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Abstract  

A normal time-course for the acquisition of sitting is essential. A delay in sitting may affect other 

developmental milestones, resulting in deficiencies in overall skill. Therefore, our aim was to 

identify variables whose measures at the very beginning of sitting would allow for the projection 

of the evolution of the sitting skill. Center of pressure data were collected from the postural sway 

of twenty-six typically developing infants while sitting on a force platform with a beginning ability 

to sit upright. Spatial, temporal and frequency variables of postural sway were obtained from 

both the medial/lateral and anterior/posterior directions of sway. Discriminant function analysis 

was conducted to identify potential predictors of the duration between onset and fully 

independent sitting. Gender (p=0.025), Median Frequency (p=0.006), and Correlation Dimension 

(p=0.002) were identified to be predictive of grouping with 73.1% correct classification of the 

participating infants into short, mid, and long delay groups. In conclusion, measures taken at the 

earliest stage of sitting may allow the projection of the time-course to achieve independent 

sitting for typical infants. This approach may be useful for monitoring typical development.  

 
Keywords: postural control, nonlinear analysis, motor development, infants, posture 
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1. Introduction 

 Sitting is a critical motor skill for infants, setting the stage for development of nearly all 

other subsequent motor actions; e.g. reaching, visual searching of the environment, standing, 

and walking[1-3]. These skills inevitably contribute to development of perceptual, cognitive, 

social and emotional processes[4,5]. Proper development of these skills may play decisive roles 

in determining the long range success of individuals in social, academic, and professional settings. 

Hence it is critical to monitor that a normal time-course in the acquisition of sitting occurs, such 

that prompt and appropriate interventions may be offered to promote healthy development and 

reduce secondary developmental delays[6,7]. 

 Methods for monitoring development are pervasive within pediatric clinical settings, 

where several scales for evaluation of motor development are used; including the Peabody, 

Alberta motor scale, and Gross Motor Function Measure[8-10]. Although each of these identifies 

large discrepancies in onset and mastery of functional motor skills, they lack ability to measure 

small increments of postural performance[11]. Typical development is quite variable, manifesting 

different trajectories toward skill acquisition. Alternative options for monitoring progression of 

development should include attention to the vast individual differences found among children, 

offering heightened discrimination among this group of typical developers. 

Posturography is suggested for evaluating center of pressure (COP) at the base of support, 

measured via force platform, providing finer measures of postural performance; posing this 

methodology as a more effective diagnostic tool of postural control[12]. Posturography is 

considered an adequate evaluator of the changes in postural performance resulting from 

development, as well as those that occur through the effects of therapies[12-14]. Many metrics 
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are developed for evaluating COP motion during sitting, and have been shown reliable[12] and 

useful for indication of potential active control mechanisms being utilized during typical[15] and 

atypical[16,17] posture. These measures consider many aspects of the motion of the COP 

including amount (sway path and range), variance (root mean square), and frequency 

characteristics (median frequency and frequency dispersion)[18-20], with nonlinear analyses 

temporal structural components such as complexity and regularity (via approximate entropy, 

correlation dimension, and lyapunov exponent)[15,21].  

However it is unknown whether any of these measures forecast the time-course of sitting 

acquisition, making it possible to more directly identify children taking longer to reach sitting 

independence. Objective diagnostic metrics of this type may add to information gained from 

standardized clinical tests, potentially leading targeted and effective skill development activities 

to children most in need. 

 Therefore, our investigation sought to determine a predictive model of postural 

development. Discriminant function analysis was applied to a set of measures including infant 

demographics (i.e. age, mass, gender) and measures of COP taken at onset of sitting acquisition. 

We hypothesized that this approach would identify specific individual characteristics that 

effectively identify the time-course between sitting onset and full, independent sitting.   
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2. Methods 

2.1 Participants 

Twenty-six typically developing infants (age 150±16.6 days) were recruited, based on 

their expression of early sitting skills, prop sitting; labeled Stage 1 sitting[11]. Following informed 

consent procedures, screening included a parent interview for health history and a standardized 

test of developmental skills (Peabody Gross Motor Scale II [22]). All infants scored within 0.5 

standard deviations of the mean and thus were deemed typically developing. The exclusion 

criteria included a score on the Peabody Gross Motor Scale II greater than 0.5 SD below the mean, 

or diagnosed visual or musculoskeletal deficits; met by none of the recruited infants. Infants were 

followed until able to sit fully independently (Stage 3 sitting[11]; typically under 4 months); 

determined by physical therapist’s evaluation. Characteristics of participating infants can be 

found in Table 1. 

2.2 Procedures 

Infants’ sitting ability was measured across four months. Data was collected via 

posturography during the initial visit, and again within a maximum of one week. This design was 

selected to allow evaluations of reliability of measures within data collection sessions[12]. 

Additional posturography and therapist’s evaluation of sitting stage were conducted twice per 

month to monitor progression of sitting development. Infants were followed in this fashion until 

able to sit fully independently. For the current investigation, posturographic measures collected 

during the initial visit were submitted to a discriminant function analysis to identify which 
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variables could effectively predict the time-course of sitting development (days between onset 

and full acquisition).  

2.3 Data processing 

COP data were collected using a force platform (AMTI, Watertown, MA; 240Hz) while the 

infant’s attention was held by watching an age-appropriate video or looking at toys held by the 

mother or investigator (Figure 1). Infants were guarded from falling while three minutes of COP 

data (with minimal support) were collected. From this 3 minute trial, shorter segments (length 

8.3s@240Hz=2000 data points) were identified a posteriori during which the infants were sitting 

according to criteria previously described in similar studies; including lack of external support or 

expression of rhythmic movements such as arm flapping and vocalization, as well as consistent 

positioning of propping arm and the base of support[11]. Data length was deemed sufficient to 

perform both linear and nonlinear analyses[11]. Previous work[12] confirms trial-by-trial 

reliability within data collection sessions. We therefore sought to avoid introduction of error, due 

to averaging, by selecting only the first segment from each participant for subsequent 

analysis[23]. Importantly, however, it should be noted that each data point was verified to be 

fairly representative of the infant’s sitting posture; falling within one standard deviation of the 

mean of the three trials. For each selected trial, anteroposterior(AP) and mediolateral(ML) 

components of COP were calculated using custom Matlab (Mathworks Inc., Natick, MA) routines. 

Measures of COP (sway path, range, root mean square, median frequency, frequency dispersion, 

approximate entropy, correlation dimension, and largest lyapunov exponent[24]), along with 
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descriptive characteristics (age and gender), provided a comprehensive set of measures for 

discriminant function analysis.  

Median frequency and correlation dimension are found to provide discriminative power 

(described later) and are thusly further described here. To find median frequency, the frequency 

distribution of infants’ COP was computed using power spectrum density, Hanning window, over 

0 to 10 Hz. Median frequency is the frequency above/below which 50% of the total power is 

found. Full detail of calculation for correlation dimension (as well as entropy and lyapunov) can 

be found in previous publications[24]. For the current study, it is important to note that a value 

of 6 was used for embedding dimension (multi-dimensional expansion of the data) parameter for 

the calculation of correlation dimension (‘smallest’ dimension that contains the complexity of the 

analyzed system).   

2.4 Statistical Analysis  

Using PASW Statistics v.18 (Predictive Analytic Software; International Business 

Machines, Armonk, NY), stepwise discriminant analysis was conducted to identify functions from 

a set of independent variables (COP, age, mass, gender) which could predict the time-course of 

development of sitting ability in infants from initial stage to full acquisition of sitting (Stage 1 to 

3).  

2.4.1 Identification of Groups 

 Three groups (short, mid, and long delay) were identified based on naturally appearing 

cut-offs selected from a plot of the time between sitting onset at Stage 1 and acquisition of fully 
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independent sitting at Stage 3 (Figure 2). Initial consideration of this study thought to pursue only 

two groups, short and long delay, to attempt to identify early sitters from the group. Upon 

viewing the distribution of delay values (Figure 2), it was noted that identifying a clear threshold 

for short versus long delay would be challenging. In order to alleviate this challenge, as well as 

take advantage of the strength of discriminant analysis, in classifying amongst multiple groups, it 

was decided to consider the three groups described in this study. Visual inspection was followed 

by test of heterogeneity to ensure that the groups were significantly different from one another 

(F=65.337, p<0.001); indicating that our sample contained three distinct subgroups. Within 

PASW, prior probabilities for grouping were computed accounting for differences in group sizes, 

as the short delay group had eight members with mid and long delay each having nine.  

2.4.2 Identification of Predictors  

Prior to conducting discriminant analysis, the entire set of independent variables was 

tested for heterogeneity. AP Median frequency (p=0.006), AP correlation dimension (p=0.002), 

and gender (p=0.025) were identified to vary significantly between the three outcome groups 

(Table 2). The outcomes of the heterogeneity test reflect the likelihood that a variable will have 

discriminative power, in that if the variable has the same value for each of the three groups it 

would not be able to identify any particular group. We conducted a stepwise discriminant 

analysis, so this test is redundant relative to the F-value criteria for entry and removal of potential 

predictor variables (procedure for stepwise analysis; probability of F, entry = 0.05 and removal = 

0.10). Procedurally similar to stepwise regression, the stepwise discriminant analysis iteratively 

selects the most discriminant variable through multiple ‘steps’ through the potential predictor 
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variable pool. This procedure was chosen to ensure that only the most relevant predictor values 

were selected, keeping the outcome functions concise. 

2.4.3 Discriminant Function Analysis 

Discriminant analysis tests whether the function coefficients derived from the stepwise 

assessment of predictor variables are able to account for the variance in group placement and 

accurately predict group placement for individuals. To this end, the functions are used to 

reclassify the individuals, and the predicted placement is compared with the ‘true’ placement. 

The percent of variance explained by each function indicates the relative value of the predictor 

variable more strongly represented in the particular function (largest magnitude of coefficient). 

Validity of the functions is evaluated via the Wilk’s lambda and significance values (Table 3), 

whereas confidence is ultimately determined from the percent of cases correctly reclassified.  

Additional confidence is gained using a "leave one out" operation provided by PASW; wherein 

each case is deleted in turn from the sample and is then classified by the functions established 

on the remaining observations. Again, percent of cases correctly reclassified indicates the value 

of the derived discriminant functions. 
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3. Results 

 Analysis produced two functions, showing three predictor variables, median frequency, 

correlation dimension, and gender to be successful at predicting group placement by 73.1%.  

This indicates a much greater than chance probability of correctly predicting categorical time 

delay between Stage 1 and Stage 3 sitting for each infant. Accounting for direction of misclassified 

cases, only two of these were detrimentally predicted (expected to achieve sitting earlier than 

actually occurred); thus gross error rate was only 7.7% for the discriminant functions. The “leave 

one out” approach resulted in 65.4% correctness in group prediction, with four cases of 

detrimental classification. This shows high retention of strength of the functions (Table 3), 

suggesting high generalizability to wholly new data sets.  

Discriminant analysis resulted in two functions of three variables, coefficients in Table 3, 

interpreted much like multiple regressions. Function coefficients indicate the relationship of the 

independent variables as they predict outcomes. Each function is characterized by the ‘strength’ 

of the variable with the largest magnitude coefficient, and is generally better at discriminating a 

particular outcome group from the set of three. However, it is common to discuss the pair of 

functions together for interpreting their ability to accurately reclassify cases into outcome 

groups. In our case, function 1 was characterized by median frequency, which scaled linearly with 

increased delay in sitting skill acquisition; with larger values associated with a longer time period 

prior to Stage 3 sitting (Table 2). Function 2 was characterized by correlation dimension; smallest 

in the short delay group, but not differing between mid and long groups. Gender was a moderate 
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factor in both functions, lending discriminability between the three groups; with more females 

comprising the short and mid delay groups, while most long delay infants were males.  
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4. Discussion 

Our results confirm that specific individual characteristics allow for prediction of the time 

delay between initial sitting performance and fully competent sitting in infants. Predictive 

characteristics include median frequency, correlation dimension, and gender of the infants. 

These factors are measurable at initial onset of sitting skill, and allow for projection of an 

individual child's developmental progress using the presented discriminant functions (Table 3). 

The power of such a tool is that the approach lends to a simple and effective objective means for 

monitoring typical development, using relatively simple force-platform technology and 

posturography. 

 Previously, median frequency of COP during standing has been shown to increase with 

increased muscle fatigue in healthy adults[25]. Interestingly, also observed in upper extremity 

muscular activity (measured using electromyography) as a result of robotic surgical training[26]. 

Wurdeman et al[27] found that in patients with multiple sclerosis, median frequency of ground 

reaction force during walking was lower than that of healthy adults. This decrease was suggested 

to indicatedecreased flexibility in firing rate resultant from disease, leading to diminished 

variation of behavior across the normal frequency range. Our results associate higher median 

frequency with longer delays between Stage 1 and Stage 3. We doubt that, with three minute 

collections, fatigue affected expression of COP behavioral variation across a given frequency 

range. Additionally, neuromuscular deficiency is not expected, as all infants passed evaluation 

for healthy typical development to enter the study. We propose that median frequency of COP 

reflects some other quality of infants’ overall ability to control sitting posture. Differences in 
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frequency of COP movement indicate that each group of infants accommodated fluctuations of 

COP differently. Sitting being a novel task for these infants, these results could indicate a general 

difference in how the infants approach learning, specifically how to counter the effects of gravity 

to maintain sitting posture. These results are consistent with previous findings that show 

decreases in sway variability as infants develop into more advanced sitters, arguably through the 

gain of tighter control of the many degrees of freedom available in their control of upright 

sitting[16]. 

 Results also indicated that AP correlation dimension is predictive of the time-course of 

sitting development. Particularly, AP correlation dimension was smallest in the short delay group 

and similar between the other two groups. Previous researchers have proposed the strategy of 

freezing degrees of freedom to promote learning in dynamically unstable environments[28]. In 

the current study, infants demonstrating fewer degrees of freedom (lower correlation dimension 

values, short delay group) appear to be primed for constraining degrees of freedom; necessary 

for mastering the skill of independent sitting. These infants appear to begin their quest for sitting 

acquisition with either inherently constrained movement behavior, or a more readily adaptable 

postural control. However tempting it may be to suggest innateness of control strategy to be the 

culprit; it is important to note that correlation dimension values are known to fluctuate 

throughout the life-span, as individuals acquire new postural skills and accumulate experience 

within novel environments[21]. Accordingly, we contemplate if the relationship found in the 

present study (lower dimensionality related to accelerated sitting acquisition) is suggestive of a 

neuromuscular system primed to learn, and not one with an innate tendency to resist the use of 

many degrees of freedom in the face of novel tasks. We speculate that lower correlation 
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dimension and smaller COP median frequency in this short delay group suggest a more readily 

adaptable postural control system that is learning to counter the effects of gravity. 

 Finally, although gender has not commonly been found to be a discriminating variable 

regarding postural performance, our data suggests that for the case of the speed of sitting skill 

acquisition, females demonstrate a significant advantage.  A growing base of literature has begun 

to identify developmental differences based on gender; however, these sources are focused 

specifically on analyses related to visual search and object identification tasks[29,30]. It is 

possible that gender differences in sitting development identified in the current investigation are 

related to more general differences in the development of coordinative behaviors between males 

and females. It may even be resultant simply to a purely mechanical factor; body mass. We found 

in our data that males (n=11, mass=8.37±0.79 kg) tended to be more massive than the females 

(n=15, mass=7.23±0.71 kg). However, this result was not significant (p=0.368). When entered 

into the discriminant function analysis, this factor did not improve predictability of the time-

course of sitting skill acquisition. Future research may pinpoint causative factors behind this 

finding. We would like to emphasize from this finding, however, that our concept of typical 

developmental milestone acquisition should include more consideration for individual 

differences for interpretation of healthy development. In our case, it is suggested that a heavier 

male child would be expected to take a bit longer for sitting skill acquisition than his female 

counterpart, whom is otherwise characteristic matched. Therefore, if this is found to be the case, 

in the home or clinical setting, it may be advisable to permit additional time for skill acquisition 

prior to concerns being raised.  
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 Limiting the present study is that the sample size of typically developing infants may not 

be large enough to generalize usage of the discriminant functions presented. Albeit, the leave-

one-out cross-checking does add validity to the presented functions; and our sample size (26 

infants) is actually quite large for the motor development literature. 

Participating infants all satisfied the criterion for typical development. This lends to 

question whether the discriminant functions presented here would generalize to infants who are 

at severe risk of developmental delay. To this end, it is not the goal of the proposed approach to 

supplant clinical assessments of deficits in children which would be available to the trained eye, 

but to provide a refined tool for assessment of children on a typical developmental course. For 

these children, early intervention may yet be advisable on a case-by-case basis to ensure proper 

development of motor, and later cognitive, development. Further work is necessary to determine 

whether this approach may be extended to development of such an approach to discriminating 

typical from atypical sitters. 

5. Conclusion 

Our analysis showed the time-course of sitting acquisition for typically developing infants 

can be predicted from postural and demographic measures taken at the earliest signs of sitting 

emergence. This information could benefit parents and clinicians during evaluation of typical 

development and recommendation of at home exercises useful in promoting sitting acquisition 

when needed. Future studies are recommended, such that the present results can be expanded 

to a larger generalization across a wider potential population of infants. 
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TABLES 

Table 1: Characteristics of the participating infants  

    Peabody Gross Motor Scale II  Stage 1 Stage 3 

Delay Stage 1 to 3         Standard Scores age mas age mass 

Group # days Subject Gender Reflexes Stationary Locomotion (days) (kg) (days) (kg) 

Short 33 s1 M 10 10 10 158 6.77 191 7.63 

 55 s2 F 10 11 10 130 7.20 185 7.65 

 56 s3 F 10 11 10 128 7.29 184 8.06 

 56 s4 F 10 11 10 155 7.15 211 8.08 

 56 s5 F 9 10 9 191 7.69 247 8.08 

 56 s6 M 10 11 10 139 8.27 195 8.66 

 62 s7 F 10 11 10 147 7.33 209 8.37 

 70 s8 F 10 10 10 156 7.38 226 8.08 

Mid 82 s9 F 11 11 10 147 5.63 229 6.14 

 83 s10 F 9 10 9 128 7.37 211 7.84 

 83 s11 M 10 11 10 161 9.23 244 9.81 

 83 s12 F 10 10 10 164 7.24 247 8.32 

 84 s13 F 10 11 10 142 7.88 226 8.70 

 84 s14 F 10 11 10 156 6.95 240 8.10 

 84 s15 F 10 11 10 168 8.19 252 8.95 

 84 s16 F 10 11 10 182 8.41 266 9.63 

  84 s17 M 10 10 10 148 7.53 232 8.46 

Long 86 s18 F 8 10 9 125 6.25 211 7.33 

 90 s19 M 9 10 9 151 7.55 241 9.20 

 91 s20 M 11 10 9 160 8.97 251 9.18 

 91 s21 M 10 11 9 159 8.03 250 8.76 

 98 s22 M 10 10 10 123 8.19 221 8.91 

 98 s23 M 10 11 9 138 8.95 236 9.72 

 98 s24 M 10 10 10 150 8.15 248 10.09 

 105 s25 M 9 10 9 142 9.56 247 11.03 

 112 s26 F 9 10 9 156 6.63 268 7.59 

   mean 9.81 10.50 9.65 150.15 7.68 229.54 8.55 

   SD 0.63 0.51 0.49 16.57 0.92 23.86 1.01 
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Table 2: Stage 1 values of demographic and COP variables used in discriminant analysis. 

Significant differences indicate discriminability of group by the particular variable. 

 Time between Stage 1 and Stage 3 sitting (in days) Heterogeneity 

short (55) mid (83) long (97) Sig. 

Median Frequency AP 0.480 ± 0.287 0.707 ± 0.236 0.987 ± 0.498 0.028* 

Correlation Dimension AP 4.094 ± 0.355 4.502 ± 0.237 4.304 ± 0.277 0.028* 

Gender (% of group female) 0.750 ± 0.463 0.778 ± 0.441 0.222 ± 0.441 0.025* 

* = significant difference across the three groups, p < 0.05 

 

Table 3: Standardized Canonical Discriminant Function Coefficients 

 
Function 

1 2 

Anterior-Posterior Median Frequency  0.763 -0.047 

Anterior-Posterior Correlation Dimension 0.523 0.825 

Gender  -0.733 0.417 

Percent of variance explained by this function (=1)   74.9 25.1 

Wilk’s Lambda (1 through 2, and 2; respectively) 0.379 0.752 

Significance (p=) 0.002 0.043 
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Figure Captions: 

Figure 1: Infant engaged in independent sitting upon the force platform. 

 

 

 

Figure 2: Scatter-plot of days until Stage 3 sitting for each infant. Three groups were found 

statistically unique from each other when examining the time delay (in days) between onset 

and fully independent sitting. 
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Figure 1  
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Figure 2 
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