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An improved surrogate method for detecting the presence of chaos in gait 
 
David J. Miller, Nicholas Stergiou, Max J. Kurz 

 
HPER Biomechanics Laboratory, University of Nebraska at Omaha, 6001 Dodge St., HPER Room 
207Q, Omaha, NE 68182-0216, USA 
 
 
Abstract 
 It has been suggested that the intercycle variability present in the time series of 
biomechanical gait data is of chaotic nature. However, the proper methodology for the correct 
determination of whether intercycle fluctuations in the data are deterministic chaos or random 
noise has not been identified. Our goal was to evaluate the pseudoperiodic surrogation (PPS) 
[Small et al., 2001. Surrogate test for pseudoperiodic time series data. Physical Review Letters 
87(18), 188,101–188,104], and the surrogation algorithms of Theiler et al. [1992. Testing for 
nonlinearity in time series: the method of surrogate data. Physica D 58(1–4), 77–94] and of Theiler 
and Rapp [1996. Re-examination of the evidence for low-dimensional, nonlinear structure in the 
human electroencephalogram. Electroencephalography and Clinical Neurophysiology 98, 213–
222], to determine which is the more robust procedure for the verification of the presence of 
chaos in gait time series. The knee angle kinematic time series from six healthy subjects, 
generated from a 2-min walk, were processed with both algorithms. The Lyapunov exponent (LyE) 
and the approximate entropy (ApEn) were calculated from the original data and both surrogates. 
Paired t-tests that compared the LyE and the ApEn values revealed significant differences between 
both surrogated time series and the original data, indicating the presence of deterministic chaos in 
the original data. However, the Theiler algorithm affected the intracycle dynamics of the gait time 
series by changing their overall shape. This resulted in significantly higher LyE and ApEn values for 
the Theiler-surrogated data when compared with both the original and the PPS-generated data. 
Thus, the discovery of significant differences was a false positive because it was not based on 
differences in the intercycle dynamics but rather on the fact that the time series was of a 
completely different shape. The PPS algorithm, on the other hand, preserved the intracycle 
dynamics of the original time series, making it more suitable for the investigation of the 
intercycle dynamics and the identification of the presence of chaos in the gait time series. 
 
Introduction  
 Previous biomechanical investigations have suggested that stride-to-stride (intercycle) 
variability has chaotic features and the nature of the chaotic structure is an indication of the 
overall health of the system (Buzzi et al., 2003; Dingwell et al., 2000; Dingwell and Cusamano, 
2000; Hausdorff et al., 1995; Lipsitz, 1995; Stergiou et al.,  2004a, b).  However,  further  
exploration  of  these initial findings has been hindered by the fact that the identification of 
chaos in a time series is a very difficult procedure and sometimes purely random signals have 
been misdiagnosed as chaotic or vice versa (Collins and DeLuca, 1995; Rapp, 1994; Theiler et al., 
1992). Thus, methods such as surrogate analysis have been developed to prevent such 
misdiagnoses (Theiler et al., 1992; Theiler and Rapp, 1996; Rapp, 1994; Stergiou et al., 2004b). 
 Recently, the surrogate algorithm of Theiler et al. (1992), Theiler and Rapp (1996) has 
been applied to support the notion that fluctuations in human gait have a deterministic pattern 
(Stergiou et al., 2004b; Dingwell and Cusamano, 2000; Buzzi et al., 2003). However, Small et al. 
(2001) have also presented a pseudoperiodic surrogate (PPS) algorithm that preserves the 



inherent periodic components of human electrocardiogram time- series data while destroying the 
subtle nonlinear structure. It is possible that this algorithm can be used with gait time series by 
preserving their essential periodic features and effectively discerning the differences between 
chaotic fluctuations and random noise. However, such tests have yet to be performed. The 
purpose of this investigation was to determine which of the two surrogation algorithms can 
provide a more robust verification of the presence of chaos in gait time series. We hypothesized 
that the PPS algorithm would be the best algorithm due to the algorithm’s ability to preserve 
intracycle dynamics (dynamic patterns within one period of a cyclic pattern) while changing the 
intercycle dynamics (dynamic patterns between different periods across a cyclic pattern) of the 
time series.  
 
Methods 
 Six healthy subjects (mean age = 29 ±7.4 yr, mean mass = 67.73±6.25 kg, mean height = 
1.70±0.05 m) walked at their self-selected pace (mean-1.81±0.17 m/s) on a treadmill for 2 min 
(116.17±22.80 footfalls) while three-dimensional sagittal knee kinematics were captured (60 Hz) 
using Peak Motus optical capture system (Peak Performance, Centennial, CO). Subjects completed 
informed consent forms as required by the University’s Institutional Review Board. Surrogates of 
the respective knee angle time series from all subjects were generated based on both the PPS 
(Small et al., 2001) and Theiler algorithms (Theiler et al., 1992; Theiler and Rapp, 1996). 
Theiler’s algorithm reorganizes the phases of the complex conjugate pairs in the frequency 
domain such that surrogate contains linearly filtered independent and identically distributed 
noise. That means that the data are merely shuffled across the entire time series according to a 
random number generator with the same mean and variance of the original signal. 
 The PPS algorithm generates a surrogate that follows the same vector field as the 
original time series, but is contaminated with dynamic noise, which results in the data being 
shifted within each period of the cycle, but not between cycles. In this case, dynamic noise is 
a nonconstant source of variation, such that the signal varies randomly across the entire 
signal. The PPS algorithm requires that the user defines the embedding dimension, the time 
lag, and the noise radius for each data set (Table 1). The embedding dimension and time lag 
are parameters that identify the topology of the original data series (Stergiou et al., 2004b) 
and the noise radius (ρ) defines the amount of noise in a surrogate  
 

 
(Small et al., 2001). Noise radii that are too large will result in randomly shuffled data as in 
the traditional method, while noise radii that are too small will produce surrogates that are too 
similar to the original data (Small et al., 2001). The embedding dimension and time lag were 
calculated with the tools from Dynamics Software (Applied Chaos, LLC). Noise radius was 
chosen such that the fine intercycle dynamics were removed, but the intracycle dynamics were 



preserved. As suggested by Small et al. (2001), we selected a ρ that maximized the number of 
short segments (length X2) that are the same for the original time series and the surrogate. 
These segments represent the amount of correlation between the surrogate and original data 
sets (Small et al., 2001). 
 The largest Lyapunov exponent (LyE) of each surrogate (Theiler and PPS) and each 
respective original time series for each subject were calculated using the chaos data analyzer 
(Sprott and Rowlands, 1995). LyEs quantify the exponential separation of nearby trajectories in 
the reconstructed state space of the time series (Stergiou et al., 2004b). As nearby points of the 
state space separate, they diverge rapidly and can produce instability. LyEs from a stable 
system with little to no divergence will be zero (e.g. sine wave). Alternatively, LyEs for an 
unstable system that has a high amount of divergence will be positive and relatively high in 
value (e.g. 0.469 for random data). LyE for chaotic systems lie between the two extremes. For 
example, the Lorenz attractor has a value of 0.100. 
 Approximate entropy (ApEn) of the original time series and surrogated time series were 
calculated using Matlab software available on Physionet (Goldberger et al., 2000). ApEn values 
were calculated to determine the influence of the respective surrogation methods on the 
regularity of the time series. ApEn values typically range from 0 to 2. Values closer to 0 are 
consistent with greater periodicity or regularity (e.g. a sine wave). Conversely, values nearing 2 
represent greater irregularity (e.g. random data; Stergiou et al., 2004b). 
 The group means for the LyE and ApEn values were calculated for each surrogate 
method and for the original time series. Paired t-tests were used to compare the group means of 
each surrogate with the original time series. In addition, paired t-tests were used to compare the 
group means between the two surrogate methods. All statistical tests were conducted at a 0.05 
alpha level. 
 
Results and discussion 
 Significant differences were found for both LyE and ApEn values between the original and the 
surrogate time series for both algorithms (Table 2). These results indicated that fluctuations in the 
original time series had a deterministic structure that was significantly different from random noise. 
However, inspection of Figs. 1A and C shows that Theiler’s algorithm alters the original geometric 
structure of the time series (the intercycle dynamics). This suggests that the algorithm shuffles the data 
points across the entire time series without regard for the periodicity of the signal. It stands to reason 
that the surrogate would be statistically different from the original series. The PPS algorithm did not 
alter the overall periodicity of the time series (it protected the intracycle dynamics and only changed the 
intercycle dynamics), indicating that there actually was determinism in the data. Inspection of Figs. 1A 
and B indicates that the PPS algorithm maintains the essential geometric structure of the gait time 
series. In fact, the surrogate and the original gait time series appear virtually indistinguishable.  
 The qualitative evaluation is also supported by the significant differences found for both the LyE 
and the ApEn values between the two surrogate methods (Table 2). Regarding ApEn, the Theiler 
algorithm produced much higher values than the Small algorithm. Specifically, the ApEn values from the 
Theiler algorithm were very close to the highest possible ApEn value (i.e. two for random data). This 
clearly indicated high irregularity and randomness in the surrogated data. On the contrary, the ApEn 
values for the Small algorithm were 0.753 on an average. Even though they were significantly larger 
than those of the original time series, they were small enough to indicate high regularity in the 
surrogated data. Similar observations can be made with the LyE values where the Theiler algorithm 
produced much larger values than both the original and the Small surrogated data indicating high 
divergence and instability, a characteristic of random data. The LyE values from the Small-surrogated 
data were again close to the original due to the preserved intracycle dynamics. Importantly, they were 



significantly different from the original indicating determinism in the intercycle dynamics which should 
be the goal of a surrogation algorithm.  
 

 



 
 
 The above results support the notion that the PPS algorithm is more suitable for detecting the 
presence of subtle chaotic fluctuations that appear in gait. Since there is a cyclic nature to data related 
to human gait patterns, the detection of determinism using the Theiler algorithm might be a false 
positive, which would lead to inaccurate classification of the signal. Thus, the PPS algorithm should be 
adopted in future investigations to rigorously verify that fluctuations in gait patterns are in fact chaotic 
and not random noise superimposed on top of the time series. This information can be extremely useful 
in future studies where the association between the presence of chaos in human gait and health of the 
neuromuscular system is being explored for the development of prognostic and diagnostic 
biomechanical tools.  
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