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Abstract In this study, we explored whether gaze and posture would exhibit coordination with the motion of a 
presented visual stimulus, specifically with regard to the complexity of the motion structure. Fourteen healthy 
adults viewed a set of four visual stimulus motion conditions, in both self-selected and semi-tandem stance, 
during which the stimulus moved horizontally across a screen, with position updated to follow a sine, chaos, 
surrogate, or random noise trajectory. Posture was measured using a standard force platform in self-selected 
and semi-tandem stance conditions while gaze was recorded using image-based eye-tracking equipment. Cross-
correlation confirmed the continuous coordination of gaze with each type of stimulus motion, with increasing lag 
as stimulus motion complexity increased. Correlation dimension and approximate entropy were used to assess 
the complexity of the measured gaze and posture behaviors, with these values compared against those of the 
actual stimulus via ANOVA and dependent t tests. We found that gaze behavior was particularly sensitive to the 
complexity of the stimulus motion, according to both metrics. Posture seemed to be unaffected by stimulus 
motion viewing; however, different stance conditions did exhibit differences in posture metrics. Our results 
support an evolving understanding of how vision is used for determining perception and action. 
 
 
 
 
Introduction 
 
Several researchers have provided groundwork to the investigation of gaze and postural coupling to motion of, 
and within, visual displays (Amblard and Carblanc 1980; Piponnier et al. 2009). Further, Wade and Jones (1997) 
discuss the value of Gibson's presentation of a theory of ecological optics, wherein the interactions between the 
self and the environment were bi-directionally tuned to both produce and consume visual information about the 
movement behavior of the individual (Gibson 1966, 1979). Stoffregen et al. (2006) present compelling argument 
on the implicit entrainment of postural sway to the motion of a visual stimulus. In a moving room environment, 
participants were asked to stand with resistance to visual coupling of their posture to the motion of the room. 
Although entrainment was reduced, relative to an uninstructed condition, it was not eliminated completely. This 
suggests that both perceptual and nonperceptual factors influence coupling between postural sway and vision. 
Ravaioli et al. (2005) used a visual stimulus scaled across motion frequency to find concomitant modulation of 
postural sway. A similar effect is found from the eye-tracking literature, connecting stimulus motion qualities to 
properties of smooth pursuit eye movements (Born et al. 2002; Kowler 20 1 1). Boccignone (2004) presents the 
notion that during free viewing, individuals appear variably motivated to gather information about the local 
environment. ln a 'low' attention state, visual exploration tends to settle  toward  more  localized  fixations. 
More complicated or active visual environments exhibit greater mathematical complexity, which appears to 
compel increased gaze activity and evoke more complex scan paths. lf the scan path becomes too erratic, model 
-able by an unconstrained walk, then little information can  be stabilized. For these reasons, humans tend to 
demonstrate complex gaze behavior, aligning with the idea that a search state with maximum complexity 
provides the visual system access to an optimal amount and quality of information. Renninger et al. (2007) 
concur with this notion, but also present that individuals tend to employ a strategy during which local 
uncertainty is reduced during gaze task. Coordination of gaze and posture to stimulus motion is advantageous in 
that it helps to avoid excessive perturbing distraction, but also serves to maintain awareness of opportunities for 
purposeful behavior. Matching the motion of a presented stim ulus, with both eye and body motion, may be 
most informative when particularly tuned to the complexity of the structure of motion of the presented 
stimulus. Such sensitivity may confer improved resolution to temporal accuracy of postural sway. 

Dynamic systems theory (DST) provides a supplementary perspective, specifically a subset dealing with 
the description of coupled oscillators. Such a perspective allows us to explore the possibility that there is an 
absence of "information processing" proper. Instead, that a mode of behavior exists in which a direct linkage 
between what is seen and how we respond is available to us as the organizing factor in our motor output (Kay 
and Warren 2001). Such an explanation would help explain enumerable examples of coordination within and 
between interactive human systems of similar and dissimilar structure, organization, and even motivation 
(Richardson et al. 2008). DST provides a framework through which this online coupling of internal and external 



 

 

constraints (and their interactions) can be coordinated, serving as a means for the self-organization of human 
movement behavior (Kelso 1995; Thelen and Smith I 996). A critical argument made within the DST framework is 
that systems may tend to be organized around particular control parameters. These are factors defined by some 
system constraints which, when scaled up or down, provoke concomitant changes in the future state of the sys 
tem. This has been exampled by Kay and Warren (2001), showing a direct linkage between oscillations of the 
visual environment and the observed oscillations of mediolateral sway during walking and showing dynamic 
coupling of posture and gait. However, their work was limited to changes only in the frequency domain and 
tested only the sensitivity to periodic oscillations, i.e., sinusoidal rhythms. However, the natural oscillatory   
behavior of human movement is best characterized by chaotic oscillations (Stergiou et al. 2004). Whether 
coupled system dynamics might be observable upon fluctuations of temporal complexity as a control parameter 
is still unknown. 

We propose in the current investigation that the complexity of motion of a presented visual stimulus will 
elicit reciprocally complex gaze and posture motion. If complexity does indeed serve as a control parameter of 
these behaviors, we should see reciprocation of the qualities of the stimulus motion to be present in the 
viewer's gaze and postural behaviors. Metrics have been developed to study behavioral dynamics by capturing 
the dynamic response of the system in response to an experimental dynamic stimulus. Such metrics include the 
calculation of correlation dimension (CorrDim), which allows the approximation of the system's complexity 
(Newell et al. 2000; Grassberger and ProcacciaI 983), and approximate entropy (ApEn), which summarizes the 
repetitive nature of the behavior of the system (Vaillancourt 2000; Pincus I99I). The current investigation used 
these metrics to assess the dynamics response of posture and gaze to the dynamics of a visual stimulus. We 
further inquire to whether the adoption of a semi-tandem stance modulates the sensitivity of the effect of 
stimulus motion on posture and gaze. Inherently less stable, semi-tandem stance may serve to amplify, or 
negate, entrainment of gaze and posture to stimulus motion. 
 
 
 
Methods 
 
Participants and procedures 
 
Fourteen adults (4 male and 10 female, age 29.8 ± 10.5 years, height 1.638 ± 0.1m, mass 67 ± 14.2 kg) attended 
a single data collection session during which synchronous measures of eye movement and standing posture 
were collected while viewing a moving point-light stimulus with various conditions of differing frequency 
structure. Informed consent was obtained prior to all experimental procedures, as approved by the University of 
Nebraska Medical Center Institutional Review Board. During the experiment, individuals stood atop an AMTI 
force platform (Advanced Mechanical Technology Inc., OR6-7, with MSA-6 amplifier) where center of pressure 
was collected at 50 Hz. This frequency was selected to allow real-time synchronization with the eye-tracking 
equipment, which is hard coded to deliver data at this rate. A red dot stimulus (25 pixel radius) was presented on 
a 55" 1,920 x 1,200 pixel LCD monitor, with a black curtain surround to block sight of objects in the peripheral 
visual field. The faceLab 4.5 (Seeing Machines, Acton, MA, USA) eye-tracking equipment was used to track eye 
movements, also at 50 H z. The faceLab eye-tracking system provides on-screen gaze coordinates, in both pixels 
and physical dimensions, in 'real time.' The system uses a head model to maintain dynamic regions of interest, 
which contains each of the eyes (binocular), coupled with IR retinal reflection and pupillometry to calculate gaze 
direction. In software, the 'world model' is constructed with the physical dimensions of the experimental setup. 
This affords the calculation of on-screen gaze coordinates from the headto-screen distance and the gaze 
direction.  Data collection and coordination were managed through custom software designed in Labview 
(National Instruments, Austin, TX , USA), including  software synchronization of all data streams. Figure I 
provides a diagram of the setup, with Fig. 2 further detailing the dimensions of the stimulus display 
configuration. 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Fig. 3 Signals used to create the frequency structure of the motion of the point-light stimuli are shown in the first 
row. Data in rows two and three reflect the gaze and posture responses (respectively) from one representative 
participant. Of the 5 min trials, the middle 3 mins are shown. All data series are unit normalized, with “lower” 
values representing the leftward position and ‘higher’ values representing the rightward position. Positions are 
all relative to the coordinated centers of the force plate and the LCD Monitor  
 
 
 Four stimulus conditions (detailed below) were viewed under two stance conditions (self-selected and 
semi-tandem) equaling eight total trials. Stimulus condition order was randomized within each stance condition 
block. It was randomly selected whether participants did all four self-selected stance trials first, or all four semi-
tandem stance trials, counterbalanced such that half the participants did it each way. Figure 1 displays the 
general configuration of foot position for each stance type. For self-selected (A), participants were asked to 
stand comfortably. All participants freely chose an approximately shoulder width stance with feet even in the 
frontal plane. For semi-tandem (B), participants were asked to stand in the center of the plate with their 
dominant foot forward, with the heel of the dominant foot and the toe of the nondominant foot even in the 
frontal plane. 

 
 
Trials lasted for 5 min each to ensure the capture of adequate lengths of data. Participants were given the 
instruction to stand quietly and attend to the motion of the stimulus until the end of the trial, as indicated by the 
investigator. Room lights were dimmed and conversation was held to a minimum throughout each trial. 
However, participants were allowed to speak and move about freely in the time between conditions. Grid 



 

 

markings and tape placed on the surface of the force platform were used to realign the feet to ensure a similar 
stance for each condition. 
 
 
Stimulus presentation 
 

Participants were presented with four separate stimulus motion conditions, each defined by a different 
quality of motion of the stimulus. Each stimulus moved only horizontally and was positioned vertically central on 
the screen. The animations were constructed such that the position of the stimulus was updated at 50 Hz, above 
perceptjve threshold of object motion, providing smooth oscillatory trajectories to which smooth pursuit eye 
movements could follow. The stimuli were designed to prevent saccadic motions, by keeping the velocity profile 
below 30°/s. Stimulus motion was defined to follow one of four main signal structures: sine, chaos, surrogate, 
and brown noise (Fig. 3). These particular signals were selected, as they span the spectrum of signal properties 
related to the temporal characteristics particularly interesting to the current investigation. As seen in Table I , 
this set of stimuli  provides incrementally increas ing values of dimension and entropy, proceeding from the 
lowest values for the sine signal up to the largest for the brown noise signal. Each signal is comprised of 15,000 
data points at 50 Hz, providing 5 mins of continuous point motion. Stimulus time series were constructed using 
both embedded and custom algorithms in Matlab (MathWorks, Natick, MA, USA). These data series were then 
accessed and displayed through the main Labview application onto the monitor. 

The sine signal was generated using the sin() function in Matlab, frequ ency 0.1 Hz. The chaos signal was 
produced from a model of the motion of a double pendulum. The x-axis position of the distal segment was 
extracted and used to produce the chaos signal, and was further processed to provide the surrogate signal, as 
well. The signal for the surrogate stimulus utilized a procedure, which applies a random number generated 
distributed noise to the frequency domain of the original time series (Theiler et al. 1992). In this case, it was the 
chaos signal from which a surrogate was produced. Ultimately, this was done as one means of producing a signal 
with random structure, which is yet restricted to a deterministic source. This is in contrast to the production of 
the brown noise signal, which was generated by the iterative addition of a random perturbation to the original 
point position. It is this spectrum of particular signal generation schemes that provides us the scale of signal 
properties seen in Table I. The median frequency (computed using fft() function in Matlab) of each stimulus was 
between 0.1 and 0.2 Hz, with frequency dispersion <1 Hz, except for the brown noise signal. Brown noise is 
characterized by the display of 1/f2 power spectral density, causing a bias toward a lower median frequency with 
broader frequency dispersion. Spectral and temporal metrics varied according to the nature of each signal 
structure. Velocity profiles were bound ± 30°/s. 
 
Data processing 
 

Gaze and postural data were recorded at 50 Hz, throughout the entire 5 min duration of stimulus 
condition presentation. Gaze data were recorded as the on-screen pixel coordinate toward which the participant 
was looking at each time point throughout the trial. Mediolateral center of pressure was recorded as the 
measure of posture. For both signals, only the horizontal component of motion was considered, as the stimulus 
signal was set to move only in the horizontal direction. 

To avoid the influence of novelty, the first minute of data was eliminated, as was the fifth minute, due to 
possible influence of fatigue. The middle 3 mins (9,000 data points) of each segment were submitted for further 
processing. Characteristics of gaze and posture were calculated using custom Matlab software (MathWorks, 
Natick, MA, USA). Coupling of each measure, gaze and posture, to the stimulus signal was tested via cross-
correlation metrics of maximum correlation (Max) and the time lag (Lag) at which Max occurred (Fig. 4). CorrDim 
and ApEn properties were calculated to determine the responsive changes, due to viewing the various structures 
of stimulus motion. 
 
Correlation dimension (CorrDim) 
 



 

 

Calculating the CorrDim of a data series provides a representative of the number of active degrees of 
freedom of the system being evaluated (Newell et al. 2000). This is related to the general complexity of the given 
behavior of the system. Generally, it is taken that greater complexity is associated with more difficult to solve 
system organizations. This is often the case in less optimized performance of a novice to a given task. However, 
according to Bernstein (1967), experts tend to return to a higher complexity state as a means of expanding their 
repertoire of possible movement strategies. CorrDim was calculated in Matlab, using the algorithm presented by 
Grassberger and Procaccia (1983). Each measure was submitted to the CorrDim calculation with embedding 
dimension parameter previously determined via false nearest-neighbor algorithm (Abarbanel 1996). This is done 
to ensure that each time series is embedded in its own most appropriate state space, prior to further analysis. 
Values consistently ranged between 6 and 9 for the measured time series. 

The use of CorrDim is considered valid mathematically with 10^D data points (Grassberger and Procaccia 
1983). For the gaze signals expressing CorrDim  ≈3, this would require 1,000 data points. In this experiment, 
9,000 data points were considered for analysis. CorrDim for posture was 4-6, thus leading to the need from 
10,000 to as many as 1,000,000 data points. At 50 Hz, the consideration of 9,000 data points is very close to the 
lower limit. Furthermore, at 50 Hz, to fulfill the upper limit of this requirement would require more than 333 h of 
continuous data collection, which is unreasonable for posture. It should also be mentioned that the 10^D 
estimation is based on known mathematical data and may not be appropriate for biologi cal data. The 
requirements of this algorithm with respect to biological data are presently under investigation in our laboratory. 
 
Approximate entropy (ApEn) 
 

ApEn characterizes the temporal structure of variability within the signal, the degree to which a signal 
remains self-similar or dissimilar through time (Vaillancourt 2000). Higher values indicate that the behavior is 
irregular and lower values indicate maintained consistency. ApEn was computed using algorithms by Pincus ( 
1991), implemented i n Matlab, using parameter  values m = 2 and r = 0.2 for all analyses . Effectively, the 
algorithm compares the logarithmic probability of the occurrence of an m + 1  length vector, relative to the 
probability of occurrence of an m length vector in the data. 
 

 
 
Fig. 4 Cross-correlation group means and standard deviations, showing coupling 'strength' of each behavior with 
the stimulus motion, gaze (left) and posture (right).  Maximum correlation values are shown across the top. Lag 



 

 

values (bottom) are reported in number of data points Sampled at 50 Hz., 50 data points are equal to 1 s of 
experiment time. *Indicates significant difference. p<0.001 
 
Statistical analysis 
 
Separate statistical analyses were conducted for Max, Lag, ApEn , and CorrDim for each data type (Gaze and 
Posture), each utilizing a 2 x 4 repeated-measures (stance x stimulus) ANOVA. Follow-up dependent t tests were 
used to elucidate identified differences. Statistical tests were conducted with an alpha set at 0.05. 
 
 
 
Results 
 
Cross correlations 
 

Similar results were found in self-selected and semi-tandem stance conditions, with no interaction 
effects. Repeated measures ANOVA revealed that Max was similar across all stimulus conditions for gaze (F3,39 = 
0.611, p = 0.612,with 95 % CI from 0.958 to 0.987 across all conditions) and posture (F3,39 = 0.390, p = 0.761, with 
95 % CI from-0.091 to 0.331 across all conditions). Figure 4 shows group data, in the self-selected stance 
condition. High correlation values for gaze response indicate tight coupling to the stimulus motion. Low values 
for postural response indicate weak coupling of postural sway to the motion of the stimulus. 

Values of Lag differed for gaze in response to each stimulus (F3,39 = 139.6, p < 0.000), with post hoc 
indicating progressively longer delays across the stimulus set (group average values; sine = 123 ± 1.9, chaos = 127 
± 1.2, surrogate = 129 ± 1.5, brown noise = 131 ± 1.9). With a sampling frequency of 50 Hz, each increment in Lag 
represents 20 ms, suggesting that the brown noise stimulus required an additional 160 ms in order to produce 
reciprocal gaze following patterns. With such low values of Max for posture, the follow-up consideration of Lag is 
generally less meaningful; however, a significant difference was found (F3,39 = 4.86, p = 0.006). Post hoc indicates 
that this is due to a dramatically lower Lag in response to the brown noise stimulus (near 112, compared to 
values near 300 for each of the other stimulus conditions). 
 
 
Gaze 
 
A main effect was found for stimulus condition. Gaze behavior was found to be different across stimulus 
conditions for both CorrDim (F3,39 = 4.64, p = 0.007) and ApEn (F3,39 = 21.1, p < 0.001). However, neither a main 
effect for stance nor any interaction (stimulus and stance) was found (p > 0.05; Fig. 5). A breakdown of pair-wise 
comparisons in Table 2 indicates that the ApEn of gaze was greater when viewing the chaos or surrogate 
stimulus, but did not differ between the sine and brown noise conditions. CorrDim showed to only differ 
significantly between the chaos and surrogate conditions. 
 



 

 

 
 
 
 
Posture 
 
Participants' posture responses show a significant main effect for stance condition (CorrDim, F1,13 = 67,p < 0.001; 
ApEn , F1,13 = 23.7, p < 0.001), but with no main effect for stimulus condition. All values of CorrDim and ApEn 
were lower for semi-tandem stance compared to self-selected stance. No interactions (stimulus by stance) were 
identified for ApEn or CorrDim. 
 
 
 



 

 

Discussion 
 

The results of this study do not fully support the stated hypothesis that the complexity of motion 
structure of the visual stimulus would elicit reciprocally complex gaze and posture behaviors. We do provide 
evidence to the extent that the viewers did coordinate gaze with the motion of each stimulus via cross-
correlation. Further, complexity of the visual stimulus was identified to elicit reciprocal complexity in the 
response of the smooth pursuit gaze behavior, via ApEn. However, even with provision of modified stance, 
intended to amplify the possibility of entrainment, we did not find evidence that stimulus motion was a direct 
informant on the organization of posture. Moreover, these results suggest that these two systems (gaze and 
posture) are potentially independently operational in response to the visual stimulus motion. These results are 
surprising given the amount of evidence, which has been advanced that vision plays a regulative role on the 
organization of posture, both in standing (Stoffregen et al. 2006; Jeka et al. 2006; Giveans et al. 2011) and during 
walking (O'Connor and Kuo 2009; Kay and Warren 2001). It is possible that the task demands of our experiment 
were not sufficiently challenging to elicit changes in postural behavior (Stoffregen et al. 2000, 2007). Similarly, it 
is possible that the use of stimulus motion information was neither obligatory nor afforded any direct benefit to 
the organization of posture. 

Potentially, nothing about our task prompted an obligation for the individual to modulate posture 
according to visual motion information in such a way as previous experiments, e.g., moving room scenarios. Our 
inclusion of the semi-tandem stance condition was intended to supply enhanced postural challenge to 
participants in order to prime the individuals into increased reliance on the visual stimulus to provide motion 
information (Ravaioli et al. 2005). With regard to visual information dependence, this change in posture did not 
confer sufficient deficit or direct negative effect on the individual. It did, however, seem that semi-tandem 
stance successfully challenged participants, with many self-reports of being "more difficult to stand tandem." All 
values of CorrDim and ApEn were lower for semi-tandem stance compared to self-selected stance. It is uncertain 
from this study whether this is due to an impact on the strategies employed for postural control, as measured by 
CorrDim or ApEn, or whether these results suggest some fundamental difference in the way these postures must 
be organized for success within the particular constraints. The semi-tandem stance provided a smaller area of 
the base of support. This spatial constraint may have had at least some effect on the opportunity for posture to 
evolve as it would in self-selected stance, thus displaying different dynamics. Kirby et al. (1987) found a slew of 
evidence that sway amount is modified by foot position and corroborated more recently by Nejc et al. (2010). 
Further, Wang and Newell (2012) have identified altered time evolutionary characteristics of varied foot position 
stances. 

Alternative to the ‘obligation' argument for postural response to visual motion information, it might be 
that reciprocity scales with attention regulation, as has been shown with attempted suppression of attention 
(Stoffregen et al. 2006). It is possible in our experiment that participants were suppressing attention to the 
stimuli based on some inferred expectation of the task. No exact instructions were given to participants on how 
to coordinate their activities during each trial. However, it could be that persons developed their own 
expectations of what was anticipated from their postural behavior and constructed a set of self-constraints 
which, when applied across all trials, produced unnaturally uniform postural behaviors. If this were the case, it 
may have been beneficial to have provided more explicit directions to participants to pay close attention to the 
structure of variability of motion of the stimulus motion. Doing such may have drawn increased attention to the 
task and increased the likelihood of reciprocity of the stimulus motion complexity upon posture. 

As discussed by Dokka et al. (2010), a standing viewer will incorporate information about self-motion 
along with information about environmental motion and consider each of these experiences in the process to 
determine appropriate postural response. It seems as such that the visual stimulus used in our experiment did 
better to provoke gaze following (for the intent of 'vision for perception'), but was not sufficiently motivating to 
breach the stability afforded by vestibular and somatosensation, thereby not reaching the threshold for  
consideration  as  'vision for action,' as described by Goodale (1992; Milner 2008). Perhaps, in our case, the 
motion of the visual stimulus was not sufficient to convince the viewer that they were experiencing self-motion. 
This result could be understood in that the information from vision was not sufficiently overwhelming of the 
information gained via the other sensory modalities (Jeka et al. 1998). Ultimately, we are inclined to conclude 



 

 

that our stimulus signal did not obviously impact the viewer's egocentric perspective. In previous work, equal 
salience and strength of entrainment have not been found for stimulus motion of all frequencies (Kay and 
Warren 2001; Stoffregen et al. 2007). Possibly, the same effect is true here, and reciprocity does not occur for all 
values of complexity. Future work might show that a particular type or bandwidth of complexity may do better 
to elicit reciprocally complex posture. 
 In contrast, though, results indicate that gaze does exhibit reciprocally complex dynamics in response to 
a wide array of stimulus motion types. We presented four separate stimulus conditions, spanning the spectrum 
of complexity from absolutely periodic (sine) to as random as possible (given the nature of the task, brown 
noise). The ApEn measure reveals that gaze behavior emulated the temporal structure of variability present in 
the stimulus motion. Gaze ApEn was increased in accord with moderate stimulus ApEn (chaos and surrogate), yet 
exhibited less temporal variability in response to both very low (sine) and very high (brown noise) stimulus ApEn. 
Low temporal variability is expected in response to the sine stimulus and highlights the flexibility of the visual 
system to attend to simple and complex motion s. This flexibility is important and confers high ecological value, 
providing that a single sensory system is modifiable for use in information acquisition under a variety of natural 
conditions (Boccignone 2004). This system can be endogenously constrained by modifying the attention state 
and exogenously by the 'outcome value' or affordance of utilizing the available visual information to guide 
movements (Thaler and Goodale 2010 and Thaler and Todd 2010; Dokka et al. 2010). 

In response to the brown noise stimulus, which has the highest temporal variability, the gaze ApEn 
resembles that which is seen in response to the sine stimulus. Why would the gaze dynamics revert to a simpler 
motion strategy in response to the brown noise stimulus? It may be that the gaze behavior cannot present such 
high temporal variability as is exhibited by the brown noise stimulus. Alternately, there may be a Limit on the 
sensitivity of the system or a critical threshold of stimulus motion complexity that can be emulated. We argue 
that it is a factor of the 'value' of the information presented by the different stimulus motions. The chaos and 
surrogate stimuli express deterministic variability, appearing random but deriving from an inherently meaningful 
source (which has been shown to approximate biological motion, Stergiou et al. 2004). However, the brown 
noise stimulus exhibits nondeterministic variability, which is essentially truly random, and has practically zero 
information content. Thus, it may be more appropriate to ignore the temporal structure of the brown noise 
stimulus during gaze following. 

These results collectively suggest that an optimal range of complexity of stimulus motion exists that 
compels entrainment of gaze behavior. This finding coincides with previous assertions that persons are 
particularly successful when behaviors exhibit an optimal complexity (Stergiou et at. 2006; Haworth et at. 2013). 
Moreover, these results fall directly in line with the suggestions of Boccignone (2004) that a complex scan path 
might deliver the highest level of information. From this current work, we clearly observed changes in gaze 
behavior in response to stimulus motion, scaled across various complexity structures. 

Potential applications of such a finding could include training/retraining of vision as an informer of the 
state of the body within its local environment. Glasauer et al. (2005) presented the notion that visual motion 
could be used to improve the postural sway of patients with vestibulopathy, an approach that was later 
extended by Laurens et al. (2010). Summary results of these experiments suggest that a stationary, large-field 
pattern provides information toward the stabilization of posture. This was true whether or not the eyes were 
pursuing a moving target or fixated on a stationary target. Guerraza and Bronsteinb (2008) discuss the current 
debate on whether it is ocular or extra-ocular factors which dominate in the regulation of standing posture. They 
conclude with the argument that the concurrent function of these two systems is what allows for such dynamic 
functional behavior of individuals. It seems certain that further developments in our understanding of this 
system will come from studies based on the inclusion of complexity and its role in optimization of system 
behavior (Renaud et al. 2003, 2007). Continued investigation along this line will provide additional insight into 
the intrinsic and environmental properties, which serve to modulate behavior in real time. Furthermore, by 
identifying these properties, continued growth of the empirical information base becomes available. It is this 
outcome which will continue to drive further understanding of the internal organization of the brain (and the 
human being as a whole organism) and the coordination of complex behavior. 
 
 



 

 

 
Conclusion 
 

It is hoped that the results of this study will be additive to the efforts of others in providing a firm base of 
research from which the use of visual information on subsequent movement behaviors may be fully understood. 
Zentgraf et al. (2011) put it well to acknowledge that the use of vision and the enactment of movement behavior 
are necessarily embedded within complex environments. Specifically, these environments are characterized by 
complex dynamic interaction s amongst internal and external factors to the individual. Furthermore, by housing 
knowledge of these intricate interaction s and the possession of higher level, meta-cognitive regulation of 
perception-action behavior, individuals are primed to have a "clear" awareness of their self-regulation of 
outcome behaviors. It is precisely for this reason that we should continue to be diligent in our approach to 
understanding the full organization of the visuomotor system. 
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