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The development of sitting postural control in five normal infants was examined longitudinally at 

three stages of sitting: stage 1, when infants could hold up their head and upper trunk, but could 

not sit independently; stage 2, when infants began to sit independently briefly; and stage 3, when 

infants could sit independently. Methods from nonlinear dynamics were used to analyze center of 

pressure (COP) data during sitting in terms of stability of the neuromuscular system (Lyapunov 

Exponent), movement dimensionality (Correlation Dimension), and complexity/regularity 

(Approximate Entropy). Results indicated significant changes in the nonlinear measures over time, 

with increased stability and increased regularity revealing a more stable and periodic strategy of 

maintaining postural control. Dimensionality decreased from stage 1 to 2, indicating a constraint 

of the degrees of freedom. Subsequently, dimensionality increased from stage 2 to 3, indicating a 

release of the degrees of freedom as sitting independence emerged. Nonlinear analysis of the COP 

time series supports the perspective that the development of postural control is a dynamic process 

whereby the infant learns to control the body’s degrees of freedom to achieve the sitting posture. 

KEYWORDS: sitting postural development, infancy, complexity, dimensionality, stability 
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The achievement of independent sitting appears to be effortless and merely a part of the 

normal maturation process. Once an infant can control the head and trunk in sitting, the arms are 

free for exploration and functional activities. However, independent sitting requires dynamic 

stabilization of all the linked segments of the body, and is a complex process of learning and 

adaptation to various forces in the environment. Past research (Hirschfeld & Forssberg, 1994;  

Hadders-Algra, Brogren & Forssberg, 1996a) of the development of sitting has focused on 

investigating the hypothesis that postural responses are an innate, central pattern generator (CPG) 

driven activation of muscle groups, rather than a self-organizing, dynamic process. Directionally 

appropriate muscle responses during support surface translation were noted by the age of 5 

months, prior to the achievement of independent sitting (Hirschfeld & Forssberg, 1994; 

Hadders-Algra et al., 1996a; Hadders-Algra, Brogren & Forssberg, 1996b). Amplitude and 

temporal ordering of muscle responses became more adult-like as the child matured, which was 

also attributed to the modification of neural circuitry by continuing sensory input (Hirschfeld & 

Forssberg, 1994; Woollacott, Assaiante & Amblard, 1996). This viewpoint assumes that posture 

is controlled at two levels by central pattern generators, one for selection of an appropriate 

pattern, and one for modulation of that pattern. Therefore, postural control is interpreted as an 

innate, genetically determined aspect of behavior, which is revealed in its adult form as the 

nervous system matures. 

Another viewpoint of the development of postural control in infancy is one that would 

agree with the Bernstein (1967) proposition that motor skill acquisition is the process of solving 

the problem of coordinating the many and redundant degrees of freedom of the body. In contrast 
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to the viewpoint that central pattern generators govern the acquisition of posture control, the 

dynamic perspective would describe posture control as an emergent skill occurring as a result of 

the organism interacting with the environment. When posture control is viewed as an emergent, 

dynamic skill, a nonlinear progression of the skill would be expected, with transitions to new 

levels of skill characterized by limiting the degrees of freedom for stability of the behavior, or 

freeing degrees of freedom for increased adaptability of the behavior. As a skill level progresses to 

a more mature form, the degrees of freedom would be released for a more flexible coordination of 

body segments within the environmental milieu. It follows that the utilization of tools designed to 

examine nonlinear properties of systems that evolve over time would be necessary to examine the 

dynamic process of developing postural control. 

Nonlinearity has been shown to be a feature of many aspects of development. Physical 

growth of the human body itself occurs in pulses, with long periods of no detectable growth 

interspersed with episodic growth pulses of body length between 0.5 and 1.6 cm (Lampl, Veldhuis 

& Johnson, 1993). Thelen & Fisher (1982) demonstrated that the non-linear progression of  

infant stepping patterns was related to the infant’s increasing leg mass outstripping the 

development of leg muscle strength, indicating that the behavior emerges through the interplay of 

many constraints. Early infant leg movements are well coordinated and synchronous (Thelen & 

Fisher, 1983). As infants begin to walk, they begin to decouple the whole leg synergies seen in 

kicking to allow crawling and walking (Jensen, Ulrich, Thelen, Schneider & Zernicke, 1995). 

These studies support the viewpoint that skill acquisition during development proceeds in a 

nonlinear manner, consistent with dynamic processes. 

Recently, nonlinear analysis techniques have been applied to the degrees of freedom 
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problem during standing posture utilizing time series data of the center of pressure (COP). The 

COP at the base of support in standing has traditionally been considered a reflection of the 

organization of posture (Massion, 1992). Newell (1997) used COP data to examine the motor 

control of children, adults and elderly by measuring standing postural sway. Utilizing the nonlinear 

analysis techniques of Correlation Dimension and Approximate Entropy to assess the time series 

COP data, the author found that 3 year old children restrict the degrees of freedom by decreasing 

dimensionality and complexity. The data of the 5 year old children were significantly different 

from the 3 year olds, and similar to the data of the young adults. Thus, at age 5, the child is able 

to have more control over the body’s degrees of freedom, and shows increased dimensionality and 

complexity as reflected in the COP time series (an adult like behavior). However, no research has 

been conducted to examine postural control during various stages of the development of 

independent sitting using COP data. 

Variability of the COP has previously been attributed to noise within the system as well as 

a consequence of measurement error (Newell, 1997). Techniques of averaging and utilization of 

variables such as standard deviation, length of path and area of path have been used to reduce the 

effects of noise. Implicit in the interpretation of such variables is the construct that the information 

or signal related to the behavior of interest is embedded in other “noise” of the system. Therefore, 

it was assumed that the data were contaminated by information that was not important to the 

behavior. This viewpoint ignores the possibility that the variability seen in the time series of the 

COP may have a structure that can provide information about the strategies used to control the 

body’s degrees of freedom. 

INSERT FIGURE 1 ABOUT HERE  
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Structure in the time series of the COP is not visibly apparent (see Figure 1), and 

differences between data sets can be difficult to describe. The use of standard averaging 

procedures (i.e., length of path, excursion in the sagittal or frontal directions) during data analysis 

of COP time series can create the problem of masking the dynamical properties of the COP data. 

However, techniques from nonlinear dynamics can solve this problem and can assist in 

understanding the complexity of posture. The structure of the time series of the COP can provide 

information regarding the properties of posture that evolve from one moment to the next, when 

posture is defined as the dynamic stability of a continuously moving body. The natural sway of the 

body, which is reflected in the COP time series, is a rhythmic activity and produces a limit cycle 

motion (i.e., closed periodic orbits) in state space. The set of techniques used in nonlinear time 

series analysis are based on examining the structural characteristics of a time series that is 

embedded in an appropriately constructed state space. An appropriate state space is a vector 

space where the dynamical system (i.e., a swaying body during posture) can be defined at any 

point (Abarbanel, 1996). The characteristics of that state space can then be examined to gain 

insight into the motor control of posture. In this study of the development of infant sitting, we 

utilized the nonlinear techniques briefly described below to accomplish this task. 

The Lyapunov Exponent (LyE) is a measure of the local stability of a dynamical system 

and its dependence on initial conditions (Abarbanel, 1996). In the present study, stability is 

defined as the sensitivity of a dynamical system to perturbations (Dingwell, Cusumano, Sternad, 

Cavanagh, 2000), and local stability is the sensitivity of the system to internal perturbations, such 

as the natural fluctuations that occur during posture. The effects of these natural fluctuations are 

what researchers are trying to evaluate with different measures of postural sway (Horak & Diener, 
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1994; Buchanan & Horak, 2001; Kuo, Speers, Peterka, Horak, 1998). However, local stability 

can be estimated directly using LyE (Dingwell et al., 2000, Stergiou, Buzzi, Hageman, Heidel, 

2000). The LyE quantifies the exponential separation of trajectories with time in state space 

(Figure 2). As nearby points separate, they diverge rapidly and produce instability.  The exponent 

estimates this instability, which is largely affected by the initial conditions of the system. 

Specifically, the LyE is calculated as the slope of the average logarithmic divergence of the 

neighboring trajectories in the state space (Dingwell and Cusumano, 2000; Sprott and Rowlands, 

1992). Periodic systems (such as a sine wave) will result in a LyE value of zero, because the 

trajectories mapped in the state space would completely overlap. A positive LyE may indicate the 

presence of determinism (order) within a time series. However, completely random data may also 

produce a positive LyE, because the greater degree of divergence of trajectories results in a larger 

value of LyE. Thus, it is important to validate results against surrogate data to distinguish a true 

deterministic origin from randomness (Rapp, 1994). 

INSERT FIGURE 2 ABOUT HERE 

Surrogation is a technique that can accurately determine if the source of a given time 

series is actually deterministic in nature (Buzzi, Stergiou, Giakas, Dierks, 2001; Dingwell et al, 

2000; Theiler, Eubank, Longtin, Galdrikian and Farmer,1992).  The technique compares the 

actual data and a random data set that has a similar structure to the original data set. Surrogation 

removes the deterministic structure from the original data set, generating a random equivalent 

with the same mean, variance, and power spectra as the original (Figure 3). Significant differences 

in LyE between the original and surrogate counterparts indicate that the original data can be 

clearly distinguished from a linearly autocorrelated Gaussian noise (Theiler et al,1992). Thus, the 
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original data are not randomly derived, and therefore, they may be deterministic in nature. 

INSERT FIGURE 3 ABOUT HERE 

The Correlation Dimension (CoD) is a method to evaluate the number of degrees of 

freedom during posture or, in other words, to determine the dimensionality of the COP time series 

(Newell, 1997).  It measures how the data points in a time series from a dynamical system (i.e., 

the COP time series from a swaying body during posture) are organized within a state space 

(Sprott & Rowlands, 1992). Specifically, CoD approximates the actual area that the dynamical 

system occupies in the state space. 

The Approximate Entropy (ApEn) is a method to determine the complexity of the COP 

time series (Buzzi et al., 2001; Newell, 1997). Approximate Entropy is a measure that can 

quantify the regularity of a time series or, in other words, the predictability of a time-series 

(Pincus, Gladstone, Ehrenkranz, 1991; Pincus and Goldberger, 1994). A more predictable and 

regular time series is also less complex. A change in complexity may be indicative of learning and 

a reorganization of the available degrees of freedom (Vaillancourt & Newell, 2000, Newell, 

1997). Approximate Entropy measures the logarithmic probability that a series of data points a 

certain distance apart will exhibit similar relative characteristics on the next incremental 

comparison within the state space (Pincus et al., 1991). Time series with a greater likelihood of 

remaining the same distance apart upon comparison will result in lower ApEn values, while data 

points that exhibit large differences in distances between data points will result in higher values. 

Values typically range from 0 to 2. Values closer to 0 are consistent with greater periodicity (less 

complexity). Conversely, values near 2 represent greater irregularity (higher complexity). 

This study explored the development of independent postural control in sitting from the 
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perspective of dynamic processes. Specifically, the purpose of this study was to investigate 

whether developing postural control in sitting has deterministic origins, and determine how this 

can be characterized using techniques to examine the stability, dimensionality and complexity of 

the COP time series in sitting. We tested the following specific hypotheses: a) the COP time series 

has a deterministic origin, which can be revealed through the surrogation process, b) infants will 

show increased local stability (LyE) as sitting develops, c) infants developing the ability to sit 

independently will show increasing dimensionality (CoD) of the COP time series, indicating 

increasing control of the degrees of freedom of their bodies, d) infants will show increasing 

complexity (ApEn) of the COP time series in sitting as development progresses, and e) linear 

measures of the length of COP path and COP excursion will not change significantly as sitting 

develops, and, as such, the linear measures will not be able to characterize development. 

METHODS 

Subjects 

Five infants were recruited for this longitudinal study at the mean age of four months (4 

females and 1 male). All were within the 25th to 75th percentile for height and weight. Inclusion 

criteria for the infants at entry (stage 1 sitting) were: the ability of the child to hold up the head 

when supported at the trunk, beginning ability to reach for objects in supported sitting or lying on 

the back, and propping on the elbows when in prone for thirty seconds. Exclusion criteria for the 

infants included prematurity,  diagnosed visual deficits, or diagnosed musculoskeletal problems. 

The infants were followed until they achieved independent sitting. Inclusion criteria for the second 

data collection session (stage 2 sitting) for typically developing infants were: the infant was able 

to either prop on the arms for support during sitting, or able to sit for brief periods (10-30 
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seconds) independently, but was not safe to be left alone in the sitting position. Inclusion criteria 

for the third data collection session (stage 3 sitting) were: the child sits independently with no 

danger of falling, but is not yet crawling or moving in and out of the sitting position 

independently. The parents were interviewed to determine readiness of the child for data 

collection for each stage, and this information was verified at the beginning of each data collection 

session. The parents of all the children were told at each session what criteria were necessary for 

the next session.  The children’s sitting skills within each stage were very similar, although no 

standardized motor test was done. Mean ages of the infants were 4.65 months at stage 1 (range 4 

to 5.5 months), 5.8 months at stage 2 (range 5 to 6.5 months), and 6.95 months at stage 3 sitting 

(range 6 to 8 months). A graphical representation of the development stages can be seen in Figure 

1. 

Instrumentation 

Data were collected using an AMTI force platform (Advanced Mechanical Technology 

Inc., Model OR6-7-1000), and a VICON 370 3D Motion Capture System. The force platform 

was mounted to a sub-floor concrete slab to prevent vibration interference, and was level with the 

laboratory floor. The VICON 370 Motion Capture System included a 64 channel 12 bit A-D 

converter and a computer (1 GHz PC; VICON Motion Systems). Data acquisition and processing 

were controlled through VICON software. Component forces (Fx, Fy, Fz) and moments (Mx, 

My, Mz) were each sampled at 960 Hz and were amplified using an AMTI Model MCA6 

Amplifier. VICON software calculated COP coordinates from the component forces and 

moments.  Data were exported in ASCII format and used for nonlinear analysis. We collected 

video of each trial using two Panasonic videocameras (Model 5100 HS), one with a rear view and 
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one a side view,  and a Panasonic Digital AV Mixer (Model WJ-MX30). The video and force 

platform data were synchronised. 

Data Collection 

The infants were allowed time to get used to the laboratory setting at each session, and 

were at the parent's side or on the parent’s lap for preparation and data collection. We used a 

standard set of infant toys for distraction and comfort. The infant was comforted when needed so 

that a calm, alert state could be maintained. 

A blanket was placed over the force plate for warmth and comfort, and the baby was held 

in the sitting position in the middle of the plate. The investigator and the parent remained at one 

side and in front of the infant respectively during data collection. The child was held at the trunk 

for support. A small, flat contact switch was held between the infant and the investigator’s hand. 

Once the infant was stable and calm, the investigator released the trunk support as much as 

possible (thus releasing the contact switch which was used as an event marker for the exact time 

of release), and data were collected for 10 seconds while the child attempted to maintain sitting 

postural control. The parent either talked to the infant, or displayed toys to hold the infant’s 

attention to maintain a forward orientation. When the child was too young to sit independently, 

the investigator maintained contact at the chest area as lightly as possible, to allow the child to 

attempt the skill but not be in danger of falling. At the 3rd session, when infants could easily sit 

independently and reach for toys, the parents either held the toys further away, or simply talked to 

the infant, to keep them from leaning and reaching for the toy. Up to ten trials at each of the 3 

data collection sessions were performed in an attempt to capture the child’s best sitting 

performance. 
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Data Analysis 

We selected segments of the COP data by utilizing the video record to identify a trial in 

which the infant exhibits at least four seconds of quiet sitting behavior using the following criteria: 

1) The infant was not moving their arms, that is, they were not reaching for an object, holding an 

object, or flapping their arms; 2) The infant was not vocalizing or crying; 3) The infant was not in 

the process of falling. Other slight movements, such as turning or orienting the head or body 

slightly to look at the environment, or small movements of the extremities did not necessitate 

exclusion of the data segment. The data segments selected thus allowed the examination of 3840 

points for each COP coordinate (x and y). This number is considered adequate for the analysis 

performed in this study (Grassberger & Procaccia, 1983; Pincus et al., 1991; Sprott & Rowlands, 

1992). The data were analyzed unfiltered so as to get a more accurate representation of the 

variability within the system (Mees & Judd, 1993). Filtering the data may eliminate important 

information and provide a skewed view of the system’s inherent variability. We assumed that 

since the same instrumentation was used for all subjects, the level of measurement noise was 

consistent for all subjects and that any differences could be attributed to changes within the 

system itself (Mees & Judd, 1993; Kaplan & Glass, 1995). 

To evaluate local stability and dimensionality of the COP time series, the LyE and CoD 

parameters were calculated for each time series using the Chaos Data Analyzer software (Sprott 

& Rowlands, 1992). To accurately calculate these measures, the number of embedding dimension 

was chosen  (Rapp, 1994) and incorporated in the software. We calculated the embedding 

dimension using a Global False Nearest Neighbor (GFNN) analysis (Abarbanel, 1996).We used 

the Tools for Dynamics software (Abarbanel, 1996) for the GFNN analysis of the COP time 
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series. The GFNN analysis describes the minimum number of variables that are required to form a 

valid state space from a given time series. The embedding dimension is a description of the 

number of dimensions needed to unfold the structure of a given dynamical system in space (Mitra, 

Riley, and Turvey, 1997). Our GFNN calculations indicated that five embedding dimensions were 

the minimum number of variables that are required to form a valid state space from the time 

series. 

We used the procedure of surrogation to validate the LyE and CoD results. Surrogate 

data sets were generated for all original COP time series. This procedure was performed in 

Matlab (MathWorks, Natick, MA) using the algorithms developed by Theiler et al (1992) and 

briefly described in Figure 3. LyE values for all surrogate time series were also computed. 

We computed the Approximate Entropy of each time series to evaluate the complexity of 

the COP time series (Pincus and Goldberger, 1994; Newell, 1997). Approximate Entropy was 

computed using algorithms written by Pincus and colleagues (Pincus et al., 1991; Pincus and 

Goldberger, 1994) implemented in Matlab (MathWorks, Natick, MA). 

Finally, we calculated the length of path for the COP and the x & y excursion of the COP. 

These calculations were done using Datapac 2000 Laboratory Applications System (Run 

Technologies, Laguna Hills, CA). Length of path was normalized to length of path/sec, since the 

data segments were not of uniform length from trial to trial. These standard descriptive variables 

were calculated to serve as a point of comparison for linear vs. nonlinear analysis. 

Statistical Analysis   

LyE values of the surrogate data were compared to the LyE values of the original data 

using a Student T-test (P < 0.05). We used a repeated measures ANOVA (developmental 
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stage vs. subject) to compare the mean group values of the following dependent variables: LyE, 

CoD, ApEn, normalized length of COP path, and x & y COP excursion. The results reported 

relate to the developmental stage alone for the main effect. COPx and COPy data for each subject 

were grouped in the analysis to create an N of 10 for each developmental stage. In tests that 

resulted in a significant F-ratio (P < 0.05), we used a Tukey multiple 

comparison test to identify the location of the significant differences. 
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RESULTS 

Significant differences were found between the original data sets and the surrogate data 

sets (P=0.009 for Stage 1; P=0.002 for Stage 2; P<0.001 for Stage 3; Table 1). These results 

indicated the fluctuations observed in the original COP time series were clearly distinguishable 

from linearly autocorrelated Gaussian noise. Thus, the original data were not randomly derived, 

and therefore, they may be deterministic in nature.  This step validated the application of the rest 

of the nonlinear techniques. 

 INSERT TABLE 1 ABOUT HERE 

The LyE values showed significant differences (F[2,18]=7.03, P=0.006) between the three 

stages of development (Table 2). Post hoc analysis revealed significant differences between stages 

1 and 3 (P=0.007), and between stages 1 and 2 (P=0.024), but not between stages 2 and 3 

(P=0.831). In general, the mean group values for LyE decreased from stage 1 to stage 2, and 

decreased further from stage 2 to stage 3. 

INSERT TABLE 2 ABOUT HERE 

The CoD values showed significant differences (F[2, 18]=4.99, P=0.019) between the 

three stages of development (Table 2). The post hoc analysis revealed significant differences 

between stages 1 and 2 (P=0.036), and between stages 2 and 3 (P=0.034). There were no 

significant differences between stages 1 and 3 (P=1.000).    

The ApEn values showed significant differences (F[2,18]=3.82, P=0.042) between the 

three stages of development (Table 2). The post hoc analysis revealed significant differences 

between stages 1 and 2 (P=0.041), but not between stages 2 and 3 (P=0.784) or between stages 1 

and 3 (P=0.144).  
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The length of path variable decreased with increasing age, but there were no significant 

differences between stages (F[2,8]=.71, P=0.519). The x & y excursion variable increased with 

age, but there was not a significant difference between stages (F[2, 18]=3.07, P=0.071). 
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DISCUSSION 

The results of this study will be examined from a dynamic perspective. Interpretation of 

the analysis using linear and nonlinear tools will be followed by a comparison of these results to 

other studies examining motor skills using a dynamic approach. Finally, the evidence for a 

dynamic, self-organizing process will be compared to the evidence for an innate, CPG driven 

mechanism as a basis for the development of independent sitting. 

The commonly used variables, length of COP path and x & y excursion summarize the 

time series, rather than reveal the nature of the dynamic changes that occur throughout the time 

series. Length of path and excursion of COP variables did not reveal any difference between 

stages of sitting, although it is obvious that the 3 stages of sitting describe very different degrees 

of postural control. We believe these linear variables can not help further the understanding of 

how postural control develops, because they can not capture or describe dynamic processes. 

Describing the fluctuations within the time series of each trial can reveal developing control 

strategies, and a successful description necessitates the use of nonlinear tools. 

The process of surrogation of the original time series revealed positive LyE values that 

were significantly different from their surrogate counterparts. This result indicated that the 

fluctuations observed in the COP time series were not randomly derived, and  may reflect 

deterministic processes by the neuromuscular system. Therefore, the fluctuations in the time series 

were not noise, but had a structure or order that needed further investigation and description.  

The LyE values changed toward zero as the sitting behavior emerged, indicating a more 

periodic path of the COP. Therefore, as the infants had more experience exploring the sitting 

position, they increasingly occupied trajectories that were close together within the state space. In 
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other words, the infants became more locally stable. The LyE values decreased as sitting 

developed, becoming more periodic from stage 1 to stage 2 to stage 3. 

The Correlation Dimension provided information regarding how the COP time series data 

from the swaying infant during sitting posture were organized within a state space (Sprott & 

Rowlands, 1992). The CoD results showed high dimensionality at stage 1, with a significant 

decrease in dimensionality at stage 2. This would indicate a reduction in the degrees of freedom of 

the body, as is often seen when a new skill is attempted. A significant increase in dimensionality 

occurs from stage 2 to stage 3, indicating an increase of degrees of freedom. This would provide 

the infant with increased adaptability or flexibility in maintaining postural control over the base of 

support in sitting.  

The ApEn analysis indicated that a significant decrease in complexity occurred from stage 

1 to stage 2 sitting. This decrease may be indicative of the child homing in on the strategy that is 

most successful for maintaining posture control. There was a slight increase of ApEn values from 

stage 2 to stage 3, although this was not significant statistically. Infants at stage 3 of sitting have 

discovered a strategy for stable postural control, and may be starting a transition to a new 

behavior, the ability to get in and out of the sitting position. This may be indicated by the increase 

in complexity, which may be a reflection of increased exploration and increasing dynamic control 

of the sitting posture. 

Taken together, the differences in the variables of LyE, CoD and ApEn over the time 

period during which sitting develops reflect changes in the dynamics of postural control. Stability 

(LyE) and regularity (ApEn) increase over this time period, as the child discovers a successful 

strategy for maintaining the upright body segments over the base of support. Dimensionality 
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(CoD) initially decreases from stage 1 to stage 2 sitting, in order to freeze some degrees of 

freedom for control, then increases as the child discovers how to flexibly link body segments for 

dynamically stable posture control. 

The strategy of decreasing the degrees of freedom, as a skill is initially formed, is common 

both in infants and in older children. Thelen, Corbetta, Kamm, Spencer, Schneider, & Zernicke 

(1993) described the development of reaching in infants as a discontinuous process, in which the 

skill of moving the arm and hand close to a desired object is initially softly assembled, with high 

variability and many degrees of freedom. Through exploration of the dynamics of the reaching 

task, the infants discover solutions to the degrees of freedom problem within the specific task, and 

reduce the variability of their movement for improved reaching success. Fitzpatrick (1998) studied 

clapping in children of various ages, and described the same process of assembling the task using 

a variety of different strategies, followed by a process of fine tuning and refining to a best 

solution. Fitzpatrick (1998) postulates that children assemble and disassemble intralimb linkages 

as they perform more complex clapping games. In other words, they freeze degrees of freedom to 

assemble a skill, then release degrees of freedom to explore the dynamics of a new perceptual 

motor skill. The process appears the same in the development of sitting skill; as the infant begins 

to sit independently the skill is softly assembled, with an initial strategy of freezing degrees of 

freedom. The infant then discovers a solution to the problem of controlling the linkages of body 

segments in upright, and is able to release degrees of freedom to adaptively interact with the 

environment.  

Variability reflects specific, individual solutions to solve specific, individual problems 

(Thelen et al, 1993; Adolph, 1998). Using the surrogation technique, the variability of the COP 
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time series was found to be different than noise. This evidence of specific solutions to the 

individual’s task is contradictory to the idea of a common neural circuitry, or CPG. Further 

description of the structure of the time series showed a non-linear progression of the variables 

ApEn and CoD over time, also indicating adaptations to the task and environment, rather than 

revelation of a neural circuit that was constantly present. 

Although the neuromaturationist perspective of an innate, CPG driven postural control 

mechanism is a possible explanation for the muscle synergies seen in infants prior to the ability to 

sit independently, the dynamic perspective can also be used to explain this phenomenon. Prior to 

independence in sitting, infants exhibit a variety of muscle response patterns to either a support 

surface translation (Hadders-Algra et al., 1996a), or a perturbation caused by a release of trunk 

support (Harbourne, Giuliani, Mac Neela, 1993). The most situationally appropriate response is 

only one of several responses, or muscle synergies, that is elicited in the youngest infants. The 

dynamic view that the infant assembles responses, and in a process of trial and error, discovers the 

response which is most successful and valuable to the goal, can also be used to explain muscle 

synergies which occur at first sporadically, then increase in consistency over time. In fact, more 

consistent muscle responses can be trained by practicing sitting activities with infants 

(Hadders-Algra et al., 1996b), indicating a discovery process by which the infant selects the most 

successful strategy for linking body segments together and maintaining the center of mass over the 

base of support. 

There are several limitations of this study. We have reported the data of only 5 subjects, 

too small a number from which to draw broad conclusions. Also, we relied on the parents to 

report the sitting skills of the infants, which led to some variability within the stages of sitting that 
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were described. Future investigations using this methodology should include increased numbers of 

subjects, more discrete selection of measurement intervals, and a longer time period of following 

the infants. 

The process of learning to sit independently involves multiple systems including rapidly 

changing body proportions and dimensions, perceptual abilities, varying ability to generate force, 

and environmental restrictions. A centrally determined program of specific muscle responses is 

unlikely to provide successful postural control within the changing context of a growing infant. 

The results of this study add to the evidence that infants dynamically assemble the sitting posture 

by increasing the stability and regularity of their strategy, and controlling the degrees of freedom  

first to approximate the skill, then to explore adaptations to function in the environment. The 

methodology utilized in this study may be a simple means of assessing the control of dynamic 

postural control in infants, which may then be useful in evaluating the efficacy of treatments for 

infants with developing movement disorders. 
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FIGURE CAPTIONS 

 

Figure 1: Stages 1, 2, and 3 of sitting development, each with a corresponding example of a 

center of pressure tracing during one sitting trial. Data represent one trial for a single  infant 

through each stage of sitting. 

 

Figure 2. A schematic of the estimation of the Lyapunov Exponent using data from a well known 

time series, the Lorenz attractor (Abarbanel, 1996). We start with the original time series that we 

can see in A. From this time series, a three-dimensional state space is created that we can see in B. 

In C, we observe a section of the state space where the divergence of the neighboring trajectories 

is identified. The Lyapunov Exponent is the slope of the average logarithmic divergence 

of the neighboring trajectories (Dingwell, 2000; Sprott and Rowlands, 

1992). 
 

Figure 3. A schematic of the surrogation procedure using data from a well known time series, the 

Lorenz attractor. We start with the original time series that we can see in A. Then we generate 

phase-randomized surrogate fluctuations from the original data using the process described in B. 

The surrogate time series that we can see in C has the same mean, variance and power spectra as 

the original time series. The algorithm used is from Theiler (1992). 
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TABLE 1 

 

Original Data   Surrogate Data  
Variable Mean  SD  Mean   SD  t df P  
LyE stage 1 0.0868 0.0803 0.1640 0.0221 -2.941 18 0.009 

 

LyE stage 2 0.0345 0.0380 0.0907 0.0307 -3.634 18 0.002 

 

LyE stage 3 0.0240 0.0268 0.1550 0.0450 -7.907 18 <0.001 

 

 

 

 

 

Results of t-test between actual data and surrogate data. 
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TABLE 2 

 

 

Variable N Mean  SD  SEM  F value P  
 

LyE1*# 10 0.087  0.080  0.025    

LyE2#  10 0.035  0.038  0.012  7.029  0.006 

LyE3*  10 0.024  0.027  0.008 

*significant difference between LyE1 and LyE3, P=0.007 
#significant difference between LyE1 and LyE2, P=0.024 

 

CoD1* 10 4.144  0.192  0.061 

CoD2*# 10 3.800  0.467  0.148  4.99  0.019 

CoD3#  10 4.148  0.238  0.075 

*significant difference between CoD1 and CoD2, P=0.036 
# significant difference between CoD2 and CoD3, P=0.034 

 

ApEn1* 10 0.626  0.380  0.120 

ApEn2* 10 0.231  0.211  0.067  3.816  0.042 

ApEn3 10 0.330  0.426  0.135 

*significant difference between ApEn1 and ApEn2, P=0.041 

 

LengthCOP1 5 0.902(meters) 0.165  0.074 

LengthCOP2 5 0.801  0.190  0.085  0.712  0.519 

LengthCOP3 5 0.781  0.189  0.085 

 

x&yexc1 10 0.028(meters) 0.0134 0.004 

x&yexc2 10 0.050  0.0373 0.012  3.071  0.071 

x&yexc3 10 0.052  0.0218 0.007  

 

 

Results of repeated measures ANOVA and post-hoc testing for non-linear variables of LyE, CoD 

and ApEn and linear variables of COP length and COP x&y 

excursion. All variables have df=18, except lengthCOP, 

which has df=8.  
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