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Abstract  
 This investigation utilized a Markov model to investigate the relationship of correlated lower 
extremity joint fluctuations and the selection of a steady state gait pattern in the young and elderly. Our 
model simulated the neuromuscular system by predicting the behavior of the joints for the next gait cycle 
based on the behavior exhibited in the preceding gait cycles. Such dependencies in the joint fluctuations 
have been noted previously in the literature. We speculated that compared to the young model, the 
characteristics of the correlated fluctuations in the elderly model would result in the selection of a 
different steady state gait pattern. The results of our simulation support the notion that correlated 
fluctuations in the joint kinematics influence the selection of a steady state gait pattern. The steady state 
gait pattern for the elderly model was dependent the ankle and hip. Conversely, the steady state gait 
pattern for the young control model was dependent on the behavior of the knee and hip. Based on our 
model, we suggested that the altered steady state gait patterns observed in the elderly may be due 
to an altered neuromuscular memory of prior joint behaviors. 
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1. Introduction 
 The neuromuscular system’s ability to control movement patterns declines as an individual 
age. A decline in neuromuscular function has been suggested to be an important indicator of falls in 
the aging population [1]. It has been well documented that the diminished capacity of the elderly 
neuromuscular system results in a gait pattern that has a shorter gait cycle time interval, a decreased 
step length and differences in joint kinematics [1–10]. However, beyond this descriptive information, 
little is known regarding changes in the control mechanisms of the neuromuscular system that are 
responsible for the characteristics of elderly gait patterns. 
 Several investigations have suggested that variations in the gait kinematics may offer insights on 
the control mechanisms of the elderly gait [4, 8, 9]. In particular, it has been shown that the elderly gait 
patterns exhibit increased kinematic variability [4, 8, 9, 11]. It has been suggested that this increased 
variability is due to the diminished capacity of the elderly neuromuscular system to produce a functional 
gait pattern and it has been perceived as ‘‘error’’ in the neuromuscular system [9]. Based on this notion, 
an increased amount of error (or variability) in the gait pattern results in a less stable movement pattern 
that is more susceptible to falls [4, 8, 9]. However, the degree of error that is acceptable for a stable gait 
pattern remains unknown. 
 Recent investigations have indicated that cycle-to-cycle variations in the lower extremity gait 
kinematics may not be error in the neuromuscular system. This notion is based on scientific evidence 
that these variations in the gait pattern have a fractal structure [12–17]. A fractal structure indicates that 
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subtle cycle-to-cycle fluctuations are not random error in the system. Rather these fluctuations are 
correlated with previous kinematic behaviors that have occurred during the gait pattern. The presence 
of correlated fluctuations have been noted in the literature for the stride interval [12–15] and knee joint 
kinematics [11, 16, 17] during gait. Additionally, recent investigations have indicated stride-to-stride 
correlated fluctuations are altered in the elderly [11, 14]. The nature of these correlated fluctuations 
during gait appears to be dependent on the health of the neuromuscular system [11, 14]. It is possible 
that the selection of a steady state gait in the elderly is affected by alterations in the cycle-to-cycle 
correlated fluctuations. With interest in determining the neuromuscular control mechanisms of elderly 
gait, further research is necessary to elucidate the relationship between correlated gait fluctuations 
and steady state gait patterns. 
 Markov models have been used in a wide variety of experimental situations to describe the 
long-term behavior of a system that performs a task many times in a similar way [18, 19]. Change in the 
behavior of the model from one state to the next is dependent on the preceding states. Hence, the 
behavior of the system in the next state is correlated with the behavior of the system in the preceding 
state. The controlling factor for changes in the behavior of the model is the transition probability 
matrix. The transition probability matrix contains the conditional probabilities for each component of 
the system to move to a new state on the next iteration [18, 19]. As time progresses, fluctuations in 
the behavior of the system from one state to the next exponentially decay to a steady state that 
describes the long-term behavior of the system [18, 19]. Since a Markov model can simulate the 
influence of previous states on future states and the selection of a steady state behavior, this model may 
offer further insights on the relationship between the correlated fluctuations observed in human gait 
and the selection of a steady state gait pattern. 
 As a step toward understanding the neuromuscular control mechanisms associated with the 
elderly gait, we utilized a Markov model to investigate the relationship of the correlated joint 
fluctuations and the selection of a steady state gait pattern. We speculated that the characteristics of 
the correlated joint fluctuations from one state to the next in the elderly Markov model would result in a 
steady state gait pattern that was different from the young controls. 
 

2. Materials and Methods 
Participants of this investigation included young control (N = 10; age = 25.1 ± 5.3 years, range = 

20–37 years) and elderly (N = 10; age = 74.6 ± 2.5 years, range = 71–79 years) subjects who had prior 

treadmill walking experience. The elderly subjects included in this investigation met the following 

criteria: independent ambulation (i.e. no assistive devices), independent living in the community, no 

neurological pathology, no acute illness, no use of medications that will affect gait performance and no 

restrictions in activities of daily living. Screening of the elderly subjects for neuromuscular deficiencies was 
performed by a licensed physical therapist. All of our subjects met the above criteria and none were 

excluded from this investigation. Prior to testing, each subject read and signed an informed consent 

that was approved by the University Institutional Review Board. 

 The subjects walked on a treadmill wearing their own comfortable footwear, while sagittal 
kinematic data of the right lower extremity were collected using a 60 Hz high-speed video camera. A 
single camera was used in this investigation because sagittal plane measures correspond well in two 
and three dimensions [20, 21]. Prior to videotaping, reflective markers were positioned on the 
subject’s right lower extremity. All positional markers were placed on the subjects by the same 
examiner. Sagittal plane markers placement were as follows: (a) greater trochanter, (b) axis of the knee 
joint as defined by the alignment of the lateral condyles of the femur, (c) lateral malleolus, (d) outsole 
of the shoe approximately at the bottom of the calcaneus and (e) outsole of the shoe 
approximately at the fifth metatarsal head. 



 The subjects were allowed to warm-up for a minimum of 8 min. This duration of warm-up has 
been considered sufficient for individuals to achieve a proficient treadmill movement pattern [22]. 
During the warm-up session, each subject established a self-selected comfortable walking pace (see 
Table 1 for subjects’ walking speeds). Subjects were instructed to select a pace that would be similar to 
a pace that they would use when performing continuous aerobic walking. Collection of data did not 
occur until the subject stated that they felt comfortable and could maintain the self-selected pace for a 
long duration. Once the subject felt comfortable walking on the treadmill, 15 consecutive gait cycles 
(trials) were collected per subject. 
 The obtained kinematic positional coordinates from the sagittal markers were smoothed using a 
Butterworth low-pass filter with a selective cut-off based on the Jackson algorithm [23]. Using this 
algorithm, the residual difference between raw data and the data filtered with various cut-off 
frequencies was initially determined. This was followed by the construction of a polynomial where the 
various cut-off frequencies were on the abscissa and the associated percent average residuals were on 
the ordinate. The second derivative of this polynomial was found at each cut-off frequency. The cut-off 
frequency was then considered optimal if its second derivative fell beneath the prescribed limit of 
0.0001. Using this algorithm, the cut-off frequency values for the respective raw position data ranged 
from 6 to 10 Hz. From the filtered coordinates, the sagittal foot, shank and thigh angular displacements 
were calculated relative to the right horizontal axis. Calculation of the ankle, knee and hip joint angles 

for each gait cycle was based on an absolute approach: Φ ankle = Φ foot - Φ leg - 90;    Φ knee 

Φ thigh - Φ leg;  Φ hip = Φ thigh - 90. 
 

 

 



 
 
The gait cycles were separated for analysis via custom laboratory software. With this software, the 
derivatives of the heel marker displacement, along with visual inspection of the stick figure were utilized 
to determine the respective heel contacts of the gait cycle. Similar algorithms have proven to be robust 
in determining heel and toe-off timings [24]. 

The respective joint angular displacements were normalized to 100 points per gait cycle using a 
cubic spline routine. The total range of motion (ROM) was determined from the absolute difference of 
the absolute maximum and absolute minimum of the respective joint angle curves (Fig. 1). 
 The joint ROMs from all subjects in the respective groups were used to develop two Markov 
models that simulated the behavior of the young and elderly lower extremity during gait. The Markov 
model used in this investigation is detailed by the directed graph presented in Fig. 2. The vertices of the 
directed graph contain the current state of the joint for the ith gait cycle, and the edges of the directed 
graph represent the probability of the joint to change its behavior for the next gait cycle. The edges of 
the model were bi-directional. This indicates that the transient behavior of our model was based on 
joint interactions. Additionally, edges in the model return to the original vertex. Therefore, transient 
behavior was also dependent on the behavior of the joint itself. Based on the outlay of our model, 
variations in the behavior of the system from one gait cycle to the next were based on probability 
relationships.  
 The probabilities associated with each of the edges of the directed graph were determined from 
forward selection regression equations created for each group. The ankle joint ROM was regressed on 
the knee ROM and hip ROM, the knee joint ROM was regressed on the ankle ROM and hip ROM, and the 
hip joint ROM was regressed on the knee ROM and ankle ROM. The ROMs from all gait cycles from the 
respective groups were utilized to create the respective regression equations. Hence, each regression 
equation was based on 150 gait cycles for each group. As predictors were added to the regression 



equation, the change in the coefficient of determination (e.g. Δ R2) was used to develop the probability 
vectors. Additionally, the remaining unexplained variance (1 - R2) of the regression equation was 
attributed to the behavior of the regressed joint independent of the behavior of the other lower 
extremity joints. Exemplar R2 values for the ankle were as follows: 

 
where R2

AK represents the variance accounted for by the knee joint ROM, Δ R2
AH represents the 

additional variance accounted for by the hip joint ROM and (1 - R2)AA represents the remaining 

unexplained variance accounted for by the ankle. These probabilities represented the edges of the 
graph (Fig. 2) and were contained in the transition probability matrix (M) (Eq. (1)) where subscript A 
represents the ankle, subscript K represents the knee and subscript H represents the hip. Column one 
of the respective transition probability matrix represented the behavior of the ankle, column two 
represented the behavior of the knee and column Three represented the behavior of the hip. The 
diagonal of the transition probability matrix represented the contribution of the joint in selecting its 
behavior in future states independent of the other joints (i.e. an edge that returns to its vertex in Fig. 2). 
All other cells of the matrix represented the contribution of the other joints in determining the behavior 
of the joint in future states (i.e. bi-directional edges in Fig. 2). 
 

 
 
The Markov models for the young controls and elderly were simulated for a sequence of gait cycles until 
a steady state gait pattern was achieved (Eq. (2)). 
 

 
 
Xk in the model was the steady state vector of the system for the kth gait cycle (i.e. XT = [ankle joint 
ROM, knee joint ROM, hip joint ROM]) and M was the transition probability matrix as describe above. M 
remained fixed throughout the simulation. The components of Xk represented the vertices of the 
directed graph (Fig. 2) and contained the percent contribution of each of the joints for the respective 
gait cycle. X0 was set to unity (e.g. [1, 0, 0]T ) at the start of the simulation [18,19]. Differences between 
the two models were evident by inspecting the Xk after the respective system converged to a steady 
state. A steady state was evident when the values of Xk were not changing from one k to the next for 
four decimal places. The components of the respective Xk were then expressed as percentages. Different 
percentages between the two models suggested different steady state gait strategies. A larger 
percentage in one of the components of Xk indicates that the steady state gait pattern was more 
dependent on the performance of the respective joint. 
 

3. Results 
Representative data from the two groups that was used to construct the Markov models are 

presented in Table 1. The transition probability matrices developed from the elderly and young data 
were as follows: 



 
where MElderly is the transition probability matrix for the elderly group, MYoung the transition probability 
matrix for the young control group. A numerical simulation for the young Markov model was as follows: 
 

 
 
where the final Xk was the steady state for the young group. A similar method was used to simulate the 
elderly Markov model. The differences in the steady state gait patterns for the two group models 
indicated that the dependencies of the joint kinematics from one gait cycle to the next were affected by 
age (Table 2). The steady state gait pattern for the elderly model indicated that the correlated 
fluctuations in the gait cycle resulted in a gait pattern that was dependent primarily 
 

 
on the behavior of the ankle (52%), and secondarily on the behavior of the hip (42%). Conversely, the 
steady state gait pattern for the young controls suggested that correlated fluctuations in the gait cycle 
resulted in a gait pattern that was more equally dependent on the behavior of the knee (40%) and hip 
(42%). 



 
Discussion 

The results of our Markov model suggested that the characteristics of the joint fluctuations can 
influence the selection of a steady state gait pattern. This notion was supported by the results of our 
models where the young control and elderly models had different steady state gait patterns (see Table 
2). Prior investigations have described the gait patterns of the elderly as having altered ankle and hip 
joint movement patterns [1, 6, 7, 10]. Additionally, Kerrigan et al. [10] have noted that an altered ankle 
and hip joint movement patterns persist in the elderly regardless of walking speed. Our elderly model 
confirms these observations where the steady state gait pattern was dependent on the behavior of the 
ankle and hip (see Table 2). However, based on the results of our model, we suggest that correlated 
joint fluctuations may be an important control mechanism that is involved in the selection of such 
steady state gait patterns. This notion is based on the fact that fluctuations in the model from one state 
to the next lead to a gait pattern that was dependent on the ankle and hip.  
 Potentially the correlation between joint behaviors from one gait cycle to the next may be 
related to some sort of neuromuscular memory of prior lower extremity joint behaviors. Such memories 
may be an important control mechanism for selection of a steady state gait pattern. This is based on the 
fact that the steady state matrix (Xk) of the Markov model from one gait cycle to the next was 
dependent on the organization of the neuromuscular system in the previous gait cycle (Xk 1). Therefore, 
the behavior of the joints in the previous gait cycle may influence the behavior of the joints in the next 
state. There is considerable scientific evidence that neuromuscular memory of motor tasks have a 
neural representation in the prefrontal cortex and cerebellum [25, 26]. Additionally, it is apparent that 
these neural representations are dynamically created and adjusted to accommodate the ever changing 
environmental stimulus [27]. Such neural connectivity may serve as the biological constructs responsible 
for the correlated joint fluctuations noted in previous investigations [11–17]. Based on the results of our 
model, an altered neuromuscular memory of past joint behaviors during gait may be responsible for the 
selection of a different steady state gait patterns in the elderly. It is possible that neuro-physiological 
changes associated with aging [28–32] may cause a breakdown in the selection of neural pathways 
responsible for neuromuscular memory [11]. Additionally, it can be suggested that these 
neurophysiological changes may hinder the ability of the elderly to use sensory cues to recall 
neuromuscular memories of prior joint behaviors during gait. Further investigations are necessary to 
determine the relationship of neuromuscular memory and the observed correlated joint fluctuations 
during gait.   

Several investigations have suggested that control of locomotor patterns are governed in part by 
passive dynamic biomechanical factors found in the muscles, connective tissues and ligaments [33–36]. 
Based on this notion, it is possible that correlated fluctuations may also be related to passive dynamic 
factors from the previous gait cycle. Investigations of animal locomotion have indicated that slow 
moving gait patterns are more dependent on neural control while faster gait patterns have a greater 
dependency on passive dynamic factors for control [33–36]. Potentially, the loss of viscoelastic 
properties in the musculoskeletal system of the aging may be related a greater reliance on the neural 
control mechanism. As such, this may be the reason we have noted altered correlated fluctuations at a 
slower gait pattern in the elderly. However, the extent that passive dynamic factors play a role in 
correlated fluctuations in gait and the greater reliance on neural control mechanisms in the elderly is 
currently unknown.  
 Markov modeling techniques are based on probability relationships that are assumed to 
represent real life behaviors. In this investigation, we assumed that the respective transition probability 
matrix (M) created from forward selection regression techniques accurately represented our subjects 
and were able to capture the relationship of one gait cycle to the next. We also assumed that the 
behavior of the lower extremity can be described by the directed graph in Fig. 2. In our model, the 



outcome of the system was only dependent on the interaction and independent behaviors of the lower 
extremity joints. It is possible that other hidden variables (e.g. torso and upper extremity) that are not 
taken into account in our model may influence the outcome of the system. Additionally, we cannot 
currently state that the results of our model are independent of the walking speed selected by the 
respective groups. Furthermore, since a single model was used to explore each age group, we assumed 
that all subjects within each age group exhibited similar motor behavior. Although these limitations exist 
in the model, this investigation is an initial step toward understanding the influence of correlated joint 
fluctuations on the selection of steady state gait patterns.  
 In conclusion, this modeling approach tended to support the notion that further investigations 
of correlated fluctuations may offer promising insights about the control mechanisms of the 
neuromuscular system during gait. Our model indicated that correlated fluctuations in the joint 
kinematics from one gait cycle to the next may influence the selection of a steady state gait pattern. We 
suggest that the different steady state gait patterns observed in the elderly may be due to an altered 
neuromuscular memory of prior joint behaviors. The results of our Markov model should motivate 
further interest in exploring the relationship of kinematic variations and the selection of a steady state 
gait pattern. Further investigations are necessary to determine if the differences seen in our model are 
related to the deterioration of neuromuscular memory in the elderly or the loss of sensory cues to recall 
neuromuscular memories of prior joint behaviors during gait. Additionally, scientific questions should 
address if correlated joint fluctuations in the aging can be altered by a change in passive dynamic 
biomechanical factors found in the viscoelastic properties of the musculoskeletal system. 
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