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Objective: Claudication is the most common manifestation of peripheral arterial disease (PAD), producing 
significant ambulatory compromise. The gait of claudicating patients has been evaluated using primarily 
temporal and spatial parameters. With the present study, we used advanced biomechanical measures to 
further delineate the ambulatory impairment of claudicating patients. We hypothesized that the 
claudicating legs of PAD patients have an altered kinetic gait pattern compared with normal legs from 
control subjects. 
Methods: Ambulation kinetics (ground reaction forces) were evaluated in claudicating patients and 
compared with age-matched healthy controls. Forces were analyzed in the vertical, anterior–posterior, 
and medial–lateral directions. Time from heel touch-down to toe-off (stance time) and time spent in 
double-limb support were also evaluated.  
Results: The study recruited 14 PAD patients (age, 58 ± 3.4 years; weight, 80.99 ± 15.64 kg) with 
femoropopliteal occlusive disease (ankle-brachial index [ABI], 0.56 ± 0.03) and five controls (age, 53 ± 3.4 
years; weight, 87.38 ± 12.75 kg; ABI, ≥1.00). Vertical force curve evaluation demonstrated significant 
flattening in claudicating patients resulting in a lower and less fluctuant center of mass when ambulating. 
In the anterior–posterior direction, claudicating patients demonstrated significantly decreased propulsion 
forces. In the medial–lateral direction, they had significantly increased forces consistent with wider steps 
and an inability to swing their legs straight through. Claudicating patients demonstrated a greater stance 
time and time in double limb support compared with healthy controls. Most importantly, gait 
abnormalities were present before the onset of claudication, with gait worsening after the onset of 
claudication.  
Conclusion: Claudicating patients demonstrate significant gait impairments that are present even before 
they experience any limb discomfort. These alterations may make them feel more stable and secure 
while attempting to minimize use of the affected limb. Advanced biomechanical analysis, using 
ambulation kinetics, permits objective and quantitative evaluation of the gait of claudicating patients. 
Such evaluation may point to new rehabilitation strategies and provide objective measurement of 
functional outcomes after medical and surgical therapy. 
 
Introduction 

Peripheral arterial disease (PAD) is the result of lower limb arterial atherosclerosis and affects 
more than 8.4 million people in the United States.1,2 The  most common presentation of PAD is 
intermittent claudication. Patients with claudication are unable to ambulate normally due to tightness, 
pain, and fatigue produced by decreased circulation to the exercising leg muscles. In healthy individuals, 
exercise induces a marked increase in skeletal muscle metabolism that results in a 20-fold to 40-fold 
increase in skeletal muscle blood flow and oxygen delivery.3 In patients with claudication, a deficient 



 

oxygen supply compared with the demand causes the exercising muscle to become progressively more 
ischemic and painful. Thus, the patient walks initially without pain, subsequently limps (claudication), and 
is eventually forced to stop walking. 

The evaluation of gait in PAD patients has been largely limited to time and distance 
measurements such as stride, step length, stance time, speed, and cadence obtained by inspection, and 
timing of patients’ walking performances.4-7 These initial studies found PAD patients walk slower5-8 and 
have a shortened step length5,8 and a reduced cadence.5,7,8 Furthermore, patients appear to have 
impaired balance, as indicated by a shorter unipedal stance time, a higher prevalence of ambulatory 
stumbling, and an increased prevalence of falling compared with healthy controls.8,9 

A limited attempt at a more detailed analysis of claudicating limb gait was also attempted with 
the use of pressure- sensing insoles during treadmill walking. The work demonstrated progressively 
decreasing pressure values as claudicating patients walk.10 The studies to date document significant 
ambulation abnormalities in claudicating patients, but give little insight into the exact biomechanical 
mechanisms producing the abnormal findings. 
To fully understand the ambulation abnormalities in claudicating patients, our group has pursued 
advanced biomechanical evaluations of people with and without claudication. The biomechanical 
measures include an evaluation of lower extremity kinetics. This measures the forces exerted by the 
subject’s weight-bearing limb on the ground, also known as ground reaction forces, a direct application of 
Newton’s third law of motion concerning action-reaction.11 The ambulating individual pushes the ground 
with a force, and the ground exerts an equal and opposite force. For clinical analysis, this force is resolved 
into three components orthogonal to each other (vertical, anterior–posterior, and medial–lateral) along a 
three-dimensional system (Fig 1). The magnitude and direction of these forces can be collected using a 
standard piezoelectric force plate. 

 

 
 
Fig 1. Lower extremity kinetic evaluation measures the forces exerted by the subject’s weight-bearing limb on the ground, also 
known as ground reaction forces. The magnitude and direction of these forces can be collected using a standard piezoelectric 
force plate embedded in the ground. For clinical analysis, these forces are resolved into three components orthogonal to each 
other (vertical or Fz, anterior–posterior or Fy, and medial–lateral or Fx) along a three-dimensional system. 

 
 
 

Although a common practice in many other clinical domains, no studies, to our knowledge, have 
examined claudicating patients with advanced biomechanical analysis.12-14 Biomechanical analysis has 
quantified the efficacy of surgical procedures to improve gait in children with cerebral palsy, including 
guiding postoperative rehabilitation strategies.15-17 Joint replacement operations have been evaluated 
extensively for biomechanical properties, longevity, and patient satisfaction.18,19 In patients with anterior 
cruciate ligament deficiency, advanced biomechanical evaluations identified specific gait alterations 
currently being addressed through precise rehabilitation methodologies to restore normal gait.20,21 
Furthermore, rehabilitation strategies for patients with stroke and amputation have undergone thorough 
biomechanical analysis to identify objective gains in mobility.22-24 In contrast to the progress made in 
these fields, Gardner and Montgomery9 correctly state that very little has been done to understand the 
underlying biomechanical gait abnormalities produced by PAD.9 



 

This investigation used advanced kinetic biomechanical testing to evaluate and characterize the 
ambulatory pattern of PAD patients. We hypothesized that the claudicating legs of PAD patients have an 
altered kinetic gait pattern compared with normal legs from control subjects. This study provides initial 
data on the gait abnormalities of claudicating patients that can be used as the necessary foundation for 
the development of new rehabilitation strategies and the initiation of studies that may optimally quantify 
the effects of drugs and revascularization for patients with PAD. 
 
METHODS 

Subjects. Appropriate Institutional Review Board approval was obtained before the study was 
initiated, and all subjects provided informed consent. Patients with clinically diagnosed femoropopliteal 
PAD presenting with unilateral or bilateral calf claudication were recruited from our vascular surgery 
clinic. Patients were free of any confounding variables that could limit or alter their gait, including 
significant cardiac, pulmonary, neurologic, diabetic, or musculoskeletal disease. Specifically, subjects 
were excluded if they had recent myocardial infarction or unstable angina and ambulation-limiting heart 
failure, angina, or pulmonary disease. Subjects were also excluded if they had ambulation-limiting 
neurologic or musculoskeletal disease such as paresis, sciatica, diabetic neuropathy, or arthropathy. 

Subjects were evaluated by history and physical examination, and femoropopliteal disease was 
verified by noninvasive testing and by computed tomography scanning, magnetic resonance imaging, or 
invasive angiography. These assessments were used to establish limbs with occlusive disease and typical 
symptoms as “claudicating limbs” and select them for biomechanical analysis. 

Control subjects were recruited from the community, with a detailed history, physical 
examination, and noninvasive testing performed to establish absence of PAD, claudication, and 
confounding variables. Controls were selected to have similar age, body mass index (BMI), and physical 
activity level with the PAD subjects. Each leg of these individuals was used as “control limb.” Height and 
weight were measured for all participants and BMI was calculated. To eliminate variability in gait due to 
shoes, all subjects wore the same standard laboratory shoes (Cross Trekkers, Payless Shoes, Topeka, Kan). 

 
Lower extremity kinetics. The magnitude and direction of the ground reaction forces were 

collected using a standard piezoelectric force plate (Kistler Force Platform, Amherst, NY) with a sampling 
frequency of 600 Hz.11 As already mentioned, ground reaction forces are those exerted by the subject’s 
weight-bearing limb on the ground and are a direct application of Newton’s third law of motion 
concerning action-reaction.11 The ambulating individual pushes the ground with a force and the ground 
exerts an equal and opposite force. For clinical analysis, this force is resolved into three components 
orthogonal to each other along a three-dimensional system (Fig 2). The components are labeled: Fz, 
vertical (up– down) component; Fy, anterior–posterior (forward– backward) component; and Fx, medial-
lateral (side-side) component).11 

The patients walked on the force plate, with each leg undergoing five trials (10 trials per person). 
Because of claudication, ambulation was limited to three strides before and after striking the force plate, 
thus eliminating the possibility of pain in the affected limbs. All patients were required to rest in a chair 
for several minutes before and between trials to ensure “before onset of claudication” measurements 
were pain free. Kinetic data were collected on the force platform, with heel contact to toe-off 
representing one entire stance cycle. Determination of first leg to be collected was randomized. 
 
 
 



 

 
 
Fig 2. Typical force plate data from a control subject walking at a normal speed are shown plotted against time (percent of 
stance). Note that all forces are normalized over body weight and are expressed as multiples of body weight. A, The vertical force 
(Fz) is a representation of the vertical oscillation of the body’s center of gravity and is expressed as percentage of body weight. It 
is very characteristic in that it shows a rapid rise after heel contact (center of mass accelerated upward) to reach a value (Fz1) in 
excess of body weight as full weight-bearing takes place. Then as the knee flexes during midstance, the center of mass is 
accelerated downward and the force drops below body weight, reaching a minimum at midstance (Fzmin). At push-off, the 
plantar flexors are active and again accelerate the body mass upwards, generating a second peak that is greater than body 
weight (Fz2). Finally, Fz drops to 0 as the contralateral limb takes up the body weight. B,The anterior–posterior force (Fy)has an 
initial negative component immediately after heel contact (braking force), indicating a backward horizontal friction between the 
ground (force plate) and the foot. The peak of the breaking component is named braking peak (FyB). The area under the Fy 
anterior–posterior force curve between touch-down and zero-crossing at midstance is called “braking impulse.” The most 
important Fy component is the positive one, reflecting the action of the leg muscles (mainly plantar flexors) causing the foot to 
push back against the ground, thus generating forward movement (propulsion force). The peak of the propulsion component is 
named propulsion peak (FyP), and the area under the Fy anterior–posterior force curve between zero-crossing at midstance and 
toe-off is called “propulsion impulse.” C, The medial–lateral force (Fx) has an initial, short positive (lateral force) component 
immediately after heel contact because of initial foot adduction. It then becomes negative (medial force component) as the foot 
abducts for toe-off. The peak of the lateral force component is named “lateral force maximum” (Fxmax) and the area under the 
Fx medial-lateral force curve between touch-down and zero-crossing is called “lateral Fx impulse.” Similarly, the peak of the 
medial force component is named “medial force minimum” (Fxmin), whereas the area under the Fx medial-lateral force curve 
between zero-crossing and toe-off is called “medial Fx impulse.”  

 
 

Once PAD patients completed “before onset of claudication” pain-free trials, they ambulated 
until claudication pain was well established and “after onset of claudication” data were collected. To 
accomplish this, patients walked on a treadmill at a 10% grade (0.67 m/s) until claudication was first felt 
(usually patients become symptomatic after 1 to 3 minutes on the treadmill) and then for approximately 
45 additional seconds. Patients were then returned to the force plate, where five trials were collected for 
each leg. Claudication pain was present in the PAD group throughout the second gait test. Healthy 
controls followed a similar protocol. Because they experience no claudication symptoms, no “after onset 



 

of claudication” data were collected. 
 
Data analysis. The force platform was interfaced with the Peak Motus system (Peak Performance 

Technologies, Englewood, Colo). Raw analog force data were then extracted, and the data files were 
further analyzed by using custom software created with Matlab (Mathworks Inc, Natick, Mass). The 
medial–lateral (Fx), anterior–posterior (Fy), and the vertical (Fz) forces were retained for further analysis. 
The variables identified from these forces and statistically considered are summarized in Table I and 
graphically depicted in Fig 2. 

 

 
 

Times from heel touch-down to the minimums and maximums of the medial–lateral (Fx) and 
anterior–posterior (Fy) curves were calculated. Average curves were also developed to illustrate the 
average differences between groups. These average curves were calculated as follows: 
 

 A cubic spline algorithm was used to normalize the data from each trial to 100 points for the 
stance period.25 

 The curves for each trial were averaged point-by-point to generate an average curve for each 
subject for each condition. 

 These resulting curves are plotted in Fig 3 to assist in the explanations of our results. 

 The normalization procedure occurred after maximums and minimums and the other variables 
were determined to ensure that normalization did not distort these values. 

 Impulse (calculated as area under the curve; Fig 2) parameters were normalized to stance time to 
allow comparisons between populations.26 

 Stance time was determined based on the Fz force frequency and the number of points output 
from heel touch-down to toe-off. 

 
Statistical analysis. Statistical analysis was performed using SigmaStat (Systat Software Inc, Point 

Richmond, Calif). Subject and group means were calculated for all dependent variables. Comparisons 
between claudication subjects and control subjects were conducted using unpaired t tests. In PAD 



 

subjects, parameters before onset of claudication were compared with those after onset of claudication 
using paired t testing. Correlations between PAD severity and kinetic parameters were conducted using 
the Pearson correlation. Results were expressed as mean values ± standard error unless otherwise 
specified. 
 
RESULTS 

The study recruited 14 PAD patients (age, 58 ± 3.4 years; weight, 80.99 ± 15.64 kg; height, 172.12 
± 6.78 cm) with clinically diagnosed femoropopliteal occlusive disease (ankle-brachial index [ABI], 0.56 ± 
0.03; range, 0.45 to 0.65). All patients had moderate claudication or category 2 symptoms in the 
Rutherford classification,27 and 80% were hypertensive, 70% were smokers, 60% had dyslipidemia, and 
30% were obese. All patients were treatment naïve and were leading a sedentary lifestyle. From these 14 
patients, we identified 20 PAD legs that were included for evaluation in the present study. Five control 
subjects with absence of claudication (age, 53 ± 3.4 years; weight, 87.38 ± 12.75 kg; height, 178.78 ± 4.32 
cm; ABI ≥ 1.00) were also included. Two had dyslipidemia and one had hypertension. BMI values were 
28.5 ± 0.98 for PAD patients and 27.3 ± 1.5 for control subjects. All control subjects were leading a 
sedentary lifestyle. No significant differences were noted between the two groups for age and BMI. 

 
 
 

 
 
Fig 3. The mean curves for (A) the vertical forces, (B) anterior–posterior forces, and (C) medial–lateral forces. PAD PRE, Peripheral 
arterial disease patients before onset of claudication; PAD POST, peripheral arterial disease patients after the onset of 
claudication. 

 



 

Gait is impaired before and after onset of claudication. Claudicating patients demonstrate 
significant gait alterations both before and after the onset of claudication (Fig 3, Table II). Evaluation of 
the vertical force demonstrates claudicating patients have a significantly higher midstance minimum 
(Fzmin) and a significantly decreased difference between the second maximum and the midstance 
minimum (Fz2 - Fzmin) compared with controls (P < .05). These results are reflected as a significant 
flattening of the vertical force curve for the claudicating patients (Fig 3). A more striking finding is the 
presence of these abnormalities in PAD limbs even before the onset of claudication pain. 

 

 
 

Anterior–posterior force evaluation revealed claudicating patients have significantly lowered 
peak propulsion (FyP). PAD patients demonstrate decreased propulsion force both before and after the 
onset of claudication (P < .05; Fig 3). 

Medial–lateral force curve evaluation shows claudicating patients have significantly decreased 
forces in the lateral direction (early part of the stance), with increased forces in the medial direction 
(later part of stance, Fig 3). The difference in the medial forces becomes largest just before toe-off. These 
findings are also seen in a significantly increased area under the curve (ImpFx) for the claudicating 
patients compared with controls (P < .05). 

A significant increase in stance time, defined as time from heel contact to toe-off, (P < .05) was 
noted for claudicating patients before and after the onset of claudication compared with controls. 
Detailed time analysis of their curves demonstrates significant reduction in time to reach Fz2, Fzmin, and 
FyP. These changes in claudicating patients reflect a decrease in time spent in single-limb support, with 
faster transition into double-limb support. Again, most of these adaptations are displayed both before 
and after the onset of claudication. 

 
Gait parameters worsen after the onset of claudication. After the onset of claudication, PAD 

patients demonstrated significant worsening in multiple kinetic parameters. Evaluation of the vertical 



 

force curve demonstrated further flattening of the force curve, especially in the second half of stance, 
reflected in a significantly decreased difference between the second maximum and the midstance 
minimum (Fz2 - Fzmin). The anterior– posterior curve evaluation showed that after onset of claudication, 
PAD patients had a further significant drop in their propulsion peak (FyP). In addition, evaluation of the 
time parameters demonstrated claudication results in prolongation of stance time, with corresponding 
short- ening of the time to Fz2 and FyP. Because double-limb support starts just before Fz2 and FyP, these 
findings taken together indicate that the onset of claudication is associated with prolongation of time 
spent in double- limb support. Of note, the control subject’s gait was also evaluated after a 10-minute 
treadmill session (10% grade, 0.67 m/s) to determine possible effects of fatigue on biomechanical 
parameters. The assessment demonstrated that controls have similar gate characteristics before and 
after exercise (data not included). 
 
DISCUSSION 

Evaluation of claudicating patients by using advanced biomechanical measures (ground reaction 
forces) provides a new appreciation of the complexity of their ambulatory impairment. Ground reaction 
forces can be resolved into three components that are orthogonal to each other (vertical, anterior–
posterior, and medial–lateral).11 The vertical ground reaction force curve is significantly flatter in 
claudicating patients, both before and after onset of claudication, compared with controls. The flatter 
configuration in claudicating patients is the result of the absence of the normally deep midstance “valley” 
(Fig 2 and Fig 3; reflected in a higher Fzmin). 

Because the vertical force curve mirrors the rise and fall of the subject’s center of mass, this 
alteration indicates that claudicating patients have significantly less vertical movement of their center of 
mass compared with controls. Decreased vertical fluctuation, especially in the second half of stance, can 
be explained by an increase in time spent in double-limb support and an inability to fully extend the limb 
at single-limb support. Overall, the changes seen in the vertical forces indicate PAD patients adopt a 
walking pattern that limits the natural up-and-down body motion seen with normal ambulation. This may 
be the result of dysfunction at the muscle level, decreased fine neural motor control, or muscle pain 
inhibiting the ability to generate force. 

In the anterior–posterior direction, the second half of stance is the indicator of impaired gait by 
the PAD patient. This is the point of propulsion of the foot into the swing phase. Even before the onset of 
claudication, PAD patients demonstrate a tendency towards a smaller propulsion peak, which becomes 
significantly smaller at the onset of claudication. Similarly, claudicating patients demonstrate decreased 
propulsion impulse both before and after the onset of claudication. These findings indicate that 
claudicating limbs have decreased ability to push off. Such a reduction in forward impulse indicates a lack 
of strength and dysfunction in the propulsive muscles of the lower extremity or can potentially be the 
result of purposeful action (ie, neural control) to reduce the use of the painful limb. 

Our force data for the medial–lateral direction, both in the before-and-after onset of claudication 
conditions, demonstrated PAD patients apply significantly higher forces in the medial direction. This 
greater medial–lateral force fluctuation by the claudicating subject is probably the result of increased 
step width with reduction in single-limb support time (increased time spent in double-limb support). A 
larger step width creates increased forces in the medial–lateral direction to maintain the wider stance.28 
This possibility is further supported by our vertical curve data, where the PAD patients maintain a lower 
center of gravity throughout stance. As a result, during ambulation the limbs need to be swung laterally 
to clear the ground through to the next step. In adopting wider steps, greater medial forces are then 
created. 

In the case of reduction in time spent in single support, PAD patients are pushing medially 
(generating the greater medial forces found) to help shorten the swing phase of the contralateral leg. As 
a result, the contralateral leg regains contact with the ground more quickly and provides increased 
double-limb support for the patient. Such adaptations may be secondary to the PAD patient who seeks 
security in his or her impaired gait. Adopting a wider step and maintaining double-leg support for most of 
the gait cycle, with less vertical fluctuations of the center of mass, may contribute to a feeling of safety 



 

during locomotion. 
Previous work has determined that elderly patients and other pathologic populations such as 

those with Parkinson disease or peripheral neuropathy walk slower.14,29 It has been speculated that this 
change may be due to a need to increase stability.30 Works from other laboratories as well as our present 
data (longer stance time, increased double support time) demonstrate that like the elderly, PAD patients 
adopt a slower walking pattern.4-7 Investigations of elderly patients have reported stability and security 
gains from walking with increased double support time and slower velocity.30,31 This may be the 
underlying etiology for the current findings in the PAD gait. 

Walking slower, however, has been found to increase the metabolic cost of walking32 and may 
not offer more stability.33 For a PAD patient, metabolic efficiency is vital to functional mobility. A 
metabolically draining task will decrease the time a patient can walk because the occluded arteries 
cannot supply the needed energy to maintain the task and pain will likely occur sooner. In addition, 
Gardner and Montgomery8 described a higher incidence of self-reported falling in PAD patients. If walking 
slower offers stability for the patient, theoretically, they should not be falling more often. Future 
investigations should further evaluate the apparent clinical significance of these findings. In the future, 
gait analysis may point to new rehabilitation strategies that could correct the abnormal gait patterns, 
allowing for greater exercise tolerance and improved balance in PAD patients. 

When claudication pain is present, the vertical and anterior–posterior force changes became 
more apparent. The vertical force curve became even flatter, indicating further reduction of the natural 
vertical fluctuation seen with normal ambulation, and propulsion drops further, suggesting that the 
function of muscles supporting propulsion worsens. Analysis of the time parameters shows prolongation 
of stance time with less time spent in single-limb support (shortening of the time to Fz2 and FyP). These 
findings indicate that the patient experiencing claudication pain probably does not want to stand on the 
painful, potentially weak and unsteady-feeling leg without alternative support. 

As indicated in the results, a definite change occurs in the gait of the PAD patient during the 
second half of the stance phase. Further biomechanical analysis using kinematic data that evaluates the 
angles of the hip, knee, and ankle joints may offer more insight into the specific propulsion compromise 
experienced by the ambulating claudicating patient. As noted in our results, no change in gait over time 
was noted when the control subject’s gait was evaluated after a 10-minute treadmill session. Therefore, 
it is highly unlikely that the degradation of kinetic parameters seen after the onset of claudication is the 
result of normal exercise-related fatigue. 

An unexpected finding in these series was that PAD patients had evidence of significant 
ambulatory impairments even when not experiencing any claudication pain. In other words, the lower 
extremity neuromuscular system of PAD patients appears to be dysfunctional at baseline, before 
increased activity induces any appreciable ischemia and pain. This finding is consistent with previous 
reports that demonstrate a muscle metabolic myopathy34 and an axonal polyneuropathy35 in the lower 
extremities of PAD patients. Specifically, a number of reports have documented a metabolic myopathy in 
PAD muscle that appears to be secondary to defective mitochondrial bioenergetics. Mitochondria in PAD 
muscle have abnormal ultrastructure,36 damaged DNA,37 altered enzyme expression and activity, and 
abnormally high intermediates of oxidative metabolism.3 Most importantly, evaluation of the 
mitochondrial bioenergetics of claudicating muscle demonstrates specific defects in the complexes of 
electron transport chain, with associated compromised mitochondrial respiration (oxidative 
phosphorylation) and adenosine triphosphate production38-41 that is very similar to those seen in 
mitochondrial myopathies.34,38 

In addition, accumulating evidence suggests that chronic ischemia in PAD patients results in a 
consistent pattern of electrodiagnostic abnormalities indicating axonal nerve loss.35,42,43 Therefore, the 
impairments we have identified at baseline may be reflecting a combination of myopathy and neuropathy 
in the PAD limbs that gets worse when exercise-induced ischemia produces pain and further restriction of 
the lower extremity bioenergetics. Alternatively, repeated episodes of exercise-induced ischemic pain 
may lead to the establishment of a maladaptative gait in claudicating patients and such adaptations may 
persist even in the absence of pain. 



 

 
 
CONCLUSION 

Future research should build on the findings of this investigation. Our current work describes the 
gait kinetic alterations that occur in claudicating patients with femoropopliteal disease. Evaluation of 
patients with aortoiliac occlusive disease or combined femoropopliteal and aortoiliac occlusive disease 
should be the subject of similar future investigation. In addition, more detailed biomechanical analysis 
may include simultaneous evaluation of kinetics (ground reaction forces) and kinematics (joint angles) in 
the form of joint moments and powers. Such evaluation will improve our understanding of the action of 
the muscles across the joints of interest during gait, indicating specific muscle group failure that can be 
correlated with the individual patient’s level of occlusive disease and type of ambulatory handicap. 
Measuring the muscular action across a joint in the PAD patient’s current gait style, then rehabilitating 
gait into becoming more like the healthy control, and then evaluating again could offer important under- 
standing of the adaptations by the PAD patient and, furthermore, may determine the altered gait to be 
maladaptive. 

The functional handicap of claudicating patients cannot be fully understood without detailed 
studies of their movement. The goal of this investigation was to characterize the gait of claudicating PAD 
patients by using detailed kinetic biomechanical analysis. The results indicate clear abnormalities in the 
gait of claudicating patients. These abnormalities are present both before and after the onset of 
claudication, with several of them becoming worse after claudication onset. Our data indicate 
biomechanical analysis can objectively quantify the ambulatory handicap of PAD patients. Such analysis 
may facilitate the identification of optimal rehabilitative regimens that could correct the abnormal gait 
patterns, allowing for greater exercise tolerance. In addition, biomechanical evaluation may provide a 
firm foundation for optimal clinical decision-making and, more importantly, assist in an objective 
measurement of functional outcomes after medical and surgical therapy. 
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