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Abstract  
 Chaos is a central feature of human locomotion and has been suggested to be a window to the 
control mechanisms of locomotion. In this investigation, we explored how the principles of chaos can 
be used to control locomotion with a passive dynamic bipedal walking model that has a chaotic gait 
pattern. Our control scheme was based on the scientific evidence that slight perturbations to the 
unstable manifolds of points in a chaotic system will promote the transition to new stable behaviors 
embedded in the rich chaotic attractor. Here we demonstrate that hip joint actuations during the 
swing phase can provide such perturbations for the control of bifurcations and chaos in a locomotive 
pattern. Our simulations indicated that systematic alterations of the hip joint actuations resulted in 
rapid transitions to any stable locomotive pattern available in the chaotic locomotive attractor. Based 
on these insights, we further explored the benefits of having a chaotic gait with a biologically inspired 
artificial neural network (ANN) that employed this chaotic control scheme. Remarkably, the ANN was 
quite robust and capable of selecting a hip joint actuation that rapidly transitioned the passive 
dynamic bipedal model to a stable gait embedded in the chaotic attractor. Additionally, the ANN was 
capable of using hip joint actuations to accommodate unstable environments and to overcome 
unforeseen perturbations. Our simulations provide insight on the advantage of having a chaotic 
locomotive system and provide evidence as to how chaos can be used as an advantageous control 
scheme for the nervous system. 
 

 
Introduction  
 Human locomotion is typically described as having a periodic movement pattern. For 
example, it can be readily observed that the legs oscillate to-and-fro with a limit cycle behavior that 
is similar to the pendulum motions of a clock (Clark and Phillips 1993). Any variations from this periodic 
pattern have traditionally been considered as “noise” within the neuromuscular system (Hausdorff et 
al. 1995). However, recent investigations of human locomotion have confirmed that variations from one 
step to the next are not noise. Rather these variations have a chaotic structure (Buzzi et al. 2003; 
Dingwell et al. 2000; Hausdorff et al. 1995, 1997, 1998, 1999, 2000; West and Griffin 1998, 1999; Stergiou 
et al. 2004a,b). Several authors have noted that the chaotic structure present in human locomotion is 
influenced by the health of the neuromuscular system and have speculated that chaos is related to the 
neuromuscular control of locomotion (Buzzi et al. 2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1998, 
2000; Stergiou et al. 2004a,b). However, no efforts has been made to explain how chaos can provide 



control of the locomotive pattern or why a chaotic gait pattern is necessary. 
 A chaotic system is typically described as being both stable and flexible (Li and Yorke 1975; 
Allgood et al. 1997; Baker and Gollub 1996). Chaotic systems have an ergodotic property where their 
trajectories come close to a fixed point’s neighborhood but never converge to the specific point 
(Allgood et al. 1997; Baker and Gollub 1996). This ergodotic property has been used to describe a chaotic 
system as being flexible since they are capable of maintaining a stable and variable pattern. The 
degree of these variations in the state space have been linked to the health of a biological system 
(Buzzi et al. 2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1998, 1999, 2000; Goldberger et al. 
2002; Stergiou et al. 2004b). For example, several investigations have determined that a heart rhythm 
that has chaotic pattern is healthy, while heart rhythms that have a more periodic pattern are more 
susceptible to heart disease (see Goldberger et al. 2002 for review). Although chaotic flexibility appears 
to be quite an advantage from a clinical standpoint, an additional benefit of having a chaotic system 
is that small perturbations can be used to drive the system to stable trajectories that are embedded in 
the chaotic attractor (Starrett and Tagg 1995; Ott et al. 1990; Shinbrot et al. 1993). For example, a 
small perturbation along the unstable manifold of a point in the attractor can promote the system 
to transition from a chaotic pattern to a periodic pattern (Starrett and Tagg 1995; Ott et al. 1990; 
Shinbrot et al. 1993). This property comes from the fact that multiple points found in a chaotic 
attractor have both unstable and stable manifolds (Starrett and Tagg 1995; Ott et al. 1990; Baker and 
Gollub 1996; Allgood et al. 1997). Periodic systems cannot demonstrate such transition flexibility 
because no points in the attractor have unstable manifolds (Starrett and Tagg 1995; Ott et al. 1990; 
Allgood et al. 1997; Baker and Gollub 1996; Abarbanel 1996). The ability to transition to various 
stable patterns embedded in the chaotic system truly demonstrates ultimate flexibility. It is possible 
that the nervous system may use the principles of the chaotic attractor to control gait patterns and 
ensure stability in uncertain environments. Hence, chaos may be necessary to allow the nervous system 
to accommodate a variety of locomotive strategies by using well-timed perturbations that promote the 
central pattern generator to switch to stable locomotive patterns available in the rich chaotic attractor. 
No effort has been made to explore if such a perturbation scheme could be used to control locomotion. 
 The biomechanical requisites and energetics of human locomotion have been successfully 
explored with a class of passive dynamic bipedal robots that walk down a slightly sloped surface 
(Kuo 2001, 2002; Kurz et al. 2005; Garcia et al. 1998; McGeer 1990; Collins et al. 2005; Groswami et 
al. 1996; Howell and Baillieul 1998). These bipedal models are composed of an inverted double 
pendulum system where one leg is in contact with the ground and the other leg swings freely with 
the trajectory of the system’s center of mass (Fig. 1). Recently, Groswami et al. (1996) and Garcia et 
al. (1998) have demonstrated that a simple passive dynamic walking model can exhibit a cascade of 
bifurcations (i.e. period 1, period 2, period 4. . .) that converges to a chaotic locomotive pattern. 
Numerical experiments by Garcia et al. (1998) suggested that the basin of attraction for a stable chaotic 
gait is bigger than the basin for a periodic fixed point gait. This suggests that a chaotic gait may be more 
robust because it has a greater basin of stability. Additionally, Garcia et al. (1998) suggested that since the 
basin of stability is larger for chaotic systems it may be useful to add control to the passive dynamic 
walking system to maintain locomotive pattern within the chaotic region. However, no further 
investigations have been conducted to extend Garcia et al.’s (1998) concepts. It is possible that slight 
joint actuations may perturb the locomotive system to stay within the chaotic basin of attraction. Further 
investigation of these concepts may prove to be fruitful in further understanding why a chaos is present 
in human locomotion. 

 In this investigation, we have extended Garcia et al. (1998) passive dynamic walking model by 
incorporating a hip joint actuator for the swing leg (Fig. 1). We hypothesized that the central nervous 
system may use such hip joint actuations to provide a perturbation to the chaotic locomotive 
system. Potentially, joint actuations will cause the passive dynamic bipedal model to transition to new 



stable locomotive patterns embedded in the chaotic attractor and help to maintain the gait within 
the basin of the chaotic attractor. Additionally, we further explored how chaos can be used as a control 
scheme by developing a biologically inspired artificial neural network (ANN) that selects hip joint 
actuations for the model’s gait. We hypothesized that the simulated nervous system would be able to 
utilize hip joint actuations to transition to a stable locomotive pattern embedded in the chaotic 
attractor during unpredictable environments and when unforeseen external perturbations are 
encountered.  
 

 
 
Modeling bipedal locomotion 
 The passive dynamic walking model used in this investigation was a simplified mathematical model 
of the lower extremities based on the work of Garcia et al. (1998) and Kuo (2002) (Fig. 1). The model 
consisted of two rigid massless legs connected by a frictionless hinge at the hip. During locomotion, 
the stance leg swung like an inverted pendulum until the swing leg made contact with the 
supporting surface. At heel-contact, the swing leg became the stance leg and the stance leg became 
the swing leg for the next step. The swing leg was allowed to pass through the supporting surface 
during midstance and had a plastic collision with the surface at heel strike. Energy for the 

locomotive pattern was supplied to the model via a slightly sloped rigid walking surface (γ < 0.0190 
rad). The simplified equations of motion for the passive dynamic bipedal walking model developed by 
Garcia et al. (1998) are presented in Eq. 1. 
 

 
 
where γ is the slope of the walking surface, t is time, k is the stiffness of the hip torsional spring, θ is the 

angle of the stance leg, φ is the angle of the swing leg, and 𝜃̇, 𝜃̈, 𝜑̇, 𝜑̈ are the respective derivatives. 
Further detailed explanations regarding the derivation of the governing equations for the passive 
dynamic model used in this investigation can be found in Garcia et al. (1998) and Kuo (2002). Inspection 
of the governing equations indicates that hip joint actuation was applied to the swing leg via a torsional 



spring. The magnitude of the hip joint actuation was adjusted by increasing the value of k. The governing 
equations were integrated using a modified version of Matlab’s (MathWorks, Natick, MA) ODE45. The 
ODE45 was modified to integrate the equations of motion with a tolerance of 10−12 and to stop 
integrating when the angle of the swing leg angle was twice as large as the stance leg angle (Eq. 2). 
 

 
 
The swing leg became the stance leg and the former stance leg became the swing leg when the 
conditions presented in Eq. 2 were satisfied. The switching of the roles of the legs was performed with a 
transition equation developed by Garcia et al. (1998) (Eq. 3). 
 

 
 
where “+” indicated the behavior of the model just after the swing leg made contact with the ground 
and “−” indicated the behavior of the model just before the swing leg made contact with the ground. 
The transition equation assumes that angular momentum of the entire system was conserved about the 
swing foot point of contact and also for the former stance leg about the hip (Garcia et al. 1998). 
Therefore, the energy gained in the descent of the walking model was balanced by the energy lost at 
each heel-strike. Further information on the derivation of Eq. 3 can be found in Garcia et al. (1998). 
 
Analysis of locomotive patterns 
 We used systematic numerical simulations to confirm the influence of hip joint actuation on the 
locomotive patterns of our model. Analyses of the locomotive patterns of the model were performed 
from 5,000 footfalls with the first 500 footfalls removed to be certain that the model converged to the 
given attractor. Initial simulations were performed with no joint actuations (i.e. k = 0 s−2). This was 
followed by a systematic exploration of the influence of hip joint actuations on the identified locomotive 

patterns at the respective γ. 
 Bifurcations and changes in the model’s locomotive pattern were noted with Poincaré maps 
composed from initial stance leg angle of the model for a given step (Eq. 4). 
 

 
 
where ζn is the stance leg angle for the nth step and ζn+1 is the stance leg angle for the proceeding step. 
The Poincaré maps provided a way to simplify the dynamics of the system by viewing the behavior of 
the system stroboscopically (Baker and Gollub 1996). This involves cutting or sectioning the attractor at 
regular intervals or events. An increase in the order of the gait pattern as a joint actuation was applied 
results in more points in the Poincaré map (i.e. Period 4–8). Alternatively, a decrease in the order as a 
joint actuation was applied results in fewer points in the Poincaré map (i.e. Period 8–4).  
 Lyapunov exponents were calculated to quantify the exponential separation of nearby 

trajectories in the reconstructed state space of the simulated locomotive pattern at the respective γ 
(Allgood et al. 1997; Baker and Gollub 1996; Abarbanel 1996; Stergiou et al. 2004a, b). This information 
was necessary to classify the locomotive pattern as periodic or chaotic. As nearby points of the state 
space separate, they diverge rapidly and can produce instability. Lyapunov exponents from a stable 



system with little to no divergence will be zero (e.g. sine wave). Alternatively, Lyapunov exponents for 
an unstable system that has a high amount of divergence will be positive (e.g. random data). A chaotic 
system will have both positive and negative Lyapunov exponents. Although a positive Lyapunov 
exponent indicates instability, the sum of the Lyapunov exponents for a chaotic system remains negative 
and allows the system to maintain stability (Allgood et al. 1997; Baker and Gollub 1996; Abarbanel 1996; 
Stergiou et al. 2004a, b). This notion can be seen by inspecting the largest Lyapunov exponent for a sine 
wave (0), a chaotic Lorenz attractor (0.100), and random data series (0.469). Hence a chaotic system lies 
somewhere between a completely periodic system and a completely random system. The Chaos Data 
Analyzer (American Institute of Physics) was used to numerically calculate the largest Lyapunov 

exponent for each γ. Previously, we had confirmed that an embedding dimension of three is necessary 
to calculate the largest Lyapunov exponent for Garcia et al.’s 1998 passive dynamic bipedal walking 
model (Kurz et al. 2005). 
 
Artificial neural network 
 Artificial neural networks are composed of biologically inspired neuron-like elements operating 
in parallel (Russell and Norvig 2003; McClelland and Rumelhart 1981; Rumelhart and McClelland 1986; 
Morris 1989; Cohen et al. 1990; Thelen and Bates 2003). As in the human nervous system, the output of 
each neuron is determined by its interconnections with other neurons in the simulated nervous system. 
Each interconnection has a weight associated with the connected edge. It is the collective activity of 
multiple weighted edges that determines the behavior of the respective neuron (Russell and Norvig 
2003; McClelland and Rumelhart 1981; Rumelhart and McClelland 1986; Morris 1989; Cohen et al. 1990; 
Thelen and Bates 2003). By adjusting the weighted connections between the respective neurons, the 
ANN learns to perform specific tasks for a given set of inputs. ANNs have been successfully used to 
model the neural activity associated with human cognitive behaviors (McClelland and Rumelhart 1981; 
Rumelhart and McClelland 1986; Morris 1989; Cohen et al. 1990; Thelen and Bates 2003). These models 
have advanced our understanding of the organization and performance of the central nervous system. 
We employed a similar methodology to explore how the nervous system can use the principles of chaos 
to control locomotion.  
 We developed a feed-forward ANN that had sixteen input neurons, four hidden neurons and 
one output neuron (Fig. 2). Neurons between each layer were connected via a series of weighted edges 
(wij ). Each i th neuron had an input value xi and an output value yi = g(x). A sigmoid function g(x) = 
(1+ex)−1 was used to determine the excitation of the neuron where the value of x was given by xi = ∑wij yj 
. The input to the ANN consisted of eight time delays of the model’s initial right leg angle and angular 
velocity for a given step (Xn−1, Xn−2, . . ., Xn−8). These time delays served as a cognitive memory for the 
past states of the locomotive system. Our decision to use time delays as input parameters was based on 
the current scientific literature that indicates human locomotion has a neural memory of past 
locomotive states (Hausdorff et al. 1995, 1997, 1998, 1999, 2000). These memories appear to serve as a 
basis for selecting the neuromuscular behavior of proceeding steps. Additionally,  



 
several investigations have determined that kinematic codes of past neuromuscular behaviors are 
stored in working memory (Shand 1982). The use of angular position and velocity as input parameters 
for the ANN was based on the prevalent literature that indicates the receptors in the muscle monitor 
the position and velocity of the limb trajectories (McCloskey 1978).  
 We trained the ANN to select a hip stiffness (k in Eq. 1.) that would transition a period-n gait to a 
period-2 gait. Although it is unlikely that humans walk with a period-2 gait, we selected period-2 
because it is feasible to visually inspect the performance of the model with Poincaré sections. Changes 
in the hip stiffness variable subsequently altered the hip joint actuation applied to the locomotive 

system. The training data utilized was from 0.0182 rad > γ > 0.0183 rad. The assignment of edge weights 
in the final neural network was determined with a back propogation algorithm where the output of the 
ANN was compared with the training data (Russell and Norvig 2003; Rumelhart and McClelland 1986). 

We tested the ANN performance at γ that it had not been trained (e.g. 0.0183 rad > γ > 0.0191 rad). 
Additionally, the robustness of the ANN was tested by supplying an impulse directed toward the model’s 
center of mass at the 150th step (Eq. 5 where P > 0). This impulse provided an unforeseen perturbation 
to the models gait at heel-contact. P was dimensionless and had a normalization factor M(g l)1/2. When P 
was set to zero, the equation is the same as the transition equation presented in Eq. 3.  
 



 
 



 
 Perturbations were systematically increased for each simulation until the passive dynamic 
walking model fell down. The robustness was classified by how much of a perturbation the locomotive 
system could overcome with and without the presence of the ANN. 
 
Simulation results 
 With no added hip joint actuation (i.e. k = 0), the model had a cascade of bifurcations that led to 

a chaotic gait pattern as γ was increased (i.e. period-one, period-two, period-four, etc.) (Fig. 3). Period 

one locomotive attractors were present for γ < 0.0150 radians. A period one attractor indicated that the 
model selected the same initial stance leg angle for every step of the continuous locomotive pattern. At 

γ = 0.0151 rad, the locomotive pattern bifurcated from period one to period two. A period two indicated 
that the locomotive pattern alternated between two different initial stance leg angles. Additional 

increases in γ systematically resulted in further bifurcations in the initial stance leg angle chosen by the 
walking model. Positive Lyapunov exponents were present from 0.01839 rad < 0.0189 rad (Lyapunov 
exponent range = +0.002 to +0.158).  
 Subsequently, we explored if hip joint actuation was a mechanism to control the locomotive 
pattern of the walking model. As the hip joint actuation was increased (i.e. k > 0), the order of the 

period-n gaits at the respective γ were decreased. For example, systematic increases in hip joint 
actuation applied to a period-8 gait drove the system to a period-4 gait, to period-2 gait and to a period-
1 gait (Fig. 4). This type of joint actuation could be used to rapidly transition to any gait pattern in the 

bifurcation map (Fig. 3). For example, Fig. 5 demonstrates that the chaotic pattern present at γ = 0.0189 



rad was rapidly transitioned to a period one gait when a hip joint actuation of 0.06 s−2 was applied at the 
150th step of the model’s gait. This should not be misinterpreted that hip actuation could only be used 
to transition to periodic gait. Hip actuation could be used to transition to any period-n gait, which 
included a lower level chaotic attractor that was embedded in the higher level chaotic system. We 
define a lower level chaotic attractor as a chaotic attractor with its largest Lyapunov Exponent closer to 
zero. 

 
 Simulations of the ANN’s performance indicated that it was capable of selecting a proper hip 

joint actuation that transitioned any period-n gait at a respective γ to a period-2 gait. Additionally, the 
ANN was capable of using hip joint actuations to induce locomotive stability in regions where the model 
was not previously able to walk. Without the addition of hip joint actuation (i.e. k = 0), the model would 
fall down at ramp angles larger than 0.019 rad. However, employment of the ANN’s chaotic control 
scheme resulted in the selection of hip joint actuations that allowed the model to walk with a stable gait 
at ramp angles that were previously considered 



 

 
unstable. Hence, the ANN was able to use hip joint actuations to induce stability in the model’s 
locomotive pattern in uncertain environments.  
 The results from the perturbation analysis further demonstrated the robustness of the ANN. 
When the ANN was not used for control, the model was able to use passive dynamics alone to stabilize a 
perturbation of P = 0.0007. However, with the use of the ANN, unforeseen perturbations that were 73% 
larger were stabilized by rapidly transitioning to a stable gait embedded in the chaotic attractor.  Figures 
6 and 7 depict the robustness of the ANN where a perturbation was applied during stable locomotion. 
The ANN rapidly selected a hip joint actuation that transitions the locomotive system to a stable pattern. 



Upon stabilizing the disturbance, the ANN quickly transitioned the locomotive system back to the 
original stable gait pattern. 
 
Discussion 
 Chaos is a central feature of human locomotion (Buzzi et al. 2003; Dingwell et al. 2000; 
Hausdorff et al. 1995, 1997, 1998, 1999, 2000; Stergiou et al. 2004a,b; West and Grif- fin 1998, 1999). 
The origin of such complex physiological rhythms in locomotion has come under closer examination 
because it has been suggested that they are linked to the control mechanisms of the neuromuscular 
system (Buzzi et al. 2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1997, 1998, 1999, 2000; Stergiou et 
al. 2004a,b; West and Griffin 1998, 1999). In this investigation, we explored how the principles of chaos 
can be used as a control scheme for bipedal locomotion. With no hip joint actuation (e.g. k = 0 s−2), our 
passive dynamic bipedal walking model was capable of producing a chaotic locomotive pattern when 

the ramp angle was 0.01839 rad < γ < 0.0190 rad (Lyapunov exponent range = +0.002 to +0.158). When 
hip joint actuation was added to the model, it provided a mechanism to control bifurcations and the 
presence of chaos. Hip joint actuation allowed the model to transition to other stable gaits embedded in 
the chaotic attractor. These simulations suggest that humans may use well-timed joint actuations to 
transition to stable locomotive patterns available in the chaotic attractor when instabilities are 
encountered in the walking environment. These simulations build on Garcia et al. (1998) concept that 
the basin of stability may be larger for chaotic gaits compared to the basin of stability for periodic fixed 
point gaits. It is theoretically plausible that hip joint actuations could be used to ensure that the 
locomotive system remains within the basin of stability of the chaotic attractor. The advantage of 
remaining in the chaotic region is that there are many different step length combinations available for a 
stable gait pattern. Once in the chaotic basin, further hip joint actuations can be used to select a stable 
gait that meets the changes in the environment.  
 Our biologically inspired ANN was capable of utilizing the principles of chaos as a control 
scheme. Remarkably, the ANN selected a hip joint actuation that rapidly transitioned the locomotive 
system to a stable gait embedded in the rich chaotic attractor. Additionally, our simulations 
demonstrated that the chaotic control scheme employed by the ANN was very robust. The ANN was 
capable of using hip joint actuations to accommodate unstable environments and to overcome 
unforeseen perturbations. Insights from our simulations are quite striking and provide a foundation for 
further understanding of the advantage of having chaotic walking pattern. We suggest that chaos may 
provide ultimate flexibility in the gait pattern by allowing the nervous system to select a stable gait 
pattern that is embedded in the chaotic attractor. This type of control may be highly desirable in the 
ever changing environment. By having a chaotic locomotive system, the controller can match what type 
of gait pattern is necessary for the given environment. This may include various types of period-n 
locomotive patterns. Based on these insights, it was quite evident that the ANN provided additional 
benefit beyond the natural stability of the chaotic attractor. The ANN could use the properties of the 
chaotic attractor to select a hip joint actuation that transitions the locomotive system to a gait that is 
stable for the given perturbation or environmental circumstances.  
 Several investigations have indicated that gait is controlled by a central pattern generator (e.g 
neuronal group) located in the spinal cord (Grillner 1981; Rossignol et al. 2000; Forssberg et al. 1980a,b; 
Barbeau and Rossignol 1987; Harkema 2001; Suster and Bate 2002; Marder 2002). The central pattern 
generator provides neural timings necessary for locomotive patterns. Even in the absence of higher 
brain center influences, the central pattern generator is capable of producing viable gaits in spinalized 
animals (Rossignol et al. 2000; Forssberg et al. 1980a,b; Barbeau and Rossignol 1987) and humans with 
spinal cord injuries (Harkema 2001). Since there is extensive evidence that steady state human 
locomotion has a chaotic structure (Buzzi et al. 2003; Dingwell et al. 2000; Hausdorff et al. 1995, 1997, 
1998, 1999, 2000; Stergiou et al. 2004b; West and Griffin 1998, 1999), it is possible that chaos may 



actually be embedded in the dynamics of the central pattern generator. However, neural signals from 
the higher brain centers may be necessary for altering the behavior of the chaotic central pattern 
generator. Possibly neural signals from higher brain centers may initiate well-timed joint actuations that 
cause the central pattern generator to alter its neural firing pattern to a new stable gait patterns 
embedded in the chaotic system. Such a control scheme may be advantageous because it will reduce 
the need for continuous commands to be sent to the multiple degrees of freedom present in the 
musculoskeletal system during locomotion. Additionally, it would allow the central pattern generator to 
rapidly switch to the multiple stable gait patterns available in the chaotic attractor as environmental 
circumstances change. To further explore this hypothesis, we are experimentally investigating and 
modeling the influence of higher brain centers on chaotic locomotive dynamics in clinical populations 
with isolated disorders of the central nervous system (i.e. Parkinson’s, stroke and spinal cord injuries). 
 Based on the results of our simulations, we suggest that how the nervous system takes 
advantage and utilizes the properties of the chaotic locomotive attractor may be a source of the 
previously observed differences in chaotic dynamics of abnormal locomotive patterns (Buzzi et al. 2003; 
Dingwell et al. 2000; Hausdorff et al. 1997, 1998, 2000; Stergiou et al. 2004a,b). As stated previously, the 
nervous system may be able to select a desired gait pattern from among the infinite number of 
behaviors naturally present in the chaotic locomotive attractor. The ability of the nervous system to 
capitalize on the properties inherent to the chaotic system may allow for a healthy and flexible 
locomotive system. An example of this notion is provided in a recent investigation where it was 
determined that the elderly have altered chaotic locomotive dynamics (Buzzi et al. 2003). Since it is well 
known that the elderly have abnormal hip joint mechanics (Winter et al. 1990; Winter 1991; Judge et al. 
1996; Kerrigan et al. 1998), it is possible that the altered chaotic dynamics may be related to an inability 
of the elderly nervous system to champion the use of hip joint actuation for the control bifurcations and 
chaos. In a sense, the elderly may not be able to supply joint actuations that are necessary for 
transitions to stable locomotive patterns when instabilities are experienced in the gait pattern. Such 
instabilities may arise from slight changes in the walking environment or local changes in the 
performance of the musculoskeletal system (Dingwell et al. 2000). Currently, we are using our passive 
dynamic bipedal walking model to further explore the influence of other lower extremity joint 
actuations on the control of bifurcations and chaos in locomotive patterns. 
 
Conclusions 
 In this investigation, we have demonstrated that hip joint actuation can be used to control 
bifurcations and chaos in a bipedal locomotive pattern. Based on our simulations, it appears that having 
a locomotive system with a chaotic pattern provides an advantageous control scheme. As long as the 
locomotive system remains within the basin of the chaotic attractor the nervous system can select from 
among the many different step length combinations. Our simulations indicate that hip joint actions 
selected by the nervous system allow the locomotive system to rapidly transition to stable gaits 
embedded in the rich chaotic attractor. Chaos may be embedded within the locomotive central pattern 
generator. Further exploration of how chaos is used as a control scheme will enhance our understanding 
of the neural control of locomotion. 
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