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ABSTRACT 

When maintaining postural stability temporally under increased sensory conflict, a more rigid 

response is used where the available degrees of freedom are essentially frozen. The current study 

investigated if such a strategy is also utilized during more dynamic situations of postural control 

as is the case with walking. This study attempted to answer this question by using the Locomotor 

Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the 

visual and the somatosensory system. Ten healthy young adults performed the six conditions of 

the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of 

sway variability was evaluated from all conditions. The results showed that in the anterior posterior 

direction somatosensory input is crucial for postural control for both walking and standing; visual 

input also had an effect but was not as prominent as the somatosensory input. In the medial lateral 

direction and with respect to walking, visual input has a much larger effect than somatosensory 

input. This is possibly due to the added contributions by peripheral vision during walking; in 

standing such contributions may not be as significant for postural control. In sum, as sensory 

conflict increases more rigid and regular sway patterns are found during standing confirming the 

previous results presented in the literature, however the opposite was the case with walking where 

more exploratory and adaptive movement patterns are present. 

Keywords: biomechanics, posture, sway variability, nonlinear, sample entropy. 

Abbreviations 

LSOT – Locomotor Sensory Organization Test 

SOT – Sensory Organization Test 

netCOP – net Center of Pressure 

SampEn – Sample Entropy 
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INTRODUCTION 
 

Successfully maintaining postural control during standing and walking requires integration 

of three major sensory systems: visual, vestibular and somatosensory systems1. It has been 

suggested that each sensory system monitors postural changes through independent sensorimotor 

pathways. The central nervous system (CNS) responds by implementing the appropriate corrective 

muscle synergies based on the integrated input from these three sensory systems2. If only one 

sensory system is intact, the CNS determines the response completely based on that particular 

sensory system; and if two or more sensory systems are intact, the CNS evaluates all signals from 

the available sensory systems and makes adequate responses2. Based on this theoretical framework 

when conditions of reduced perceptual accuracy exist, the CNS recalibrates by reducing inaccurate 

sensory gains and increasing the functional gain of accurate sensory modalities. During this 

recalibration process, humans demonstrate difficulties to maintain balance and alter postural 

control, such as increasing body sway without vision in standing2. Successful recalibration leads 

to functional adaptation to the perceived environmental perturbation, as observed for example in 

the shortening of the stride length on a slippery ground in locomotion2.   

In order to quantify the adaptive mechanisms involved in the control of standing posture 

during sensory conflict, the Sensory Organization Test (SOT) has been widely used in patients 

with vestibular disorder3-4, concussion5, stroke6, and Parkinson’s Disease7, among others. The 

design of the SOT is intended to challenge postural control through manipulations of the sensory 

input. It can manipulate somatosensory and visual inputs individually or in combination to allow 

assessment of a patient’s ability for maintaining balance. The SOT has allowed scientists to 

investigate amount of sway variability under these conditions and make inferences about sensory 

contributions to postural control. In summary these studies found that the amount of sway 
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variability increased as postural control was challenged by manipulating sensory inputs in the 

SOT8. These increases have been interpreted as increased noise in the system that could lead to 

instability8. 

To further explore this interpretation, researchers have recently shown interest in the 

temporal structure of sway variability or in other words how sway variability changes over time 

while performing the SOT9-12. This work, which encompasses several different areas including 

brain function and disease dynamics, has shown that many apparently “noisy” phenomena are the 

result of nonlinear interactions and have deterministic origins13-15. As such, the measured signal, 

including its “noisy” component, may provide important information regarding the function of the 

system that produced it. Therefore, new innovative clinical methods that use nonlinear 

mathematical analysis and investigate the temporal structure of variability have been proposed. 

These nonlinear methods are being used increasingly to describe complex conditions. For example, 

nonlinear analysis of the temporal structure of the variability has recently been used to study heart 

rate irregularities, sudden cardiac death syndrome, blood pressure control, brain ischemia, epileptic 

seizures, and several other conditions13, 16-21. Such research has allowed for a better understanding 

of the complexity of these pathologies and eventually led to the development of better prognostic 

and diagnostic tools in other areas (i.e. cardiology, neurology). Thus, it is fair to assume that 

nonlinear analysis of the sway variability could allow insight into the complex strategies used to 

control movement and posture informing clinical practice with respect to movement related 

disorders. 

Such an assumption led investigators to explore the temporal structure of sway variability 

while performing the SOT9-12. Riley at al. (2003) used recurrence quantification analysis to 

investigate the temporal structure of sway variability9. They found that the temporal structure of 
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postural sway tended to become increasingly regular as the SOT condition increased in difficulty 

(i.e. as the SOT condition moved from eyes open to eyes closed, to sway-referenced visual 

surround or support surface, and to sway-reference surface and visual surround). Entropy analysis 

has also been shown to detect changes in postural control dynamics and results have highlighted 

the role of such analysis to evaluate postural stability with the SOT condition5, 10-12. Specifically, 

an overall decrease in entropy values (i.e. more regular sway patterns) with the SOT condition was 

found even though these studies were not focused on the SOT condition per se but on the effects 

of vibrating the Achilles tendon12, 22. Similar results were found with entropy values decreasing as 

the SOT condition increased in difficulty indicating more regular sway patterns5, 10-11. Therefore, 

from all the above mentioned studies it can be concluded that sensory manipulation through the 

SOT condition leads to a more regular and repeatable sway movement pattern.  

This strategy could be interpreted as an effort to temporally maintain postural stability 

under increased sensory conflict. A more rigid (i.e. more regular and repeatable) response has been 

considered as a freeze of the available degrees of freedom, a phenomenon that is also observed 

when dealing with novel situations and learning the new skill39.  Will such a strategy be also 

utilized during more dynamic situations of postural control as in the case with walking? Here this 

study attempted to answer this question by using an experimental apparatus that combines a 

treadmill, instrumented with force platform technology, and virtual reality; the Locomotor Sensory 

Organization Test1. This study hypothesized that a more rigid response will also characterize 

dynamic postural control during walking on our apparatus that incorporates SOT inspired 

perturbations of the visual and the somatosensory system.  
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METHODOLOGY 

Subjects 

Ten healthy young adults (five males and five females; age 27.20±4.92 years, height 

171.30±7.01 cm and weight, 64.70±9.90 kg) participated in this study. Subjects were free from 

any musculoskeletal impairment, had no history of significant lower extremity injuries, which may 

have affected their posture or gait, and had no visual, somatosensory or vestibular deficits. We 

excluded individuals without normal or corrected to normal vision, scored above zero on the 

dizziness handicap inventory for a vestibular deficit24 and with any type of peripheral neuropathy 

that can affect somatosensory function. Prior to the experiment, each subject signed an informed 

consent approved by our University’s Medical Center Institutional Review Board. 

Protocol 

The experiment entailed exposing subjects to sensory perturbations in the SOT and LSOT 

environments. The SOT was conducted in a quiet room using the Balance Master System 8.4 

(NeuroCom International Clackamas, OR, USA). The system contains a moveable visual surround 

and support surface that rotate in the anterior-posterior (AP) plane. Two 22.9 x 45.7 cm force 

plates connected by a pin joint are used to collect center of pressure data at 100 Hz. Foot placement 

is standardized based on subjects’ height according to manufacturer guidelines. While standing in 

the Balance Master system, subjects wore a vest attached to the safety harness of the system 

(Figure 1). 

The Locomotor Sensory Organization Test (LSOT) consisted of two components: a virtual 

reality environment, and an instrumented treadmill (Bertec Corp., Columbus, OH, USA) (Figure 

2)1. The LSOT contained six conditions similar to the Sensory Organization Test to manipulate 

the sensory information during walking (Figure 3).1 Prior to the data collection, each subject 
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walked for five minutes on the treadmill to determine their preferred walking speed (PWS). After 

the PWS was determined, all subjects walked on the treadmill with the PWS for two minutes in 

each of the six conditions of the LSOT test. The LSOT conditions from 1 to 3 required the subject 

to walk on the treadmill set to the Preferred Walking Speed (PWS). This was done with matching 

optic flow in condition LSOT 1 (none of the sensory systems was challenged as in SOT 1), vision 

reduced in condition LSOT 2 (visual blocked as in SOT 2), and eyes open but random optic flow 

in condition LSOT 3 (visual perturbation matched to SOT 3). The visual perturbation was created 

by varying the optic flow between 80% and 120% of PWS in randomly assigned time intervals of 

1 to 10 seconds. The LSOT conditions 4-6 all had random perturbation of the treadmill speed. The 

random treadmill perturbations was created by varying the treadmill speed between 80% and 120% 

of PWS in randomly assigned time intervals of 1 to 10 seconds. This was done with optic flow 

matched to PWS in condition LSOT 4 (somatosensory perturbation as in SOT 4), vision reduced 

in condition LSOT 5 (visual blocked and somatosensory perturbation as in SOT 5) and finally, 

eyes open with matching random optic flow condition LSOT 6 (simultaneous visual and 

somatosensory perturbation as in SOT 6). In between conditions, the subjects were allowed to rest 

for one minute with closed eyes. 

Data Reduction 

For the SOT, we investigated the temporal structure of sway variability using the COP 

trajectory in the AP and the medial-lateral (ML) direction. In addition, we only selected the first 

trial of each SOT condition to reduce the effect of condition adaptation. A similar approach has 

been used in previous studies23, 10-12. For the LSOT, we investigated the temporal structure of sway 

variability using the netCOP trajectory in the AP and the ML direction. This measure allows for a 

direct comparison of the COP measures between standing and locomotion. The netCOP is the point 
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where the total sum of a pressure field acts on a body during walking. The total force vector acting 

at the netCOP is the value of the integrated vector pressure field25. The netCOP as is the case with 

the COP, provides with a net representation of the movement generated by the entire body and all 

available degrees of freedom40.  Before calculating the temporal structure of the variability present 

in the COP and netCOP data, the original data was down sampled from 100Hz to 10Hz to reduce 

the irrelevant noise present in the data since there was no physiological signal above 10 Hz in the 

COP data of both tasks26. 

Sample Entropy (SampEn): For all the COP and netCOP time series, the SampEn values 

were calculated using a customized script in MatLab R2011a (Mathworks, Natick, MA). The 

SampEn algorithm is defined as the negative natural logarithm for conditional properties that a 

series of data points a certain distance apart, m, would repeat itself at m + 1. SampEn takes the 

logarithm of the sum of conditional probabilities. Given the time series g(n) = g(1), g(2), …, g(N), 

where N is the total number of data points, a sequence of m-length vectors is formed. Vectors are 

considered alike if the tail and head of the vector are within the set tolerance level. The sum of the 

total number of like vectors is divided by m+1 and defined as A or by N-m+1 and defined as B. 

SampEn is then calculated as –ln(A/B). A perfectly repeatable time series has a SampEn value ~0 

and a perfectly random time series has a SampEn value converging toward infinity. In the current 

study, the following parameters were selected and used in the determination of SampEn values in 

SOT and LSOT: (a) a pattern length (m) of 2, (b) and error tolerance (r) of 0.227. The time series 

length in the SOT trials was 200 data points. The time series length in the LSOT trials was 1200 

data points. These data lengths should be sufficient according to the literature27.  

 Four one-way repeated measure ANOVAs were performed using SPSS (18.0, IBM 

Corporation, Somers, NY) to determine condition effects of the LSOT and SOT. Specifically, the 
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dependent measures were: the SampEn calculated from the COP data for the SOT in the (1) AP 

and in the (2) ML direction, and the SampEn calculated from the netCOP data for the LSOT in the 

(3) AP and in the (4) ML direction. Pairwise comparisons were performed to determine specific 

differences between conditions using Bonferroni adjustments. The adjusted significance level for 

the pairwise comparisons was 0.0083.   
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RESULTS 

Anterior-posterior SampEn values in the SOT 

The one-way repeated ANOVA revealed a significant condition effect (F = 17.79, p < 

0.001) (Table 1; Figure 4A). The post-hoc pairwise comparisons revealed numerous significant 

differences between conditions. The first three conditions had all significantly larger values than 

the last three, however, there were no differences between them. The last three conditions had also 

no differences between them. The largest group mean value was present in condition 1, while the 

smallest group mean value was present in condition 5 (eyes closed with sway-referenced surface), 

followed by condition 6 (eyes open with sway-referenced surface and visual surroundings).  

 Anterior-posterior SampEn values in the LSOT 

The one-way repeated ANOVA revealed a significant condition effect (F = 292.96, p < 

0.001) (Table 1; Figure 4B). The post-hoc pairwise comparisons revealed that all possible 

comparisons between conditions were significant. The smallest group mean value was present in 

condition 3 (variable optic flow), followed by condition 1. The largest group mean value was 

present in condition 5 (reduced visual information, variable treadmill velocity), followed by 

condition 6 (variable optic flow and variable treadmill velocity).  

Medial-lateral SampEn values in the SOT 

The one-way repeated ANOVA revealed a significant condition effect (F = 19.49, p < 

0.001) (Figure 5A). The post-hoc pairwise comparisons revealed numerous significant differences 

between conditions. Conditions 1 and 2 had significantly larger values than conditions 4, 5 and 6. 

Conditions 3 and 4 had also significantly larger values than condition 6. In general the group mean 

values decreased from condition 1 to condition 6 with the smallest group mean value be present in 

condition 6 (eyes open with sway-referenced surface and visual surroundings), followed by 
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condition 5 (eyes closed with sway-referenced surface). However, there was no significant 

difference between conditions 5 and 6. 

Medial-lateral SampEn values in the LSOT  

The one-way repeated ANOVA revealed a significant condition effect (F = 14.03, p < 

0.001) (Figure 5B). The post-hoc pairwise comparisons revealed several significant differences 

between conditions. The group mean value for condition 1 was significantly smaller than condition 

2 (reduced visual information) and condition 5 (reduced visual information, variable treadmill 

velocity). Condition 2 (reduced visual information) had a significantly larger value than conditions 

3 (variable optic flow) and 4 (variable treadmill speed).  
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DISCUSSION 

This current study investigated how increased sensory conflict affects the temporal 

structure of sway variability during standing and walking. Based on previous studies that have 

used the SOT and found a more rigid (i.e. more regular and repeatable) response during standing 

posture in conditions with increased sensory conflict, we hypothesized that a more rigid response 

will also characterize dynamic postural control during walking in such conditions. To test this 

hypothesis an apparatus that uses SOT inspired perturbations of the visual and the somatosensory 

system1 was used. The apparatus combined a treadmill, instrumented with force platform 

technology, and virtual reality, to create the Locomotor Sensory Organization Test (LSOT)1. The 

results verified the findings presented in the literature regarding the SOT and revealed a more rigid 

(i.e. more regular and repeatable) response during standing posture in conditions with increased 

sensory conflict. They also revealed that the LSOT was successful in producing significant 

differences between conditions with increased sensory conflict during walking. However, the 

results did not support our hypothesis as we found a less rigid and more irregular response for 

dynamic postural control during walking with increased sensory conflict.  

 As mentioned above, the SOT results were in agreement with the literature. The entropy 

values decreased as the SOT conditions increased in difficulty indicating more regular sway 

patterns10-12. One notable difference is that in previous studies that have used the SOT, a different 

entropy algorithm was utilized, the Approximate Entropy. However, this algorithm has been found 

to exhibit certain limitations while Sample Entropy was identified as more reliable for short data 

sets27. For this reason the Sample Entropy algorithm was used and to the best of our knowledge, 

our study is the first study to perform such an analysis with SOT derived data sets. The only direct 

comparison that could possibly attempt to make is with two studies that have used the Sample 



Page 14 of 30 
 
 

Entropy algorithm in investigating questions related with postural control32-33. In these two studies 

healthy subjects stood on a solid surface with either eyes open or closed. The results of the study 

by Rigoldi and colleagues were comparable to the present study (referring to the first two SOT 

conditions) in terms of the AP direction but not the ML direction where our values were smaller33. 

The differences in the ML direction could be due to the fact that the SOT test is performed mainly 

in the AP direction - both visual surround and sway reference are manipulated in the AP direction. 

The results of the study by Ramdani and colleagues were much larger than the present study but 

these values may be influenced by the fact that we used different m and r parameters (ours were 2 

and 0.2, while Ramdani et al had 3 and 0.3)32. No values on these parameters were reported in the 

Rigoldi et al study. In sum, we feel confident about the values of our results at least with respect 

to the SOT test, since no such comparisons could be made for the LSOT due to lack of related 

literature. 

How is dynamic postural control affected in the AP direction? In our previous work using 

the LSOT to explore amount of sway variability during locomotion, we found that the contribution 

of visual input was significantly increased during locomotion compared to standing in similar 

sensory conflict conditions1. Thus, it is not surprising that in this study we found that manipulating 

vision would also alter the temporal structure of sway variability during locomotion. However, the 

interesting result was that two different kinds of visual manipulation (reduced vision as in 

condition 2 and perturbed vision as in condition 3) produced completely opposite results. Reduced 

vision resulted in a significantly more irregular response, while perturbed vision produced a 

significantly more regular response. It is possible that reduced vision resulted in more uncertainty 

and larger need to explore the available stepping space leading to more irregular movement 

patterns. This deduction is supported by Perry et al. (2001) who found that when visual information 
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was occluded using special glasses34, the COM moved closer to the base of support during double 

support along with more variability in the COM movement, as the subjects were attempting to 

achieve a final stable position. Further support is provided by our previous findings using the 

LSOT1 where amount of variability for step length, step width, and netCOP increased significantly 

when vision was reduced. However in the perturbed vision condition, where we observed a more 

regular response, the visual input was in conflict with the treadmill moving at PWS resulting in a 

freeze of the available degrees of freedom as the subjects were learning to walk in a visually 

unreliable and an unfamiliar condition39.  Additional support is provided by our previous study1 

where we found that step length variability decreased in the visual conflict condition and increased 

in the vision reduced condition. However in the perturbed vision condition, where we observed a 

more regular response, the visual input was in conflict with the treadmill moving at PWS resulting 

in a freeze of the available degrees of freedom as the subjects were learning to walk in a visually 

unreliable and an unfamiliar condition. Such an interpretation is supported by Katsavelis et al. 

(2010) where was found that optic flow manipulation resulted in decreases in measures of the 

temporal structure of gait variability as compared to normal unperturbed walking35. Further 

support is provided by our previous LSOT study1 where we found that step length variability 

decreased while the increase in netCOP variability was relatively smaller, in comparison with 

condition 1 of the LSOT.  

Beyond the differential effect of visual manipulation on our results, another interesting 

result from the present study is that altering only the somatosensory input (as in condition 4) 

produced a larger effect on the temporal structure of sway variability while walking than only 

reducing the visual input (as in condition 2). This was not expected, as results for the amount of 

variability in our previous study were different1. Importantly when perturbed somatosensory input 
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was added to reduced visual input (as in condition 5), an almost linear additive effect was produced 

on the temporal structure of sway variability. There was also a large effect when perturbed 

somatosensory input was added to the perturbed visual input (as in condition 6) reversing the 

decreasing effect observed in condition 3. These results suggest that somatosensory input has a 

very prominent effect on the temporal structure of sway variability and is even more influential 

than visual input. It is possible that visual input has a larger effect on amount of variability during 

locomotion as observed in previous work1, but somatosensory input may play a bigger role when 

dealing with the temporal structure of variability in the anterior posterior direction. This 

interpretation is supported by Clark et al. (2014) that found that altered somatosensation can affect 

prefrontal activity during walking36. Moreover, investigations of kinesthetic distance perception 

have shown that perception of distance traveled while blindfolded depends upon the way in which 

the legs are coordinated42. 

The results for dynamic postural control in the AP were not replicated for the ML direction. 

Interestingly, the only condition that produced significant effects was the reduced visual input 

(condition 2). Neither perturbed visual (condition 3) nor perturbed somatosensory input (condition 

4) had a significant effect and even when these two conditions were combined (as in condition 6), 

we did not observe any significant results. These results suggest that in the ML direction, control 

as evaluated through the temporal structure of variability mostly depends on contributions from 

peripheral vision since it is the reduced visual condition that actually had an effect and not the 

perturbed vision condition. This interpretation is supported by Graci et al. (2009; 2010) who found 

that proprioceptive information as provided by the peripheral visual field is used online to fine 

tune adaptive gait37-38. Importantly, these results demonstrate that sensory inputs have directionally 

dependent contributions. 
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There are certain interesting observations when comparing SOT and LSOT results. First, 

in the AP direction during standing, significant differences occurred as soon as the perturbed 

somatosensory condition was introduced (SOT condition 4). Before this condition and in 

conditions 2 and 3, there were no effects. Something similar was observed with walking where we 

found a strong somatosensory effect as described above. In walking we also have a secondary 

result, which is the differential effect of reduced vision versus perturbed vision. In the medial 

lateral direction, we again have a significant effect of the somatosensory input in the SOT results 

which is similar with the anterior posterior results. However, this is not the case during walking 

where we found reduced vision to be the most significant sensory condition. Thus, here we have a 

true difference between the two tasks in terms of sensory systems contributions as observed 

through analysis of the temporal structure of sway variability. It also might be due to the attentional 

demands of balance control vary depending on the complexity of the task41. 

Another important result is that during standing as sensory conflict increases, in general 

the values decrease while in walking they increase. These results could suggest that while standing 

with our feet stationary, we do not have many options or solutions for postural control when we 

are faced with sensory conflict. Being more rigid and freezing the degrees of freedom is what we 

always do when we are faced with the unknown especially if we have no options. However, while 

walking we have more options that allow us further exploration and adaptations in order to 

compensate for increased sensory conflict conditions. 

 In conclusion, our results allowed us to identify how increased sensory conflict affects the 

temporal structure of sway variability during standing and walking. In general we observed that 

somatosensory input is crucial for the control of the temporal structure of sway variability for both 

waking and standing in the anterior posterior direction. Visual input also has an effect but is not 
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as prominent as the somatosensory input. It could also have a different effect based on the way it 

is manipulated. However, in the medial lateral direction reduced visual input has a much larger 

effect during walking than in standing possibly due to decreased contribution from peripheral 

visual inputs. Furthermore and regardless of direction, as sensory conflict increases we observe 

more rigid and regular sway patterns during standing, while the opposite is the case with walking 

where we observe more exploratory and adaptive movement patterns. This information could 

enable more comprehensive decision making processes to be made using the LSOT, possibly in 

parallel with the SOT that is presently readily available in clinics. Such information could allow 

us to assist patients with sensory and motor disorders by guiding diagnosis and rehabilitation. The 

present paper provides the foundation for the establishment of the normative data needed for 

nonlinear measures and further evidence for adaptation of this technology by the biomedical 

industry. 
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Table 1. Group means and standard deviations for all conditions for the dependent measures evaluated. Significant differences between 

conditions are indicated with superscripts. 

Conditions 1 2 3 4 5 6 

SampEn for SOT in 
anterior-posterior 

direction 
0.217(0.043)$%^ 0.185(0.032)$%^ 0.199(0.058)$%^ 0.108(0.036)!@# 0.094(0.034)!@# 0.092(0.045)!@# 

SampEn for LSOT in 
anterior-posterior 

direction 
0.259(0.009)@#$%^ 0.314(0.009)!#$%^ 0.183(0.016)!@$%^ 0.346(0.023)!@#%^ 0.402(0.024)!@#$^ 0.380(0.018)!@#$% 

SampEn for SOT in 
medial-lateral 

direction 
0.096(0.030)$%^ 0.082(0.012)$%^ 0.065(0.012)^ 0.059(0.010)!@^ 0.057(0.013)!@ 0.048(0.012)!@#$  

SampEn for LSOT in 
medial-lateral 

direction 
0.071(0.006)@% 0.105(0.017)!#$ 0.078(0.012)@ 0.075(0.009)@ 0.093(0.016)! 0.081(0.016) 

 

1. !: significant difference exhibited when compared to condition 1. 
2. @: significant difference exhibited when compared to condition 2. 
3. #: significant difference exhibited when compared to condition 3.  
4. $: significant difference exhibited when compared to condition 4. 
5. %: significant difference exhibited when compared to condition 5. 
6. ^: significant difference exhibited when compared to condition 6. 
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Figure Captions 

Figure 1. The SMART balance Master (NeuroCom International Clackamas, OR, USA) is used 

to perform the Sensory Organization Test (SOT). This test contains six conditions: 1) eyes open 

with fixed surface and fixed visual surrounding; 2) eyes closed with fixed surface; 3) eyes open 

with fixed surface and sway-referenced visual surroundings; 4) eyes open with sway-referenced 

surface and fixed visual surroundings; 5) eyes closed with sway-referenced surface; 6) eye open 

with sway-referenced surface and visual surroundings.  

Figure 2. The components of Locomotor Sensory Organization Test (LSOT): virtual reality and 

the instrumented treadmill.  

Figure 3. The six conditions of Locomotor Sensory Organization Test (LSOT) that mirrors those 

of the SOT: 1) normal walking condition 2) Reduced visual condition by reducing vision capability 

condition 3) Perturbed visual condition by manipulating optic flow speed condition 4) Perturbed 

somatosensory condition by manipulating treadmill speed condition 5) Perturbed visual and 

somatosensory condition by reducing vision capability and manipulating treadmill speed condition 

and 6) Perturbed visual and somatosensory condition by manipulating optic flow and treadmill 

speed condition.  

Figure 4. Bar chart showing the mean of the Sample Entropy values of all the subjects for the SOT 

(red; Figure 4A) and the LSOT (blue; Figure 4B) groups across the six experimental conditions. 

Error bars are standard deviation. For each condition the post hoc differences are indicated over 

the bars with the number of the condition found to be significantly different with. 

Figure 5. Bar chart showing the mean of the Sample Entropy values of all the subjects for the SOT 

(red; Figure 5A) and the LSOT (blue; Figure 5B) groups across the six experimental conditions. 
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Error bars are standard deviation. For each condition the post hoc differences are indicated over 

the bars with the number of the condition found to be significantly different with. 
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Figure 1. 
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Figure 2. 
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