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Robotic surgery training and performance 
 
Identifying objective variables for quantifying the extent of proficiency 
 

K. Narazaki,1 D. Oleynikov,2 N. Stergiou1 
 
1University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA 
2University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198-3280, 
USA 
 
Abstract 
Background: To understand the process of skill acquisition in robotic surgery and to allow 
useful real-time feedback to surgeons and trainees in future generations of robotic surgical 
systems, robotic surgical skills should be determined with objective variables. The aim of this 
study was to assess skill acquisition through a training protocol, and to identify variables for the 
quantification of proficiency. 
Methods: Seven novice users of the da Vinci Surgical System engaged in 4 weeks of training 
that involved practicing three bimanual tasks with the system. Seven variables were determined 
for assessing speed of performance, bimanual coordination, and muscular activation. These 
values were compared before and after training. 
Results:   Significant improvements were observed through training in five variables. Bimanual 
coordination showed differences between the surgical tasks used, whereas muscular activation 
patterns showed better muscle use through training.  The subjects also performed the surgical 
tasks considerably faster within the first two to three training sessions. 
Conclusions: The study objectively demonstrated that the novice users could learn to perform 
surgical tasks faster and with more consistency, better bimanual dexterity, and better muscular 
activity utilization. The variables examined showed great promise as objective indicators of 
proficiency and skill acquisition in robotic surgery. 
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Minimally invasive surgery is a revolutionary technique that has altered the course of technological 
advancements in nearly all surgical fields. Laparoscopic procedure, an effective form of minimally 
invasive surgery, has numerous benefits for patients including shorter recovery time, less pain, fewer 
adhesions, and better postoperative quality of life than traditional open procedures [6, 15, 22, 32]. 
However, the limitations of conventional manual laparoscopy seem to have held back the progress of 
minimally invasive surgery. These limitations include lack of depth perception, poor camera control, 
limited degrees of freedom for the instrument tips, and inverted hand–instrument movements [1, 12, 
14, 29]. These limitations, which lead to unnatural posture and range of motion, have been linked to 
undesirable fatigue experienced by surgeons [5, 28]. 
 The introduction of the da Vinci Surgical System (dVSS) (Intuitive Surgical, Inc., Sunnyvale, CA) in 
the latter half of the past decade has been met with enthusiasm by clinicians and researchers interested 
in minimally invasive surgery. In fact, more than 300 dVSS are in place in hospitals and other institutions 
worldwide [20]. The excitement about the dVSS stems from the systems ability to overcome the 
common limitations of manual laparoscopy by providing three-dimensional (3D) images, seven degrees 
of freedom at the instrument tip, restoration of hand–eye coordination, and a seated position for 
comfortable posture [2, 7, 9, 17, 19, 20].  



 The primary goals of research since the introduction of robotic laparoscopy have been to ensure 
the benefits of the system in terms of dexterity and performance, and to develop objective criteria and 
scoring systems for determining proficiency in robotic surgery. Many of the early studies involved 
comparing the performance of laparoscopic tasks between manual and robotic techniques. In one of the 
earliest studies, Garcia-Ruiz et al. [13] focused on the time required for task completion and the number 
of errors made between performing manual laparoscopy and using an early robotic proto type. Several 
subsequent studies have evaluated improvement of performance during robotic laparoscopy [8, 10, 13, 
27]. In most of these studies, the parameters measured again have been only the time required for task 
completion and the number of errors made. Furthermore, in other studies designed to measure 
acquisition of skill in performing robotic laparoscopic tasks using the dVSS, the subjects performance 
again was evaluated using only the time required for task completion, the number of errors, or both [10, 
27, 30]. 
 However, several investigators have asserted that the time required for task completion is not a 
sufficient quantitative parameter for measuring skill acquisition [3, 18, 26, 30, 31]. In fact, Smith et al. 
[31] conducted a study in which accuracy was measured by comparing kinematic data collected by a 
surgical assessment device with a calculated ideal trajectory. These authors found that the learning 
curve for task time is much more rapid than the learning curve for accuracy [31]. Furthermore, error 
reduction, one of the most important goals in training, has been addressed only subjectively using error 
counts from videotapes [10, 27, 30]. Although this type of subjective visual analysis can be useful in 
certain circumstances, such analysis tends to be very laborious and impractical when objective scoring 
systems are needed. 
 Recently, researchers have used a novel method for proper identification of skill proficiency 
during robotic surgery. They extracted real-time kinematics from the dVSS Application Programming 
Interface (API; Intuitive Surgical Inc.) [11, 18, 26, 34]. This allowed assessment of surgeons actual 
movements during a task, and permitted objective conclusions to be drawn about the quality of 
performance. Moorthy et al. [26] recently compared API data from the dVSS with data collected during 
manual laparoscopy using the Imperial College Surgical Assessment Device. Their specific variables of 
interest were the time and length of instrument movement during a task. Hernandez et al. [18] also 
used API to measure time, length of path, and number of movements, with each movement defined as a 
change in velocity [18]. 
 Our research group has previously used the kinematics from the API to examine proficiency [11, 
34]. However, despite these improvements, our findings still have been limited for two major reasons. 
First, assessment of bimanual coordination has been ignored, although surgical tasks usually require 
movements of both arms in a specific time-phasing relationship. Second, previous studies actually 
measured the movements of the surgeons indirectly by examining their reflections on the instrument 
tips. There are practically no data directly from the surgeons arm movements during robotic surgical 
procedures. Such data could provide a realistic profile of the surgeons arm movements while learning to 
use the dVSS. An example of such data would be the electromyography profiles of the involved muscles 
during performance.  
 Therefore, the aim of this study was to assess skill acquisition through a designed training 
protocol using not only commonly researched variables, but also bimanual coordination and 
electromyography. Our goal was to identify feasible variables for better quantifying the extent of 
proficiency and skill acquisition. 
 



 
 
Materials and methods  
Subjects  
 Seven first- and second-year medical students (6 men and 1 woman) at the University of 
Nebraska Medical Center (UNMC), novice users of the dVSS, were recruited to participate in this study. 
The age of the participants was 26.4 ± 3.1 years. All were right-handed. Informed consent, approved by 
the Institutional Review Board of the UNMC, was obtained from each subject before participation.  
 
Tasks  
The following three inanimate robotic surgical tasks were performed or practiced in this study:  
 
1. Bimanual carrying (BC), a ‘‘pick and place’’ task: picking up six 15 x 2-mm rubber pieces from a 30-mm 
metal cap with the right and left instruments, respectively, and carrying them to the opposite caps 
simultaneously (Fig. 1)  
 
2. Needle passing (NP), a ‘‘translational’’ task: passing a 26-mm surgical needle through six pairs of holes 
made on the surface of a latex tube (Figs. 2 and 3)  
 
3. Suture tying (ST), a ‘‘precision navigation’’ task: passing a 150 x 0.5-mm surgical suture through a pair 
of holes made on the surface of a latex tube and making three knots using intracorporeal knotting  
(Fig. 3).  
 
 All three tasks were designed to mimic real robotic surgical tasks, and to require consistent 
repetition of the same movements with bimanual coordination for quality performance. The 
participants were required to complete five BC, five NP, and three ST movements for each trial.  
 
Experimental protocol  
 All the participants were asked to engage in the experimental protocol during a 4-week period. 
This protocol included one pretraining test, six training sessions, and one posttraining test.  
 
Pretraining test  
 At the beginning of the test, the participants received a verbal explanation about the use of the 
dVSS and testing procedures from the investigators and familiarized themselves with the system, but 



not with the tasks, for 5 min. During this familiarization or ‘‘warming-up’’ period, the participant was 
allowed to ask questions and receive further verbal explanation and suggestions from the investigators. 
After the familiarization, the subject performed one trial for each of the three tasks while data were 
acquired. 

 
Training sessions  
 Within 3 days after the pretraining test, the participant started the training sessions. In each 
session, the subject practiced the three tasks, three or four times each, within a period of 45 min. During 
practice, the participant was allowed to ask questions and receive verbal explanation and suggestions 
from the investigators. At the end of the session, the participant performed a trial for each task while 
data were acquired.  
 
Posttraining test  
 After completion of the training period, and within 3 days after the sixth training session, the 
posttraining session was conducted in the same manner as the pretraining session.  
 
Measurements  



 For all trials of the pre- and posttraining tests and training sessions, we measured elapsed time 
and kinematic variables with respect to the position and angular movement of the surgical instruments. 
The variables were measured from the force transducers built into the system. They were extracted at a 
frequency of 11 Hz by the dVSS API. These data sets then were processed using MATLAB (version 6.5, 
The MathWorks Inc., MA, USA) to obtain linear kinematics with respect to the movement of the surgical 
instrument tips. Additionally, for all trials of the pre- and posttraining tests, the muscular activation of 
four muscles was monitored from the participants right arm and forearm. These muscles were the flexor 
carpi radialis (FCR), the extensor digitorum (ED), the biceps brachii (BB), and the triceps brachii (TB). We 
chose the FCR as a primary wrist flexor muscle, the ED as a primary wrist extensor muscle, the BB as a 
primary elbow flexor muscle, and the TB as a primary elbow extensor muscle, all of which are superficial 
and can be monitored by a surface electromyography (EMG) system. Although many other types of 
movements (e.g., flexion and extension of thumb and index and middle fingers, forearm pronation and 
supination) and thus many other muscles are involved, we assumed that the contribution of these four 
muscles in the three tasks was considerably high, and that consequently, measurement of the EMG 
activities performed by these muscles was important for the purpose of this study. Surface electrodes 
were placed over the bellies of these muscles, as described by Basmajian and Deluca [4]. The EMG data 
were collected using a DelSys surface EMG (DelSys, Inc, MA) and extracted at 1,000 Hz through the PEAK 
Motus (Version 7.0; Peak Performance Technologies, Englewood, CO, USA) data acquisition system. 
These data sets then were processed using MATLAB to obtain normalized EMG outputs. 
 
Dependent variables  
 To quantify the nature of the participants performance, dependent variables were calculated on 
the basis of temporal, kinematic and EMG analyses.  
 
Temporal analysis  
 For each trial, task completion time (T) was calculated. Moreover, respective time intervals for 
all the movements in each trial were identified from the dVSS API using the open/close parameters for 
the instruments forceps. The coefficient of variation between the intervals (CVI) also was calculated. 
 
Kinematic analysis  
 Total traveling distance (D) with respect to the robot surgical instrument tips was calculated for 
each trial from the linear kinematics. Moreover, to quantify the extent of bimanual dexterity, a 
coordination analysis was conducted. This type of analysis is commonly used in psychobiologic studies to 
evaluate bimanual coordination [16, 21, 23, 33]. Central to this approach is the advantageous evaluation 
of the direct relationship between velocity and position using phase portraits. The phase portrait is 
practically a plot of angular position versus velocity (Fig. 4) of the moving segment in question (i.e., the 
robots surgical tip). From the phase portrait, the phase angle can be identified (Fig. 4). The phase angle 
is calculated as φ = tan-1 (velocity/displacement). After the phase angle from the right segment is 
calculated (i.e., right robot surgical tip), the same procedure can be used to calculate the phase angle of 
the left segment. After this calculation, subtraction of the two phase angles leads to very interesting 
results. If the subtracted value is zero, it can be said that the two segments move in the same manner, 
or that they are in-phase (Fig. 5). If the value is 180, then it can be said that the two segments move in 
an opposite way, or that they are out-of-phase. Using these procedures in the current study, we were 
able to evaluate how the robots instrument tips were moving: in-phase or out-of-phase. 
 We applied these procedures in the current study as follows. First, a dominant direction of each 
task was identified, after which a phase portrait (Fig. 4) was generated for each trial and for both the 
right and left instrument tips using the data set of the normalized linear displacement and velocity. 
Second, phase angles for both tips (φright and φleft) were identified from the phase portraits, and relative 



phases (φRP = φright - φleft) were subsequently calculated [24, 25]. Finally, the mean absolute relative 
phase (MARP) was calculated from the relative phase curves using the following equation: 

 
where N is the total number of data points in the relative phase curve.  
 Practically, MARP is a tool that can quantify whether two robot surgical instrument tips move in 
a similar fashion. If the two tips move simultaneously in the same direction, the MARP value is toward 
0°, or in-phase. If they move in opposite directions, the MARP value is toward 180°, or out-of-phase (Fig. 
5).  
 Moreover, maximum velocities of the robot surgical instrument tips in the respective 
movements were identified for each trial, and the coefficient of variation between the velocities (CVV) 
was calculated.  
 
EMG analysis  
 To quantify the extent of muscular activation, the relative EMG outputs (i.e., percentage of raw 
EMG outputs relative to maximal EMG output) for each muscle in each trial were integrated for the 
entire task completion time, and the total volume of muscular activation (EMGV) was obtained. 
Moreover, the activation rate (EMGR) was calculated by dividing EMGV by T (Fig. 6).  
 
Statistical analysis  
 The mean values for the dependent variables of T, CVI, D, MARP, CVV, EMGV, and EMGR were 
compared between the pretraining (PRE) and posttraining (POST) testing sessions with dependent t-
tests (α = 0.05) using SPSS (version 12.0, SPSS Inc, IL, USA).  



 
Results  
 The means and standard deviations of all the dependent variables for both testing sessions are 
summarized in Tables 1 (temporal analysis), 2 (kinematicanalysis), and 3 (EMG analysis).  

 
 
Temporal analysis  
 The results showed a significantly shorter T for all the tasks in the POST condition (p ≤ 0.05) 
(Table 1). The relative differences in T between the PRE and POST testing sessions were 53.9% for the BC 
task, 63.8% for the NP task, and 67.4% for the ST task. The learning curves with respect to T for all these 
tasks showed that they achieved, respectively, 78.8%, 76.8%, and 74.6% of the time reductions by the 
end of the second training session (Figs. 7–9). There were no significant differences in CVI between the 
PRE and POST testing sessions (p > 0.05) (Table 1). However, considerably larger reductions in CVI were 
observed in the NP and ST tasks: 26.6% and 47%, respectively.  
 
Kinematic analysis  
 Significantly shorter D was observed for the NP and ST tasks in the POST testing session (p ≤ 
0.05) (Table 2). The relative differences in D were 33.4% for both the NP and ST tasks. The learning 
curves with respect to D for the NP and ST tasks showed that the participants recorded 89.1% of the 
distance reductions by the end of the third training session (NP) and 94.8% by the end of the second 
session (ST), respectively (Figs. 10 and 11).  
 The participants demonstrated significantly larger MARP for the BC task in the POST testing 
session (p ≤ 0.05) (Table 2). The learning curve with respect to MARP for the BC task showed that the 
subjects recorded a 30.0% change after the six training sessions (Fig. 12). Although no significant 
differences between conditions were found regarding MARP for the other two tasks (p > 0.05), a 
considerably larger increase was also observed for the NP task (31.8%). In contrast, MARP for the ST task 
decreased only 6.8% after the training sessions.  
 No significant differences were found for CVV between the PRE and POST testing sessions (p > 
0.05) (Table 2). However, considerably larger CVI reductions were observed for all three tasks. 



 

 
 
EMG analysis  
 As expected, significant reductions in EMGV were demonstrated for all the muscles observed in 
all three tasks except for the FCR muscle in the BC and ST tasks (p ≤ 0.05) (Table 3). The relative 
differences in EMGV between testing sessions ranged from 33.2% to 68.6%, indicating a significant 
decrease in muscular activity.  
 Significant increases in EMGR were observed for the FCR and TB muscles in all three tasks, and 
for the ED muscle in the ST task (p ≤ 0.05) (Table 3). The relative differences in EMGR for these muscles 
between conditions ranged from 30.3% to 84.5%. Although no significant difference was observed, the 
EMGR for the ED muscle in the BC task also showed an increase of 31.6% after training. 
 
Discussion  
 This study objectively demonstrated the change in robotic surgical performance for the novice 



users of the dVSS before and after their engagement in a designed training protocol. As in previous 
studies [11, 34], the novice users in this study demonstrated a significant reduction in task completion 
time (T) after the training sessions (p ≤ 0.05). Remarkably, their learning curves for the time score 
showed that they achieved drastic time reduction with only a few training sessions (Figs. 7–9). Similar 
results were obtained for the total traveling distance of the surgical instruments (D). Specifically, the 
subjects showed significantly shorter distance for two of the three experimental tasks through training 
(p ≤ 0.05). In addition, rapid improvement was observed in the first two or three training sessions (Figs. 
10 and 11).  
 These results clearly suggest that the novice users could rapidly learn to perform the simulated 
surgical tasks with less time and distance traveled (i.e., economy of motion). One possible reason for 
these results may involve the user-friendly interface of the robotic surgical system. The system was 
designed to overcome visual, mechanical, and postural difficulties experienced during conventional 
manual laparoscopy [20]. The instrumentation of the system with the designed training protocol may 
induce such training effects. This speculation is consistent with the results of the study conducted by 
Yohannes et al. [35]. Our results confirm that task completion time (T) and traveling distance (D) can be 
used to represent improvements in the extent of proficiency and/or skill acquisition. Another 
explanation for these results is that the robot system is designed specifically to mimic the same hand 
motions as those used during open surgery. 
 

 



 
 However, as previous studies have emphasized, these conventional variables are regarded as 
insufficient to explain fully the aspects of surgical performance [3, 18, 26, 30, 31]. That is, skilled 
performance with the robotic system may include other qualitative aspects, and these should be 
addressed in the performance of objective assessment. If someone is faster at completing a task, this 
does not mean that the person has improved dexterity. Surgeons using the dVSS not only should be 
faster in performing an operation, but also should be better able to coordinate the actions of both arms, 
more consistent and accurate, and consequently able to complete the operation with less muscular 
exertion. We explored these important aspects using further dependent variables including bimanual 
coordination, variability/consistency, and muscular activation patterns.  
 A possible limitation of the current study is that error reduction, one of the most important 
goals of training, was not measured. This measurement can be performed subjectively using error 
counts from videotapes [10, 27, 30]. Although this type of subjective visual analysis can be useful in 
certain circumstances, such analysis tends to be very laborious and impractical when objective scoring 
systems are needed.  
 Mean absolute relative phase (MARP) generally is used to quantify whether interacting 
segments (e.g., right and left surgical instrument tips) display an in-phase or out-of-phase relationship 
during movement [24, 25; Fig. 5]. As mentioned earlier, out-of-phase patterns are associated with 
higher MARP values, whereas in-phase patterns are associated with smaller MARP values (Fig. 5). 



 
The novice users in this study demonstrated significantly larger MARP in the BC task after training (p ≤ 
0.05). Additionally, although it was not significant (p = 0.068), a considerably large increase was 
observed in the NP task. Because the participants scored higher MARP values for these two tasks, it can 
be suggested that learning to perform these surgical tasks requires an out-of-phase coordinative 
relationship of bimanual dexterity. The reduced MARP in the ST task indicates that this task requires a 
completely different type of bimanual coordination. This demonstrates the sensitivity of our 
coordination analysis for distinguishing between different tasks. Thus, coordination analysis is important 
for distinguishing better between surgical tasks for quality training.  
 The coefficients of variation between intervals (CVI) and velocities (CVV) were considered to 
represent whether the task was performed with a variable or a consistent manner. Skilled performance 
should show a more consistent nature. Although no significant differences were observed in these 
variables (p > 0.05), considerably larger reductions in CVI and CVV were observed for all conditions 
except for CVI in the BC task. These results may suggest that through the training protocol, the 
participants learned to perform these surgical tasks in a more consistent manner. However, the lack of 
significant differences detected for these variables questions the previous findings regarding task 
completion time, and it is possible that the expected results found for T and D should be interpreted 
with caution and within the context of the study design.  



 Electromyographic analysis was performed to examine the extent to which the amount of 
muscular activation was increased or decreased during performance as a result of the designed training. 
Such analysis can allow more direct insights into the effects of training on the surgeons arm movements. 
Decreases or increases in muscular activity can allow us to quantify muscular involvement. The EMGV 
and EMGR indicate the amount and rate of muscular activation in each muscle, respectively. Our results 
collectively indicate significant reductions in EMGV attributable to training. However, because the 
equation for calculating EMGV includes T as a factor, these results may be considerably affected by the 
significant reductions in time scores mentioned previously. 
 Significant increases in EMGR were observed for the FCR and TB in all three tasks, and for the ED 
in the ST task. These results suggest that training affected the subjects muscular activation profiles as 
they learned to involve more the forearm muscles (i.e., flexor carpi radialis and extensor digitorum) and 
the arm extensor muscle (i.e., triceps brachii) in performing the surgical tasks. Although further 
assessment is required, we can speculate that this change may be closely related to dexterity 
enhancement of surgical performance attributable to training. Thus, EMG analysis that focuses on the 
muscles examined in the current study may be very useful in assessing the extent of proficiency and/or 
skill acquisition. However, further studies and additional frequency analysis of the EMG data acquired 
may be able to shed more light in this topic. Factoring out the effect of T in a way that can unmask the 
true improvement in muscular activation is important. 
 In conclusion, identification of appropriate variables that can quantitatively demonstrate the 
extent of proficiency and/or skill acquisition is important for the development of objective scoring 
criteria that lead to the establishment of rational educational formats. In the current study, several 
variables (i.e. coordination) were automatically collected through the real-time kinematics from the 
dVSS Application Programming Interface (API), which emphasizes the importance of incorporating 
robotic surgical systems into surgeon training programs. Moreover, such variables are needed to build 
algorithms for the new generation of improved surgical systems and/or training devices that may allow 
more effective training experience with real-time feedback of surgical performance. These variables 
should be composite and obtainable from direct data acquisition, without any subjective judgment.  
 In this study, we quantified change in robotic surgical performance using a training protocol 
designed with a variety of variables. These variables included bimanual coordination, 
variability/consistency, and muscular activation analyses directly from the arms of the participants. 
Although further validation is required, these variables showed great potential for representing the 
extent of proficiency and/or skill acquisition, and for use in achieving the aforementioned purposes. 
Future studies should evaluate expert surgeons with more realistic involved tasks (e.g., laparoscopic 
cholecystectomy) to gain further insight into the nature of proficiency in real robotic laparoscopy, and to 
identify more applicable variables for practical use. Comparisons between novice and expert surgeons 
using the variables demonstrated in this study also would provide further insight. Objective 
quantification of error profiles also needs to be addressed in the future investigations.  
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