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Abstract  

               The literature cites numerous studies involving the analysis of movement patterns in 

anterior cruciate ligament deficient (ACLD) patients. Although several in vivo biomechanical studies 

have shown that ACLD patients develop protective mechanisms against degenerative diseases, it 

seems that these adaptations fail to protect the knee from future pathology. Some authors state 

that ACLD patients adapt to the injury by avoiding quadriceps contraction during gait when the knee 

is near full extension. However, others have found increased hamstrings and decreased 

gastrocnemius activity, which normally contribute to the stability of the knee. It seems that further 

in vivo biomechanical investigation is required to understand the mechanisms of pathological knee 

joint motions and develop rehabilitation programs, which would delay the progress of developing 

long-term degenerative diseases. 

Keywords    Anterior cruciate ligament · Compensatory · Mechanisms 

 

Introduction  

 An estimated 80,000 human anterior cruciate ligament (ACL) tears occur annually in the 

United States [20]. Patients endure this type of knee injury from a wide variety of contact and 

noncontact activities. Ultimately the injured person must make a decision either to have the 

ligament surgically repaired or to rehabilitate the injured knee joint without repair to the ligament. 

In general, younger patients desiring to continue participating in high stress activities, for 
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example, competitive and recreational sports, choose the option of reconstructive ACL surgery. 

However, patients who tend not to participate in high impact activities can forgo the surgical 

procedure or are advised to use conventional physical therapy interventions to heal their injured 

knee [49]. 

 Numerically, Noyes et al. [40] estimated that approximately one-third of patients who 

sustain an ACL injury compensate enough to pursue recreational activities, another one-third 

make compensations but must discontinue many activities, and one-third experience instability 

with conservative treatment and option for surgical intervention. Daniel et al. [16] observed 

chondral lesions in 23% of the ACL-deficient (ACLD) patients, while the risk of secondary meniscal 

tears was 20% over a 5-year follow-up period. As a result patients who decide not to have surgical 

repair run the risk of having knee degenerative changes. However, even though ACLD patients are 

at a greater risk for obtaining these long-term problems, a substantial portion of this population 

makes the necessary functional adaptations to compensate for the loss of the ACL [40]. An 

understanding of the mechanisms of these adaptations that occur for ACLD patients during daily 

living activities (i.e., gait) is extremely valuable for the development of better prevention and 

therapeutic strategies. 

 These adaptations can be evaluated with the use of in vivo biomechanical studies. In such 

studies the kinematics, kinetics, and electromyography of the knee joint are analyzed. The term 

kinematics is used to describe the three rotational motions of the tibia with respect to the femur 

(flexion-extension, adduction-abduction, internal-external rotation) or the three translational 

motions of the tibia with respect to the femur without reference to the forces or moments that 

cause the movements. Kinetics is used to describe the joint forces and moments associated with 

motion. Electromyography is used to describe the electrical activity of the muscles (i.e., 

gastrocnemius) that surround the knee joint. The present review summarizes and critically 

discusses the available literature on in vivo biomechanical studies regarding adaptations that occur 

with ACLD patients. We also provide recommendations for future research work that can practically 

assist orthopedists to provide a better quality treatment. 

In vivo kinematics of the ACLD knee 

 The injury to the ACL disrupts the linkage system that connects the femur and the tibia 

resulting in abnormal anterior translation of the tibia during flexion and extension of the knee. 

Jonsson et al. [24] reported that the active extension of the ACLD knee is related to displacement 

of 1.9 mm more anteriorly than normal knees extending from 15° to 10° of flexion. Moreover, the 

absence of the ACL was not completely compensated for active knee extension past 30°. The 

movements tended to normalize as the knee was close to full extension probably due to 

increased joint surface contact forces, efficient muscle stabilization, and factors related to the 

anatomy of joint surfaces. However, these results on anterior-posterior tibial translation and 

knee stability are the outcome of static measures. Thus the question is whether (i.e., during gait) 

we have similar results dynamically. 

 Using video-based motion analysis we can address this problem. However, some other 

difficulties arise with this methodology. It is difficult to evaluate anterior-posterior tibial 

translation during gait with the use of reflective markers applied on the skin [4, 29, 30, 46]. The 

principal calculation difficulties are mainly attributed to the relative movement of the markers with 



respect to the underlying skin. It can be certainly supported that this source of error represents 

one of the most important unsolved problems in in vivo kinematic analysis, because such 

perturbations are difficult to be removed with low-pass filtering since their frequency content is 

close to that of the motion. According to Cappozzo et al. [12] the motion of the marker with 

respect to the underlying bone due to skin movement ranges from a few millimeters up to 40 mm. 

Attaching the reflective markers on intracortical pins can eliminate this source of error. Thus, using 

reflective markers attached on intracortical pins fixed on tibia and femur it has been observed that 

the linear drawer motion of the tibia in the intact knee amounts to 3.6 mm posteriorly during 

stance. During the swing phase –14.3 mm of posterior motion has been observed [30]. Similar 

techniques of data acquisition with markers attached on intracortical pins have been reported in 

the literature, which have been applied in the ACLD knee during various activities such as 

landing on the ACLD limb [47]. 

 Certainly the implantation of intracortical pins is a highly invasive procedure that may 

cause discomfort or pain to the patient and result in restriction of movements. In addition, we 

believe that the implantation of intracortical pins is a method that is limited by the sample size 

since an effective number of volunteers cannot be found. Lucchetti et al. [35] tried to approach 

the skin movement artifact ignoring the solution of pin fixation and developed a technique of 

skin movement artifact assessment and compensation in the estimation of knee-joint kinematics. 

The method assesses the skin movement error caused by joint movement on the surface marker 

cluster located on an adjacent body segment. Knowledge of the artifacts on an adjacent body 

segment permits for their compensation during estimation of the kinematics of the joint at the 

other end of the same body segment. The main disadvantage of this method is that requires the 

subject to perform an ad hoc movement that makes the calculation procedure more difficult. It 

seems that this technique is very accurate since the ranges of tibial rotation and translation are 

very close to the ranges derived from markers attached on intracortical pins. Further accuracy could 

probably be achieved as proposed by the authors if their procedure is extended to both segments 

adjacent to the target joint. 

 Alternatively Chèze et al. [13] developed a numerical solidification procedure to facilitate 

kinematic analyses based on video system data which allows an average reduction in kinematic 

errors of 20–25% when the maximum distance between markers is small (e.g., 15 cm). Similar 

research [27] has been conducted for the solution of the problem related to the effect of local 

tissue accelerometer vibration from surface measurements of vibration over the spine. 

 An additional solution to the problem of skin movement error has been proposed by 

Halvorsen et al. [21]. In most video-based motion analysis systems simulation of human gait 

requires linked rigid bodies as models of the whole extremities. The joints are represented 

either as hinge models or ball and socket models. Halvorsen et al. [21] introduced a different 

approach for estimating the axis of rotation and the center of rotation that can be considered a 

contribution in the field of motion analysis. Their method does not assume a rigid body motion but 

only that each marker rotates around the same fixed axis of rotation or center of rotation. In the 

knee joint where the skin movement artifacts are large the proposed method seems to be more 

accurate, since the method does not make the assumption on the rigidity of the body. However, 

to our knowledge no knee kinematic studies have been published in which the new method is 

applied. 



 On the other hand, the method of simulated gait has been applied in the ACLD knee to 

calculate the amount of tibial translation [34]. Simulated gait was accomplished via a two-

dimensional anatomical knee model while the effect of various levels of hamstring muscle 

activation on restraining anterior tibial translation in the sagittal plane was studied. The model 

included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, 

and five muscle units surrounding the knee. The results showed that the rupture of the ACL could 

result in increased anterior tibial translation by 11.8 mm. A simulated peak external flexion 

moment during the early stance phase resulted in tibial translation of 1.4 mm posteriorly in the 

normal knee, while in the ACLD knee the tibia translated anteriorly by 10.4 mm. It is also 

interesting that a simulated hamstring force at 56% of its maximal isometric strength restored 

near normal anterior-posterior translation in the ACLD knee. These findings suggest that hamstring 

strengthening rehabilitation programs could possibly protect the knee from increased anterior-

posterior tibial translation by increasing the amount of hamstrings contraction during gait. 

 In addition to the increased hamstring contraction, it was found [2] that there is another 

compensatory mechanism for avoiding increased anterior displacement of the tibia. This 

mechanism involves the quadriceps muscle group. Specifically, Andriacchi [2] reported that ACLD 

patients during level walking tend to avoid quadriceps contraction when the knee is near full 

extension. A quadriceps contraction when the knee is near peak extension causes strain on an 

uninjured ACL. Therefore in an ACLD patient a reduced quadriceps contraction would most likely 

reduce anterior displacement of the tibia relative to the femur. This could be considered as a 

compensation that protects the knee from excessive anterior drawer. 

 The exact mechanism by which avoidance of the quadriceps contraction reduces anterior tibial 

translation has been investigated by studying the effects of strain on the ACL cadaver knees with a 

transducer placed upon the ACL [7]. The strain on the ACL varied upon whether the knee flexion 

angle was changed passively or through the stimulation of quadriceps contraction. Simulated 

isometric quadriceps contraction significantly increased anterior-medial ACL strain above the 

normal resting level through the first 45° of knee flexion. The same quadriceps contractions 

produced lower strain on the ACL during 60° of flexion or greater. This reduction in strain was 

significant at 105° of flexion and at 120° of flexion. According to these findings, excessive anterior 

tibial translation during gait would be avoided if the patients were able either to avoid the 

quadriceps activation when the knee is near full extension or avoid the excessive activation of 

the quadriceps by walking with the knee more extended. 

 Although the above compensatory mechanisms have been proposed to occur with ACLD 

individuals, what also remains unclear is whether ACL reconstruction restores normal knee joint 

motion, or whether such compensations still occur. Several authors have investigated the effect of 

ACL reconstruction on restoring normal flexion extension kinematics, but contrary results are 

reported in the literature. During the 3–5 weeks after the ACL reconstruction the knee and hip 

joints are significantly more flexed particularly at heel contact and midstance [17, 18]. Nevertheless, 

5 weeks after the ACL reconstruction the flexion extension kinematics usually recover to 

prereconstruction values [17, 18]. However, it must be pointed out that initially there is an 

increased flexion at the hip, knee, and ankle (10° more flexion at all joints), particularly during 

stance. Probably during the early postinjury or postoperative period no gait adaptation has 

developed so the increased knee flexion angles found result in higher external flexion moments. It 



is possible that a stronger quadriceps contraction is necessary for the elimination of the increased 

external flexion moments, which in the ACLD knee may result in excessive anterior tibial 

translation. 

 This hypothesis seems correct since there is some evidence that in the long term ACLD 

patients may walk with increased knee extension angles. Wexler et al. [52] found that 7.5 years 

after injury ACLD patients walk with increased knee extension angles during the terminal stance. 

Walking with the knee in a more extended position results in lower demands that are placed on the 

quadriceps. Thus this finding can also be considered as an additional mechanism, which produces 

the quadriceps avoidance gait pattern in chronic ACLD knees as the nervous system adapts to the 

injury [9]. 

 Although chronic ACLD patients (7 years postinjury) can probably compensate for the loss 

of ACL, it seems that 2 years after the injury the increased hamstring activity remains the main 

compensatory mechanism. According to the findings of Beard et al. [8] who examined the gait 

and muscle activity of ACLD patients approximately 2 years after their injury, subjects walked 

with significantly greater terminal knee flexion angle. Additionally, the ACLD patients had during 

stance a prolonged period of average hamstrings activity for the injured limb relative to the normal 

(40.1% vs. 24.4% of the stance phase). Quadriceps activity duration was similar in the ACLD and 

control groups. Because of a significant correlation between the prolonged hamstrings activity 

and knee flexion angle in the ACLD patients they suggested that the ACLD patients walked with 

hamstrings facilitation rather than displaying a quadriceps avoidance gait (Fig. 1). 

 Patel et al. [43, 44], who studied how the avoidance of the quadriceps contraction is 

developed, found two distinct mechanisms. The first was that 72% of the patients with a 

quadriceps avoidance gait walked with a significantly reduced midstance knee flexion angle. The 

average knee flexion angle for this group during midstance was 7.4°, while the control group 

had an average of 19.5°. This adaptation allowed the patient to reduce the demand placed upon 

the quadriceps during the stance phase of gait. 

 



 Therefore the anterior pull on the tibia was reduced, and the knee was more stable. 

However, the second mechanism found in the remaining 28% of patients with quadriceps 

avoidance gait was an increased peak external hip flexion moment compared to all of the other 

subjects. The authors hypothesized that a forward trunk lean by these patients probably 

produced the increase in the hip flexion moments, thereby helping to decrease the strain placed 

upon the quadriceps during midstance. 

 However, less is known regarding the transverse and the frontal plane movements of the 

tibia with respect to the femur. This is probably due to the complexity and past technical limitations 

of a three dimensional analysis. Thus, although flexion extension knee kinematics have been 

extensively investigated during gait in ACLD and reconstructed patients, tibial adduction-

abduction and internal external rotation have not received similar attention. Most in vivo research 

studies performed are focused on tibial rotation during active or passive extensions [22, 23, 24, 

25, 26, 38, 45]. Karrholm et al. [26] recently showed that normal tibial rotation during active 

extension ranges from 9.9° of internal to 1.6° of external rotation. Lafortune et al. [30], who 

examined the tibiofemoral kinematics during gait, reported similar patterns but different 

magnitudes. Possible explanation to this difference in the ranges of rotation are the variable 

accuracies of the methods applied as well as the fact that the knee joint loading is different 

during gait and active extension. Moreover, normal knee kinematics are characterized by 

variability probably due to the variable degree of laxity of the ligaments along with the different 

knee joint anatomical configuration between the subjects. 

 Jonsson et al. [24] studied the knee kinematics of active extension in ACLD knees and 

found no significant difference in tibial rotation or adduction-abduction between injured and intact 

knees. It has been reported that when the tibia is displaced anteriorly, as during the pivot shift 

test, the internal rotary laxity increases [25, 39]. Because of a minimal anterior tibial displacement 

and probably of the rotational muscle stabilizing effect no abnormal tibial rotations were observed 

in this study. However, in 7 of the 13 ACLD patients the knees rotated more internally and in 5 the 

rotation was more external than on the unilateral side. 

 Except for knee testing during active extension ACLD knee kinematics has been evaluated 

during stress loading. Karrholm et al. [25] studied the three-dimensional movements of the knee in 

three conditions: passive knee flex- ion, anterior traction (150 N), and posterior traction (80 N). The 

injured knees had more internal medial rotation during 28–29° of knee flexion. During anterior 

traction the injured knee had more than 1.4° of flexion, less than 4.2° internal medial rotation, and 

less than 2.3° of adduction. The injured knees had 1.8° of external lateral rotation while the 

normal knees displayed 1.4° of internal medial rotation when a posterior traction was applied to 

the sub- jects’ knees. Similar results have been reported by Czerniecki et al. [15], who studied 

tibiofemoral rotation during walking and running. Through the use of a triaxial electrogoniometer 

the researchers found that absolute stance phase rotation significantly increased when 

ambulations speed increased. However, there were no significant differences in absolute stance 

phase rotation between the subject groups at any condition. They concluded that ACL injury most 

likely has no effect on tibiofemoral rotation during forward locomotion and that the extent of tibial 

rotation is correlated significantly with the strength of the quadriceps and hamstrings. 



 More recent studies [6, 42] have shown that ACLD subjects tend to walk with the tibia 

more internally rotated than healthy and reconstructed patients. It is possible that an increased 

internal tibial rotation can produce higher strains in the secondary structures such as the menisci 

resulting in degenerative diseases in the long term. In these studies [6, 42] the patients were 

evaluated during the low stress activity of walking, while further work must be carried out in vivo 

during more stressful activities such as pivoting or stair climbing with or without bracing. 

 Ramsey et al. [47] have investigated the protective role of bracing during moderate to 

intense stress activity in a three-dimensional kinematic study, in which intracortical pin implanted 

markers were utilized to increase the accuracy of the kinematic measurements. Patients with ACLD 

knees jumped for maximal horizontal distance and landed onto their deficient limb to sufficiently 

stress the knee. Although only four patients were tested, no significant reductions in anterior 

tibial displacement were noted, and the intrasubject differences between unbraced and braced 

conditions were small. However, increased intersubject variability was found in amplitudes and 

positional changes at touchdown for the tibiofemoral kinematics. 

 Further investigation is required to validate the results of Ramsey et al. [47] since the 

functional braces are designed with the objective to protect the knee joint from pathological 

tibiofemoral kinematics and extensive linear tibial displacements. In addition, contrary conclusions 

are reported by Beynnon et al. [10] who observed that bracing not only significantly reduced ACL 

strain values for anterior directed loads applied to the tibia but also reduced strain values in 

response to internal-external torque applied about the long axis of the tibia. Since internal torque 

of the tibia is considered an ACL injury mechanism the role of braces is recognized to be 

protective, although it is diminished as the magnitude of applied anterior load and internal-external 

rotary torque is increased [47]. 

 In conclusion, the recent technological advances and the above results show that in the 

future researchers should perform knee functional testing in all planes. Movements in the sagittal 

plane have been extensively investigated. Compensatory mechanisms reported in the literature 

which may contribute to the avoidance of excessive knee instability are (a) increased hamstrings 

activity, (b) quadriceps avoidance gait pattern, and (c) forward trunk lean. However, it remains 

unclear which movements in the transverse and frontal planes can be considered as 

compensatory or play a role in the development of knee joint degenerative diseases. In addition, 

longitudinal studies are needed to evaluate the effect of the gait analysis findings on long-term 

knee pathology (i.e., osteoarthitis, chondral and meniscus pathology). Investigation is also required 

on the role of bracing in protecting the knee during stressful activities of daily living such as 

sidestep cutting maneuvers. In vivo investigation [37] on the mechanisms of ACL injury in ACL 

intact individuals during the sidestep cutting maneuvers revealed that sidestepping induces 

significantly greater maximum knee joint rotations than running. Although these movements cannot 

alone elicit spontaneous noncontact ACL injury, the high intrasubject variability in cutting maneuvers 

as a result of an abnormal and potentially dangerous sidestep can lead the individual to display 

“atypical” knee joint biomechanics, which increase the risk of ACL injury.  

 

 



Kinetics of the ACLD Knee 

 Kinetic data offer the researcher and clinician information regarding cause. Thus we can 

understand the nature of the kinematic differences or the effect. For example, joint moments are 

important for determining the muscle groups (i.e., flexors) responsible for possible kinematic 

changes and the type of the muscular contractions that occur as a result of pathology. Therefore it 

is not surprising that most gait studies conducted with ACLD individuals have incorporated a kinetic 

evaluation. 

 One of the most accepted gait adaptations in ACLD individuals that was first described 

kinetically is the so-called “quadriceps avoidance gait pattern” [9] mentioned above. According to 

Berchuck et al. [9], ACLD patients produced a significantly lower knee flexion moment during 

midstance. The value of this moment was 140% smaller than the corresponding one generated by 

healthy control subjects. The diminished knee flexion moment was explained as a reduction by 

the ACLD patients of the quadriceps contraction. The reduced quadriceps contraction can be 

related to the anterior directed force of the patellar ligament when the knee is near full extension. 

When the knee is flexed above 60° the direction of the force vector reverses and the quadriceps 

contraction contributes to the reduction in anterior tibial translation [7]. 

 The research study group from the University of Vermont (Burlington, Vt., USA) has 

conducted extensive investigation regarding the ACL strain in vivo during various degrees of knee 

flexion [10]. Ligament strain values were measured with the differential variable reluctance 

transducer (5 mm long), which was arthroscopically attached to the intact ACL of patient volunteers. 

Their contribution is significant in understudying compensatory mechanisms of the ACLD knee since 

they highlighted the role of quadriceps and hamstring muscles in the kinetics of the knee in vivo. 

They recorded the ACL strains during isometric contraction of (a) quadriceps (b) hamstrings, and 

(c) simultaneous contraction of quadriceps and hamstrings at 15°, 30°, 60°, and 90° of knee flexion 

during active flexion-extension of the knee and squatting. According to their findings isometric 

contraction of the quadriceps produces significant increase in ACL strain at 15° and 30° of knee 

flexion, and no change at 60° and 90°. Furthermore, it seems that the increased quadriceps 

contraction increases the anterior tibial translation irrespective of the type of contraction 

(concentric vs. eccentric) [28]. In contrast, isometric contraction of the hamstrings is not related 

with significant change in ACL strain at all flexion angles and when combined with isometric 

contraction of the quadriceps produces significant ACL strain only at 15° of knee flexion. However, 

it cannot easily be concluded that the coactivation of quadriceps and hamstrings is a protective 

mechanism since Kvist et al. [28] reported that although an ACLD knee can limit the anterior tibial 

translation during concentric muscle contraction, the limitation depends on other mechanisms 

than hamstrings coactivation. Furthermore, the mean translation of the tibia with respect to the 

femur was 38% larger in the ACLD knees during eccentric contraction of the quadriceps. 

 In light of the above findings [7, 10] during the first 45° of knee flexion the anterior 

directed force applied on the tibia would probably produce increased anterior translation of the 

tibia with respect to the femur. During gait it seems that ACLD patients avoid excessive anterior 

tibial translation by reducing the quadriceps activation and the subsequent anterior directed 

force applied on the tibia since this aberrant motion may cause damage to the menisci and 

articular cartilage. Such damage may contribute to the early development of degenerative 



changes at the knee [36, 40]. The incidence of this gait pattern ranges from 50% to 75% 

among ACLD patients [41]. There have been more studies that found results similar to Berchuck et 

al. [9] and support the theory of quadriceps avoidance gait [5, 49, 52]. Further, Wexler et al. [52] 

observed that with increasing time after the injury, changes in the sagittal plane knee moments 

are more pronounced probably because of neurological adaptations. 

 Indeed, it is more likely that gait adaptations are the result of reprogramming of the 

locomotor process such that the adaptations occur before excessive anterior displacement results 

[5]. The study of Wexler et al. [52] performed on 30 patients with ACLD knees demonstrated that 

the adaptations start to develop early and are more pronounced in the long term. All of the above 

findings could probably contribute to the establishment of such rehabilitation exercises that produce 

low or untrained ACL values. Currently it is clear that exercises dominated by the hamstrings muscle 

group are appropriate although the safe limits of ACL graft strain during healing are not defined. 

However, it can be concluded that excessive quadriceps activation can lead to damaging effects if 

used during the early rehabilitation period or performed at knee flexion angles less than 60°. On 

the other hand, it should be highlighted that is currently unknown whether the avoidance of 

quadriceps contraction during various activities can result in lower incidence of knee 

degenerative changes in the long term. 

 Some experiments have refuted that the compensatory mechanisms described as 

quadriceps avoidance gait occur in ACLD subjects during gait. No differences were demonstrated in 

the internal knee extension moment during mid- stance between the injured and healthy 

contralateral knee, while quadriceps electromyographic (EMG) activity was noted throughout most 

of the stance phase for the ACLD patients [48]. Furthermore, it has been reported that the 

observed increase in the internal knee flexion moment in the ACLD patients might be related to the 

increase in hamstrings activity rather than a decrease in quadriceps activity [8]. 

 In conclusion, it is true that there is no agreement among researchers on what kinetic 

adaptations actually occur in ACLD patients. However, the most accepted functional adaptation 

described to date is the so-called “quadriceps avoidance gait pattern.” Current data indicate that 

this gait pattern still exists at 6 month after ACL reconstruction [18], but it seems that 9–12 

months after the reconstruction it is no longer present [50]. However, during more demanding 

activities such as jog-and-cut maneuvers functional adaptations are still present in ACL 

reconstructed patients with no significant quadriceps and hamstrings strength deficit and minor 

meniscal loss or osteoarthritic deterioration [11]. It seems that the decreased ability of the 

patients to generate a normal peak external flexion moment is related to their microinstability 

or decreased proprioception [11]. Irrespective of the mechanisms of functional adaptations, all 

researchers agree that ACLD patients develop neurological adaptations, which tend to decrease 

the excessive anterior tibial translation. 

 In the future, researchers should address whether graft placement, angle at which 

tensioning of the graft is performed, and type of graft have any effect on the above 

mechanisms. These data will support the scientific sports medicine community with evidence 

regarding the suitable ACL reconstruction protocol that must be followed. Our review supports the 

proposition of Andersen and Amis [1] who concluded after reviewing studies on the tension in the 



natural and reconstructed ACL that although extensive investigation has been conducted in vitro 

little work has been carried out in vivo. 

 

Dynamic EMG anaylsis and ACL deficiency  

 EMG has been an important tool for examining the activity of specific knee muscles during 

gait. Various research groups have used this experimental technique to understand the 

functional adaptations that occur with ACLD patients and complement the above kinematic and 

kinetic evaluations. In general the literature has identified the altered muscle activation patterns 

that occur in ACLD patients. 

 Particularly it has been reported that there is an earlier onset of EMG on the lateral 

hamstrings and medial gastrocnemius muscles in the ACLD patients throughout the gait cycle and 

that these bursts tended to be longer when compared to healthy controls [31, 33]. In addition, 

ACLD patients have less activity in the gastrocnemius and quadriceps musculature, while they 

experience greater activity in the hamstrings during the swing to stance phase transition period 

[31, 33]. The vastus lateralis appears to be more active in ACLD patients during early swing, 

while the hamstrings were more active during the mid-stance and terminal stance phases of 

the gait cycle [31, 33]. These findings collectively indicated that the knee flexors tend to be active 

for a longer duration in the gait cycle for ACLD subjects. It is a common agreement among 

researchers that there is a synergist effect of the hamstrings to the ACL in preventing excessive 

anterior tibial translation [19, 49]. In addition it seems that the decreased gastrocnemius activity 

protects the knee from excessive anterior tibial translation since gastrocnemius activation during 

the 45° of knee flexion produces strain on the ACL [19]. Although, the quadriceps and hamstrings 

may be the main contributors of knee joint stability it can be theoretically supported that the 

decreased gastrocnemius activity is an additional compensatory mechanism. 

 However, what is not well understood is if the ACLD patients compensate enough during 

stressful activities. Although ACLD knees may present all of the above mechanisms of protection, it 

seems that after the influence of mild fatigue patients do not compensate with increased 

hamstring EMG activity. Van Lent et al. [32] performed EMG analysis of the vastus lateralis, vastus 

medialis, biceps femoris, and medial hamstrings while ambulating on a treadmill at 1.2 and 2.8 m/s 

after the employment of a 10-min duration mild fatigue protocol. The results showed that the 

mean EMG of the biceps femoris and medial hamstrings was significantly lower in the injured 

knee of the ACLD patients. There were no significant changes in EMG activity for the control 

group. Thus, while during walking the hamstrings group contributes to the stability of the knee 

joint, fatigue results in decreased hamstrings activity that can be associated with lower 

antagonistic effect on the mechanisms of excessive anterior tibial translation and higher incidence 

of knee instability. However, more studies need to be conducted to evaluate movement behavioral 

changes in ACLD individuals under stressful activities. 

 It would be useful to know whether the normal muscle activity can be restored either with 

rehabilitation alone or combined with ACL reconstruction. Ciccicoti et al. [14] studied the effect 

of rehabilitation on the EMG profiles and found that rehabilitation alone does not result in 



restoration of normal EMG profiles. For this reason the authors reported that reconstruction is 

recommended for young and active patients. 

 Interesting observations were also made via intra-articular knee effusion that can affect the 

development of compensatory mechanisms of muscle activity. Torry et al. [51] have found that the 

knee effusion produced by injecting a saline solution into the knee joint results in decreased 

quadriceps activity and increased hamstrings activity. The results of this experiment suggest that 

knee joint capsular, distention, via knee joint effusion, are responsible for gait adaptations reported 

for knee injured individuals in previous investigations. Knee joint effusion and the subsequent 

capsular distention could be considered a causative factor promoting the acquisition on 

quadriceps avoidance gait patterns. 

 In conclusion, it seems that EMG studies focused on the adaptive mechanisms developed by 

the ACLD patients have shown that the hamstrings can provide a dynamic substitute for the ACL 

in avoiding excessive anterior tibial translation. Furthermore, the decreased activity on 

gastrocnemius muscle can be considered as a further protective mechanism against excessive 

anterior tibial translation since the gastrocnemius contracture during the first 45° of knee flexion 

produces significant strain on the ACL [19]. The findings of EMG studies have significant implications 

regarding the surgical interventions performed on the ACLD patients. For example, it has not been 

clear by in vivo studies that the use of hamstrings as a graft for ACL reconstruction does not 

impair the stabilizing role of the muscle. 

 

Summary  

 In summary, several studies have determined that ACLD patients adapt to the lack of the 

ACL over a prolonged period of time. Some researchers suggest that ACLD patients walk using an 

altered gait pattern called as quadriceps avoidance pattern. Others deny that this phenomenon 

exists and maintain that ACLD subjects adapt their gait by other means such as increased 

hamstrings or decreased gastrocnemius activity. In spite of this disagreement over mechanisms by 

which these adaptations occur, it is likely that these adaptations happen as a result of repetitive 

experiences following the loss of the ACL [3]. Future studies should assess the neural 

mechanisms by which the adaptations developed, evaluate ACLD for possible adaptations in the 

transverse and frontal plane motions and identify rehabilitation programs that contribute to the 

accelerated development of protective mechanisms. Longitudinal studies are also needed to 

investigate possible correlation between the functional gait adaptations and the incidence of 

knee osteoarthritis as well as chondral and meniscus pathology. 
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