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44 Abstract 
 

45 Disturbances in balance are one of the first reported symptoms of Multiple Sclerosis 
 

46 (MS), yet limited research has been performed to classify the postural control deficits in this 
 

47 population. This study investigated the variability present in the sway patterns during quiet 
 

48 standing in patients with MS (PwMS) and healthy controls. Subjects were assessed (eyes open, 
 

49 closed) standing on a force platform. Variability of the sway patterns was quantified using a 
 

50 measure of amount of variability (root mean square; RMS) and two measures of temporal 
 

51 structure of variability (Lyapunov Exponent – LyE; Approximate Entropy – ApEn). RMS 
 

52 results revealed significantly higher amount of variability in the sway patterns of PwMS. PwMS 
 

53 also exhibit increased regularity (decreased ApEn) and decreased divergence (decreased LyE) 
 

54 during standing compared to healthy controls. Removing vision resulted in significantly 
 

55 decreased divergence (decreased LyE) in the MS subject group. These changes in the temporal 
 

56 structure correspond well with the theoretical model of the optimal movement variability 
 

57 hypothesis and the results support using variability measures to understand the mechanisms that 
 

58 underline postural control in PwMS and possibly other neurodegenerative disease pathologies. 

 
59 

 
60 

 
61 



5  

62 Introduction 
 

63 Multiple Sclerosis (MS) is the most common disabling neurological disease among 
 

64 young adults, with the majority of patients diagnosed between 20 and 50 years of age [10]. The 
 

65 disease specific mechanisms which contribute to impaired balance and postural control likely 
 

66 stem from inflammation of the CNS which results in damage to axons leading to delays in 
 

67 conduction [13] and can block the conduction of potentials along pathways throughout the CNS 
 

68 [1]. Additionally, delayed somatosensory evoked potentials are related to postural response 
 

69 delays in persons with MS (PwMS) [4]. These delays would affect postural control under any 
 

70 circumstance where somatosensory information is being utilized [15], including quiet standing. 
 

71 To quantify balance deficits in PwMS, sway patterns have been investigated during 
 

72 several tasks including quiet standing [7, 34], reaching [17, 34], and under perturbation 
 

73 conditions [4]. All of these studies relay information regarding only the amount of sway 
 

74 occurring during the task. Here, we propose to enhance the existing understanding about balance 
 

75 in PwMS by investigating sway variability to discern characteristics about the motor control 
 

76 strategies used to maintain standing balance. If posture is viewed as the dynamic stability of a 
 

77 continuously moving body, then the temporal structure of the sway path can provide information 
 

78 regarding the behavior of the moving body over time. Linear methods of examining variability 
 

79 within a time series provide information on the amount or magnitude of variability within the 
 

80 signal by employing averaging procedures which assume that variations between repetitions of a 
 

81 task are independent of future and past repetitions which has been proven to be false in posture 
 

82 tasks [11]. Assessed through nonlinear measures, variability reflects multiple options for 
 

83 movement, providing for adaptive strategies that are not reliant on rigid programs for each task 
 

84 or for each changing condition encountered [11, 12]. The optimal movement variability 
 

85 hypothesis contends that a healthy system exhibits an optimal state of movement variability 
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86 characterized by maximum effective adaptability of the system to environmental stimuli and 
 

87 stresses. To acquire such insights, variability in postural control has been investigated previously 
 

88 in children and in Parkinson’s disease patients [14, 21] and briefly in PwMS to measure the 
 

89 effects of a rehabilitation intervention which showed that postural sway variability changed 
 

90 (RMS increased, LyE decreased) as a result of resistance training exercise [16]. 
 

91 The purpose of this research was to investigate upright postural control in PwMS during 
 

92 quiet standing with eyes open and closed. It is hypothesized that 1) PwMS will demonstrate 
 

93 increased amount of variability due to delayed feedback from the sensory systems and due to the 
 

94 previously identified exaggerated sway during perturbations [4]; 2) PwMS will demonstrate 
 

95 more repetitive patterns in the temporal structure of variability as compared to healthy controls 
 

96 since PwMS have already shown less velocity scaling and more amplitude scaling in response to 
 

97 a translating surface perturbation due to longer latency postural responses [4]; 3) that within 
 

98 PwMS, differences in both the amount and temporal structure of sway variability will be found 
 

99 in the eyes closed compared to the eyes open condition since postural control in PwMS has 
 

100 

 
101 

 
102 

 
103 

previously been shown to change with altered sensory input [5]. 
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104 Methods 
 

105 Participants 
 

106 PwMS (n = 15, age 45.1±10.5), recruited through the University’s Medical Center, and 
 

107 healthy controls (n = 15, age 39.4±11.7), recruited through the community, provided informed 
 

108 consent. PwMS and healthy controls were age, height, and weight matched (Table 1). EDSS 
 

109 score, the standard clinical disability scale for PwMS [18], was mean 4.5 ± 1.8 , median 5.2.The 
 

110 research protocol was approved by the University’s Institutional Review Board. 
 

111 INSERT TABLE 1 ABOUT HERE 
 

112 Quiet standing protocol 
 

113 Subjects stood quietly for five minutes with eyes open approximately 10 meters from a 
 

114 wall, while COP data was collected. Feet were placed at approximately hip width apart, toes 
 

115 facing forward.  After a mandatory rest period of at least three minutes, subjects again stood 
 

116 quietly for five minutes with eyes closed. Kinetic data was collected using a force platform 
 

117 (Kistler Model: 9281-B11; Amherst, NY; 10 Hz) [16]. Unfiltered data was cropped to 2000 data 
 

118 points (approximately 3 ½ minutes) as some PwMS were unable to complete the full 5 minutes 
 

119 of quiet standing due to reports of discomfort and tiredness. Data was collected and analyzed 
 

120 unfiltered so as not to mask or remove any dynamical properties or variability present within the 
 

121 system [11]. 
 

122 Data analysis 
 

123 The coordinates of the center of pressure (COP) in the medial-lateral (ML) and antero- 
 

124 posterior (AP) directions were calculated for each trial. Amount of sway variability was 
 

125 quantified using the root mean square (RMS), and was calculated from the COP time series for 
 

126 both directions using customized MatLab software (The Mathworks Inc., Natick, MA) [26]. 
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127 Temporal structure of sway variability was also quantified from both directions using Lyapunov 
 

128 Exponent (LyE) and Approximate entropy (ApEn). Examining the temporal structure of the time 
 

129 series of the COP can provide information regarding the behavior of the moving body over time 
 

130 since even during quiet stance, the center of mass of a person is continuously moving. The 
 

131 largest LyE is a measure of the rate at which nearby trajectories in state space diverge and the 
 

132 system’s sensitivity to initial conditions thereby [32]. Lack of divergence in the sway patterns 
 

133 will produce small values for the LyE and vice versa. 
 

134 The LyE was calculated using the Chaos Data Analyzer Professional software [31] with 
 

135 an embedding dimension of 6 which was calculated using a Global False Nearest Neighbor 
 

136 analysis [32]. ApEn quantifies how predictable and regular are data patterns within a time series, 
 

137 thus evaluating the complexity of a time series [24, 25]. ApEn was calculated using customized 
 

138 MatLab software based upon the methodology of Pincus [24, 25] (lag = 6, m = 2, r = 0.2 were 
 

139 used as default parameters). 
 

140 Group means for RMS, LyE, and ApEn were calculated for healthy controls and PwMS 
 

141 during the eyes open and eyes closed conditions. Because LyE and ApEn were computed 
 

142 separately for ML and AP [29], two separate 2x2 repeated measures ANOVA models were 
 

143 employed to test for effects of GROUP (MS v. Control) and CONDITION (eyes open v. closed). 
 

144 To compare the current dataset with previously published findings on COP sway in PwMS, 95% 
 

145 sway area, mean velocity, and range were calculated for the resultant COP time series for each 
 

146 group while standing with eyes open and compared using independent t-tests.  Independent and 
 

147 dependent t-tests were used for post hoc analysis when significant group by condition 
 

148 interactions were identified. Statistical analysis was performed using SPSS 20.0 (SPSS, Inc., 
 

149 Chicago, IL) with level of significance set at 0.05. 
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150 Results 
 

151 Linear Measures 
 

152 PwMS had significantly greater sway area (p = 0.002) and greater median sway velocity 
 

153 (p = 0.004) compared to healthy controls during eyes open quiet standing. Sway range increased 
 

154 in PwMS as compared to controls; however this increase was not statistically significant (p = 
 

155 0.070) (Table 1). 
 

156 In the ML direction, the RMS demonstrated a significant main effect for GROUP (F1,29: 
 

157 5.91, p = 0.022) where PwMS had larger RMS values. There was also a significant main effect 
 

158 for CONDITION (F1,29: 64.16, p < 0.001) where eyes closed resulted in larger RMS values. No 
 

159 significant interaction (F1,29: 0.082, p = 0.777) was found (Figure 1A). 
 

160 In the AP direction, RMS demonstrated a significant main effect for GROUP (F1,29: 8.04, 
 

161 p =0.009) where PwMS had larger RMS values. There was also a significant main effect for 
 

162 CONDITION (F1,29: 131.94, p < 0.001) where eyes closed resulted in larger RMS values. No 
 

163 significant interaction (F1,29: 0.412, p = 0.526) was found (Figure 1B). 
 

164 INSERT FIGURE 1 HERE 
 

165 Nonlinear measures 
 

166 For LyE in the ML direction, a significant main effect for GROUP was found (F1,29: 
 

167 14.98, p = 0.001) where PwMS had lower LyE values compared to healthy controls. No 
 

168 significant main effect was found for CONDITION (F1,29: 3.57, p = 0.070). A significant 
 

169 interaction was found for GROUP x CONDITION (F1,29: 6.52, p = 0.017). Post-hoc tests 
 

170 revealed that within the MS patient group, the LyE was significantly decreased (t: 2.50, p = 
 

171 0.026) in the eyes closed condition compared to eyes open. Within the healthy control group, 
 

172 there was no difference (t: -0.66, p = 0.516) in the LyE values due to CONDITION. PwMS had 



1
0 

 

173 significantly lower LyE values compared to controls during the eyes closed condition (t: 4.59, p 
 

174 < 0.001) but not during the eyes open condition (t:-1.57, p = 0.128) (Figure 2A). 
 

175 In the AP direction, LyE analysis revealed a significant main effect for GROUP (F1,29: 
 

176 10.13, p = 0.004) where PwMS had significantly lower LyE values. No significant main effect 
 

177 was found for CONDITION (F1,29: 0.014, p = 0.906). A significant interaction was found for 
 

178 GROUP x CONDITION (F1,29: 7.74, p = 0.010). Post-hoc tests revealed that within the MS 
 

179 patient group, the LyE was significantly decreased (t: 2.167, p = 0.049) in the eyes closed 
 

180 condition compared to eyes open. Within the healthy control group there was no difference (t: 
 

181 1.81, p = 0.092) in LyE values due to CONDITION. PwMS had significantly lower LyE values 
 

182 compared to controls during the eyes closed condition (t: 3.67, p = 0.001) but not during the eyes 
 

183 open condition (t: 0.846, p = 0.405) (Figure 2B). 
 

184 INSERT FIGURE 2 HERE 
 

185 The ApEn in the ML direction revealed a significant main effect for GROUP (F1,29: 
 

186 8.284, p = 0.008) where PwMS had significantly lower ApEn values. There was no significant 
 

187 main effect for CONDITION (F1,29: 0.821, p = 0.373) and no interaction (F1,29: 0.614, p = 0.440) 
 

188 (Figure 3A). 
 

189 ApEn in the AP direction there was no significant main effect for GROUP (F1,29: 0.591, p 
 

190 = 0.449) or for CONDITION (F1,29: 0.837, p = 0.368). No significant interaction (F1,29: 0.723, p 
 

191 = 0.111) was found (Figure 3B). 
 

192 
 

193 

INSERT FIGURE 3 HERE 
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194 Discussion 
 

195 Our results indicate that PwMS have altered COP sway variability during quiet stance in 
 

196 both the ML (RMS, LyE, ApEn) and AP (RMS, LyE, ApEn) directions. Results also indicate 
 

197 that removing vision causes changes in COP sway variability with PwMS in the ML (RMS, LyE) 
 

198 and AP (RMS, LyE) directions. Increased sway area and sway velocity in PwMS indicate that 
 

199 the current dataset is in agreement with previously published data [2, 5, 34]. These findings 
 

200 support our first hypothesis and agree with previous studies which reported that people with MS 
 

201 have increased amount of sway variability while standing quietly [7, 30, 34]. The increased RMS 
 

202 observed in the PwMS is possibly the result of slowed somatosensory feedback [4]. 
 

203 Somatosensory information has been suggested as the most critical sensory mechanism for 
 

204 control of posture and the increase in RMS may reflect a deficiency in the somatosensory 
 

205 feedback loop [28]. Adequate postural control occurs as a function of somatosensory information 
 

206 being integrated with vestibular information necessary for an adequate motor response to 
 

207 maintain control of stance [8]. In MS, it is possible that the integration of vestibular and 
 

208 somatosensory information is disrupted and leads to the increased amount of sway variability. 
 

209 The increased RMS could also be attributed to the effects of spasticity since up to 80% of PwMS 
 

210 report problems with spasticity, the velocity-dependent increase in tonic stretch reflexes and 
 

211 exaggerated tendon jerks resulting from hyper-excitability of the stretch reflex[20, 27]. While the 
 

212 present study did not measure spasticity, it has been reported that PwMS who have high 
 

213 spasticity, as measured soleus Hoffman reflex, exhibit increased COP sway area [30]. Thus, it is 
 

214 also possible that a combination of deficits in sensory information processing and motor 
 

215 impairment such as spasticity contribute to increased COP sway RMS. Fatigue is also a heavily 
 

216 reported symptom in PwMS [9] and because some of the subjects in the present study could not 
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217 stand for the entire 5-minute trial length, it is likely that they were affected by fatigue. Chung et 
 

218 al [7] reported that in PwMS, reported fatigue was moderately correlated with COP variability in 
 

219 the ML and AP direction. Thus, it is possible that in the present study, fatigue also contributed to 
 

220 the increased COP sway RMS in PwMS compared to controls. 
 

221 The results also support our second hypothesis since both LyE and ApEn were 
 

222 significantly lower in PwMS. LyE quantifies separation between continuous paths of movement 
 

223 and whether these paths will expand or contract within a dynamical system [32]. ApEn is a 
 

224 probability measure that can quantify the predictability of vectors identified within a dynamical 
 

225 system [32]. Decreased LyE and ApEn values of PwMS compared to controls indicate a sway 
 

226 pattern with less divergence and a more repeatable and predictable pattern. This direction of 
 

227 change for LyE and ApEn compared to controls could indicate an inability to adapt to 
 

228 perturbations in PwMS. Since the sway patterns of PwMS are restricted, PwMS could exhibit an 
 

229 increased dependence on repeatable movement patterns in order to maintain upright balance. In 
 

230 other words, if the task demands or environmental conditions were to change, PwMS could be 
 

231 less able to adapt and maintain task performance. This breakdown of task performance has been 
 

232 exhibited in PwMS [4]. When exposed to a surface translation during standing, PwMS responded 
 

233 with delayed and excessive scaling of postural response amplitude. This scaling was related to 
 

234 the patient’s spinal somatosensory evoked potential latencies [4], indicating a relationship 
 

235 between response to perturbation and somatosensory conduction speed. During quiet standing, it 
 

236 has been reported that the dynamics of muscle firing patterns do not necessarily map directly to 
 

237 the dynamics at the movement task level [25]. Thus, for PwMS, normal muscle firing patterns 
 

238 are likely disrupted due to delayed somatosensory information receipt and due to axonal damage 
 

239 which could influence the dynamics of the standing task. This conclusion is speculative but it has 
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240 been reported that neural circuitry which is successful in producing a desired outcome has a 
 

241 higher probability of being accessed again for similar tasks [19]. This would indicate an 
 

242 increased reliance on past patterns of movement that have proved successful regardless of the 
 

243 received somatosensory information or the muscle firing activity. For PwMS, if a novel or 
 

244 unexpected task was necessary, reliance on past patterns of movement without the ability to 
 

245 adapt to the presented scenario could result in failure to maintain postural control. 
 

246 Our final hypothesis was partially supported since LyE also showed a significant group 
 

247 by condition interaction and RMS showed an effect of condition, but ApEn was not affected by 
 

248 removing vision. The interaction identified for LyE indicates that when vision was removed in 
 

249 PwMS, the divergence of the sway trajectories decreased in PwMS only. One possible 
 

250 explanation for this interaction is an impaired ability to properly perform sensory re-weighing in 
 

251 the MS group. Control of posture requires complex integration of sensory information which is 
 

252 weighted based upon accuracy or availability of the information and/or environmental conditions 
 

253 [23]. It’s possible that when vision was removed, PwMS couldn’t account for the loss of sensory 
 

254 input by relying more heavily on somatosensory and vestibular input, so LyE decreased further 
 

255 in both the ML and AP directions. Previous studies have also demonstrated that PwMS have 
 

256 altered postural control with the alteration of one sensory input [5, 34]. To confirm the effect of 
 

257 sensory alteration on balance in PwMS, it is necessary to examine a variety of sensory alteration 
 

258 conditions and determine under which conditions the patients are most or least affected. 
 

259 Employing nonlinear measures of variability to examine COP sway allowed us to gain a 
 

260 unique perspective on postural control in PwMS. The COP time series reflects the net motor 
 

261 control signal output and encompasses the position of the whole body center of gravity and the 
 

262 muscle activity involved in maintaining balance [6]. In PwMS, the COP time series showed 
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263 decreased LyE and ApEn values which indicate less behavioral complexity in the sway paths as 
 

264 compared to controls. The decrease in complexity in the PwMS corresponds well with the 
 

265 optimal movement variability model. The theory states that optimal movement variability has a 
 

266 highly complex structure and is associated with healthy movement patterns which reflect a rich 
 

267 behavioral state allowing for diverse movement strategies [33]. Conversely, a more rigid system 
 

268 has reduced adaptive capability [22] which indicates that a system may be less able to produce a 
 

269 physiological response to a particular task or to a system perturbation [6]. Compared to healthy 
 

270 controls, PwMS are less complex, more rigid, and have less movement strategies available to 
 

271 them. Future studies should also investigate treatments that help PwMS return to a state of 
 

272 optimal variability, possibly by introducing variability into the process of learning a new motor 
 

273 task [3]. Additionally, an investigation of the relationship between postural control and specific 
 

274 system (sensory, pyramidal, cerebellar) disability could provide insight regarding whether there 
 

275 is a common source of disability which relates to postural control deficits. 
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361 Figure Legends 
 

362 Figure 1A. RMS of the ML direction. Significant main effect for *GROUP (p < 0.05) and 
 

363 

 
364 

§CONDITION (p < 0.05). 

 

365 Figure 1B. RMS of the AP direction. Significant main effect for *GROUP (p < 0.05) and 
 

366 

 
367 

§CONDITION (p < 0.05). 

 

368 Figure 2A. LyE for the ML direction. Significant main effect for *GROUP (p = 0.001). 
 

369 Significant interaction for CONDITION x GROUP (p < 0.05); †Post hoc test significant 
 

370 

 
371 

difference (p < 0.05). 

 

372 Figure 2B. LyE for the AP direction. Significant main effect for *GROUP (p < 0.05). 
 

373 Significant interaction for CONDITION x GROUP (p < 0.05); †Post hoc test significant 
 

374 

 
375 

difference (p < 0.05). 

 

376 

 
377 

Figure 3A. ApEn for the ML direction. Significant main effect for *GROUP (p < 0.05). 

 

378 

 
379 

Figure 3B. ApEn for the AP direction. 



 

Figure 

Click here to download high resolution image 
 

 
 
 
 
 

A 

r 
3S  §    

{ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

£yes Open 
 

 

8 c-------- 
 

   § 

( 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E   esOp!n 



 

c. 

1 

c: 

- j 

Figure 

Click here to download high resolution image 
 
 
 
 
 

A c---.--------- 
f ! 

 

en 
 
 
 

... 
§ 
e 
0 Ql 
c. 

 
:> 
0 
:: 
;:I 

1:1 

?; 

 
 
 
 
 
 
0.1 

 
 
 
 
 

 
0 +-- 

 
 
 

8 
r-----;------ 

r   
t 

03 
r-------- T   --------.- T 

 
 
 
 

... 
Cl 

2 

!::1 
:> 
0 

= 
 

 
 

Q.1 



 

Figure3 

Click here to download high resolution image 
 
 
 
 
 
 

A 
;-----1---, ----.------   

 
 
 
 

a.so 
 

 
0 

 
w 

:! 
1':1 E

a
 

 
0.70 

.. 0.60 
0
c:. 
<t 

a.so 
 
 
 
 
 
 
 

0.10 
 

 
EYf!S Open EyesCI05ed 

 

8 
 

 
 

j 
 

0 

.... 0.70 

 
 

tl60 
c. 

 
 
 
 
 
 
 
 
 
 

0.30 -!--- 
 

 

E Open E esCtcsecJ 



 

Table 
 
 
 
 

 

1 Table 1. Demographic information (mean ± std dev) for healthy controls and MS subjects. EDSS 
 

2 = Expanded Disability Status Scale. 

 
3 

  Characteristics Control (n=15)     MS (n=15)     p-value

 Age (years)  39.4 + 11.7 45.1 + 10.5 0.233 
4 

Height (cm) 157.4 + 10.6 166.7 + 8.9 0.903 

Weight (kg) 66.2 + 7.5 75.9 + 13.1 0.104 
5 

EDSS Score Mean - 4.5 + 1.8 

EDSS Score Median - 5.2 
6 

Female/Male 12/3 13/2 
 

95% Sway Area (mm2) 3.53 ± 2.92 12.23 ± 9.14 0.002* 
7 

Median Sway Velocity (mm/s) 0.98 ± 0.56 3.12 ± 2.44 0.004* 

  Sway Range (mm) 4.21 ± 3.64 6.91 ± 3.91 0.070   

8 *Significant (p < 0.05) difference between groups 
 

9 
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