of Econometrics. Scranton, Pa.: International Textbook Company, 1968 .

Danton, L. A. The Economic Structure of the Omaha SMSA. Omaha: Center for Urban Affairs, University of Omaha, 1967. - Factors Influencing the Development of Omaha. Omaha: Center for Urban Affairs, University of Omaha, 1967.

Danton, L. A. and M. Hariri. Preliminary Projections of the Growth of the Omaha SMSA to 1990. Omaha: Center for Urban Affairs, University of Omaha, 1967.

Fortune. An Input-Output Study for 1966. New York: Fortune, 1967.
Gamble, H. B. and D. L. Raphael. A Microregional Analysis of Clinton County, Pennsylvania. University Park, Pa.; Pennsylvania State University, 196 .

Glass, J. H. and H. B. Gamble. A Regional Economic Study of Cameron County, Pennsylvania. University Park: Pennsylvania State University, 1967.

Hirsh, W. Z. "Interindustry Relations of a Metropolitan Area," Review of Economics and Statistics, Nov. 1959.

Isard, W. et al. Philadelphia Region Input-Output Study Working Papers, 3 volumes. Philadelphia: Regional Science Research Institute, 1966.

Leontief, W. W. Studies in the Structure of the American Economy. Oxford Press, 1953.
\qquad - Input-Output Economics. Oxford Press, 1966.

Moore, F. T. "Regional Economic Reaction Paths," American Economic Review, May, 1955.

Moore, F. T. and J. W. Petersen. "Regional Analysis: An Interregional Input-Output Analysis of Utah," Review of Economics and Statistics, Nov. 1955.

Northern Natural Gas Company. Input-Output Projections of the U. S. Economy. Omaha: Northern Natural Gas Company, 1967.

Peterson, R. D. and R. A. Wykstra. "A Provisional Input-Output Study of Idaho's Economy," Washington Business Review, Winter, 1968.

Retallick, Harold J. and C. R. Gildersleeve. Geographic Background Report No. 1, Omaha's Agricultural Core Region. Omaha: Center for Urban Affairs, University of Omaha, 1967.

Roesler, T. W. et al. An Input-Output Model for Nebraska (to be published).
Yan, Chiou-Shuang. Introduction to Input-Output Economics. New York: Holt, Rinehart and Winston, 1969.

[^0]: ${ }^{1}$
 Perry P. Chang, An Input-Output Study for the Omaha SMSA, 1963: A Provisional Report, Omaha, Urban Studies Center, University of Nebraska at Omaha, 1968.

[^1]: ${ }^{2}$ H. B. Cherry and P. G. Clark, Interindustry Economics (New York: John Wiley and Sons, Inc., 1962), and Chiou-Shuang Yan, Introduction to Input-Output Economics (New York: Holt, Rinehart and Winston, 1969).
 ${ }^{3}$ Total Iocal demand $=$ Intermediate demand plus local final demand.
 ${ }^{4}$ Total local supply $=$ Intermediate supply plus value added.

[^2]: ${ }^{13}$ T. W. Roester, et. al., The Economic Impact of Irrigated Agriculture on the Economy of Nebraska (Lincoln: Bureau of Business Research, University of Nebraska, 1968).

