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Abstract 1 

This study aims to investigate the effects of shoe traction and obstacle height on 2 

lower extremity relative phase dynamics (analysis of intralimb coordination) during 3 

walking to better understand the mechanisms employed to avoid slippage following 4 

obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: 5 

four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of 6 

shoes (low and high traction). A coordination analysis was used and phasing relationships 7 

between lower extremity segments were examined. The results demonstrated that 8 

significant behavioral changes were elicited under varied obstacle heights and frictional 9 

conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more 10 

in-phase relationship between the interacting lower limb segments. The higher the obstacle 11 

and the lower the shoe traction, the more unstable the system became. These changes in 12 

phasing relationship and variability are indicators of alterations in coordinative behavior, 13 

which if pushed further may have lead to falling. 14 

 15 

Keywords: Dynamical systems theory, Shoe traction, Obstacle clearance, Locomotion.16 
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1. Introduction 17 

Injuries associated with slips, trips and falls continue to pose a significant burden 18 

to society both in terms of human suffering and economic losses (Grönqvist  Roine, 19 

1993; Kemmlert & Lundholm, 1998; Leamon  Murphy, 1995; Manning et al., 1988; 20 

National Safety Council, 1995). According to statistics from the Health and Safety 21 

Executive (HSE), slips and trips are the single most common cause of injuries at work, 22 

and account for over a third of all major work injuries. In the US, falls accounted for 19% 23 

of all nonfatal occupational injuries in 2001, and 13% of fatal occupational injuries in 24 

2002 (Department of Health and Human Services, 2003). The annual direct cost 25 

occupational injuries due to slips, trips and falls in the US has been estimated to be in 26 

excess of 6 billion US dollars (Courtney et al., 2001), and a cause of serious public health 27 

problem with costs expected to exceed $43.8 billion by the year 2020 in the US alone 28 

(Englander et al., 1996). 29 

Both slips and trips result from unintended or unexpected changes in the contact 30 

between the feet and the walking surface. Thus, conventional biomechanical analyses 31 

(i.e. gait analysis) have been used to investigate human factors that cause slips, trips, and 32 

falls and their complex interaction with environmental factors (Moyer et al. 2006; 33 

Petrarca et al. 2006). Human factors include gait biomechanics, expectation, the health of 34 

the sensory systems (i.e. vision, proprioception, and vestibular) and the health of the 35 

neuromuscular system (Moyer et al. 2006). Among the most important environmental 36 

factors that could potentially cause instability during walking are the presence of 37 

obstacles and the loss of traction between the shoe sole and floor surface (Cohen & 38 

Compton, 1982). Therefore, numerous studies have investigated the effect of obstacle 39 

https://frodon.univ-paris5.fr/http/www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF9-45CC1BN-1&_user=5262028&_coverDate=11%2F30%2F2002&_alid=588207095&_rdoc=5&_fmt=full&_orig=search&_cdi=6005&_sort=d&_docanchor=&view=c&_ct=23&_acct=C000035758&_version=1&_urlVersion=0&_userid=5262028&md5=e022362e681af9bdf765d6d5096f5b45#bib4
https://frodon.univ-paris5.fr/http/www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VF9-45CC1BN-1&_user=5262028&_coverDate=11%2F30%2F2002&_alid=588207095&_rdoc=5&_fmt=full&_orig=search&_cdi=6005&_sort=d&_docanchor=&view=c&_ct=23&_acct=C000035758&_version=1&_urlVersion=0&_userid=5262028&md5=e022362e681af9bdf765d6d5096f5b45#bib7
https://frodon.univ-paris5.fr/http/www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V31-4B7HKRB-3&_user=5262028&_coverDate=05%2F31%2F2004&_alid=588530548&_rdoc=1&_fmt=full&_orig=search&_cdi=5717&_sort=d&_docanchor=&view=c&_ct=2&_acct=C000035758&_version=1&_urlVersion=0&_userid=5262028&md5=92330e86f91cd636e47d283d1583e618#bib10
https://frodon.univ-paris5.fr/http/www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V31-4B7HKRB-3&_user=5262028&_coverDate=05%2F31%2F2004&_alid=588530548&_rdoc=1&_fmt=full&_orig=search&_cdi=5717&_sort=d&_docanchor=&view=c&_ct=2&_acct=C000035758&_version=1&_urlVersion=0&_userid=5262028&md5=92330e86f91cd636e47d283d1583e618#bib10
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perturbations during walking (Begg et al., 1998; Chen et al., 1994; Chen and Lu, 2006; 40 

Chou & Draganich, 1997; Jaffe et al., 2004; McFadyen & Prince, 2002; Patla et al., 1991; 41 

Patla & Rietdyk, 1993; Petrarca et al., 2006; Sparrow et al., 1996). However, this 42 

research has focused on the approach to an obstacle by collecting gait data of the trailing 43 

and leading limb while negotiating the obstacle. In addition, there have been numerous 44 

studies that have used biomechanics of gait to examine the shoe–floor interface to 45 

understand slips (Burnfield & Powers, 2006; Bring, 1982; Cham & Redfern, 2001, 46 

2002a, 2002b; Gao et al., 2003, 2004; James, 1980; Lockhart et al., 2003, 2005; Perkins, 47 

1978; Perkins & Wilson, 1983; Redfern & Dipasquale, 1997; Strandberg, 1983; 48 

Strandberg & Lanshammar, 1981; Winter, 1991). However, limited attention was devoted 49 

to the combined effect of obstacles and low friction shoe–floor interface on the landing 50 

strategies adopted to avoid slipping after obstacle clearance (Patla & Rietdyk, 1993; 51 

Bentley & Haslam, 1998; Leclercq, 1999). Two main categories of adaptive strategies are 52 

used when an individual encounters both an obstacle and a more slippery zone: 53 

“strategies of avoidance” that consist of modifying walking patterns in order to step over 54 

the obstacle, and “strategies of accommodation” that consist of the modification of 55 

walking patterns in order to adapt to the low friction footwear-floor interface (Patla, 56 

1991). The question thus arises: how these strategies interact and what kinds of corrective 57 

reactions occur in an attempt to avoid a fall. 58 

Conventional kinematic gait analysis of slip, trip, and fall events rely on angular 59 

position-time, velocity-time, or angle-angle presentations (e.g. Cham & Redfern, 2001; 60 

Fong et al., 2005). However, such presentations do not reveal the direct relationship 61 

between velocity changes and position (Burgess-Limerick et al., 1993; Kurz et al., 2005; 62 
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Van Uden et al., 2003; Winstein & Garfinkel, 1989). It is important to evaluate this 63 

relationship since the joint and muscle proprioceptors, and the visual and vestibular 64 

receptors provide sensory feedback on both velocity and position. This means that the 65 

multiple sensory cues will potentially compete for governance of the evoked behavioral 66 

response (Misiaszek, 2006). Furthermore, quantification of interjoint (e.g., thigh-shank) 67 

coordination is very difficult with the above-mentioned presentations (Burgess-Limerick 68 

et al., 1993; Davids et al., 2003; Scholz, 1990; Scholz  Kelso, 1989; Sparto et al., 69 

1997). Coordination analysis using relative phase dynamics can solve the above problems 70 

and provide a window of particular types of causal motor control processes that are not 71 

usually revealed by conventional time-based plots (Gottlieb et al., 1983; Hamill et al., 72 

1999; Heiderscheit et al., 1999; Kurz et al., 2005; Kwakkel & Wagenaar, 2002; Sparto et 73 

al. 1997; Van den Berg et al., 2000; Van Uden et al., 2003; Winstein & Garfinkel, 1989). 74 

Relative phase dynamics utilizes the displacements and velocities of the segments that 75 

surround a joint to quantify the joint’s coordination. For example, the continuous relative 76 

phase, a measure from relative phase dynamics, quantifies the coordination between the 77 

shank and thigh segments that compose the knee joint. Such a measure is appealing for 78 

quantifying signs of gait instability because it can reveal the compensatory reactions 79 

evoked in the lower extremity coordination patterns that may be due to changing task 80 

(obstacle clearance) and environmental (low friction) demands. 81 

Therefore, the purpose of this study was to use a coordination analysis to 82 

investigate the effects of shoe traction and obstacle height on lower extremity 83 

coordination during walking to better understand the control strategies adopted to avoid 84 

slippage following obstacle clearance in normal young adults. In this study, we examined 85 
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the intralimb phasing relationships between the foot, the shank and the thigh of the 86 

landing limb (Kurz et al., 2005). We hypothesized that stepping over obstacles with low 87 

shoe traction will challenge the motor control of the neuromuscular system and will 88 

affect intralimb phasing relationships. In this study, obstacle height was adjusted to 89 

percentages (0%, 10%, 20%, and 40%) of limb length to ensure that individuals of 90 

different heights would make the same qualitative adaptation in going over obstacles. 91 

92 
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2. Methods 93 

2.1. Participants 94 

Ten healthy young adult males between the ages of 18 and 35 from the general 95 

student community of the University of Nebraska at Omaha volunteered as participants 96 

(age: 25.8 ± 4.29 years; body mass: 82.8 ± 8.25 kg; height: 179.6 ± 6.34 cm; leg length — 97 

as measured from the right anterosuperior iliac spine to the right lateral malleolus: 95.6 ± 98 

4.49 cm; shoe size: 10). All participants were without appreciable leg length discrepancy 99 

and had no injuries or abnormalities that would affect their gait. Prior to testing, each 100 

participant provided an informed consent approved by the University of Nebraska 101 

Medical Center Institutional Review Board. 102 

 103 

2.2. Instrumentation 104 

A sagittal view of the right lower extremity was obtained for all trials using a 105 

Panasonic WV-CL350 (Osaka, Japan) video camera with a sampling frequency of 60 Hz. 106 

The video camera was located 8-meter perpendicular to the walking pathway. A zoom 107 

lens (COSMICAR TV, 8-48 mm zoom lens, COSMICAR/PENTAX Precision Co., 108 

Tokyo, Japan) was used in conjunction with the video camera to optimize image size and 109 

minimize perspective error. A light source (Pallite VIII using eight ELH 300 W tungsten-110 

halogen projection lamps at 120 VAC) was mounted with the camera lens in the center of 111 

the ring to better illuminate the reflective markers. 112 

Reflective markers were positioned on the participant’s right lower extremity, 113 

here referred to as the leading limb (i.e. the limb crossing the obstacle first). All 114 

positional markers were placed on the participants by the same examiner. Sagittal plane 115 
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marker placement was as follows: (1) mid-distance between the greater trochanter of the 116 

hip and the lateral joint line of the knee, (2) lateral joint line of the knee, (3) lateral 117 

malleolus, (4) outsole of the shoe approximately at the bottom of the calcaneus, and (5) 118 

outsole of the shoe approximately at the fifth metatarsal head. An additional marker was 119 

positioned at the obstacle to assist in determining the location of the obstacle in the field 120 

of view. 121 

The video images were stored on SVHS video tapes via a Panasonic AG-1970P 122 

video camera recorder, which was interfaced with a Magnavox TV for an instant 123 

qualitative evaluation of the video recording. The video data were transformed to digital 124 

format and digitized via the PEAK MOTUS video system (Peak Performance 125 

Technologies, Inc., Englewood, CO). A single camera was used because sagittal view 126 

measures of walking correspond well in two- and three-dimensions (Doriot & Cheze, 127 

2004; Eng & Winter, 1995). GRF data were also collected using a force platform. These 128 

data were presented elsewhere (Houser et al., 2008). 129 

Two pairs of men’s shoes (Pro-wing Joggers, size 10), with homogenous midsoles 130 

and rubber outsoles, were used in this experiment. The same shoes and shoe size were 131 

used for all participants to minimize any effects from the shoe characteristics on the 132 

results of the study. The shoe size of 10 was selected because it is the most common shoe 133 

size among males in USA. To decrease the COF of one pair of the shoes, without 134 

significantly modifying their weight, flexibility and general performance, 88 metallic 135 

one-half inch diameter disc thumbtacks were inserted into the outsole of both the left and 136 

right shoe. The thumbtacks were carefully placed in order to ensure that no part of the 137 

actual shoe was able to contact the ground during walking locomotion. They were also 138 
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roughed and cleansed to expose the metal originally covered with enamel. The 139 

thumbtacks increased the weight of the shoes by 25 g (475 g without the tacks vs. 500 g 140 

with the tacks). The pair with the high traction had dynamic COF (DCOF) of 0.7 and 141 

static COF (SCOF) of 0.8. The pair with the low traction had DCOF of 0.3 and SCOF of 142 

0.35. The two selected tractions were based upon previous literature (Perkins, 1978; 143 

Denoth, 1989) and test pilot work suggesting the high traction pair was a very safe shoe, 144 

while the low a borderline safe shoe. Both high and low traction shoes were roughed with 145 

20 passes of the 100 grit sand paper, and then the surfaces were cleansed with rubbing 146 

alcohol to remove from the outsoles any solvents or residues of the shoe manufacturing 147 

process. 148 

 149 

2.3 Experimental protocol 150 

Participants wore shoes provided by the investigator, and minimal clothing to 151 

achieve correct positioning of reflective markers by using the anatomical landmark 152 

points. They were given ample time to acclimate to the experimental set-up prior to 153 

testing. Walking trials were conducted on a 30-meter level oval track with a 0.6 meter 154 

wide lane; however, data were not recorded along the curved portion of the walkway. 155 

Data collection was performed along the straight 10-meter walkway section of the track; 156 

the force platform is embedded at the middle of this straight walkway. Walking speed 157 

was monitored around the location of the force platform and over a 3-m interval using a 158 

custom-made photocell timing system.  159 

During familiarization, the investigator asked the participants if there was any 160 

shoe discomfort that may alter their natural gait. If no problems were reported, the 161 
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participants proceeded in establishing a comfortable self-selected walking speed which 162 

was recorded. Based upon the participant’s self-selected walking speed, a range that 163 

allowed ±5% deviation of this speed was used for the subsequent testing and a trial was 164 

considered acceptable only when the walking speed was within this predetermined range. 165 

The investigator also asked the participants not to look at the floor to locate the force 166 

platform for proper right foot placement, as this could influence the participant’s natural 167 

walking. For this purpose, a foot placement marker was located approximately 7 m 168 

before the force platform to allow for a normal right foot contact with the force platform. 169 

This distance was determined through trial and error during the practice trials. Each trial 170 

was visually monitored to insure that the stride was normal and the foot was completely 171 

on the force platform. Data transfer from the cameras to the computer allowed for an 172 

inter-trial rest interval of one minute. 173 

All participants were asked to walk at their previously established self-selected 174 

speed under four different obstacle conditions. The first condition was walking on a level 175 

surface while the other three conditions were walking over obstacles of three different 176 

heights. The average height of the obstacles was approximately: 8-10 cm (low, 10% leg 177 

length), 18-20 cm (medium, 20% leg length) and 36-40 cm (high, 40% leg length). These 178 

obstacle heights were established based upon pilot work, previous literature and obstacle 179 

dimensions commonly encountered in the everyday environment (Chen et al., 1991; Chen 180 

et al., 1994; Chou & Draganich, 1997; Patla et al., 1991; Patla & Rietdyk, 1993; Patla et 181 

al., 1996). The 10% obstacle height characterizes door thresholds, the 20% obstacle 182 

height represents typical curbstones separating cars in parking lots and stair risers, and 183 

40% obstacle height corresponds to bathtub rims, where frequent falls occur especially 184 
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among the elderly. The obstacles were placed directly before the force platform so that 185 

the participant had to clear the obstacle with the right leg and land on the force platform. 186 

The obstacles were made of light weight wood so that if a participant stepped on or hit 187 

the obstacle by mistake while walking, the obstacle was destroyed. This minimized the 188 

risk of tripping and falling. All participants were required to complete the baseline and 189 

obstacle conditions with the two pairs of shoes (high and low traction outsole) as 190 

described previously. 191 

Each experimental condition (shoe traction  obstacle) consisted on ten trials for a 192 

total of eighty trials per participant. The order of the presentation of conditions was 193 

predetermined as follows: (1) low traction – 0%; (2) low traction – 10%; (3) low traction 194 

– 20%; (4) low traction – 40%; (5) high traction – 0%; (6) high traction – 10%; (7) high 195 

traction – 20%; (8) high traction – 40%.  Furthermore, participants were given several 196 

practice trials prior to each condition to familiarize themselves with the task and the 197 

environmental constraints. 198 

 199 

2.4 Data reduction and analysis 200 

Kinematic data were analyzed during the stance period only. All kinematic 201 

coordinates were scaled and smoothed using a Butterworth low-pass filter with a 202 

selective cut-off algorithm based on Jackson (1979). The cut-off values were 8-14 Hz. 203 

Subsequently, from the planar coordinates, foot, shank, and thigh angular displacements 204 

were calculated in a counter-clockwise direction relative to the right horizontal axis. 205 

From the angular displacements, the angular velocities were calculated using a finite 206 

difference approach. All kinematic angular displacements and velocities were normalized 207 
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to 100 points for the stance period using a cubic spline routine to enable mean ensemble 208 

curves to be derived for each participant and for each condition. The touchdown and toe-209 

off timing occurrences as well as the transition time (crossover) from braking to 210 

propulsion were identified from the anterior-posterior ground reaction force data using 211 

laboratory software. Since the kinetic and kinematic data files were time matched, the 212 

time of the transition (crossover) from braking to propulsion was used to evaluate each 213 

footfall for two periods: (1) heel contact to transition (absorption or braking period) and 214 

(2) transition to toe-off (propulsion period). It was decided to divide the stance period at 215 

the transition time (crossover) from braking to propulsion for two main reasons: (1) this 216 

event separates the absorption and propulsion periods, during which different kinematic 217 

strategies may exist (Bates et al.,1978), (2) the measurements over the entire stance can 218 

mask differences for a single period (Byrne et al., 2002). 219 

The angular kinematic data were then subjected to a coordination analysis (Kurz 220 

 Stergiou, 2004a, 2004b, 2004c; Kurz et al., 2005; Scholz, 1990; Stergiou, 2001a, 221 

2001b). Phase portraits for the sagittal foot, shank and thigh were generated. A phase 222 

portrait is a plot of a segment’s angular displacement versus its angular velocity (Barela 223 

et al., 2000; Winstein  Garfinkel, 1989). The angular displacements and velocities were 224 

normalized to their maximum absolute values (Van Emmerik  Wagenaar, 1996; Kurz  225 

Stergiou, 2004c). The resulting phase plane trajectories were then transformed from 226 

Cartesian (x, y) to polar (r, θ) coordinates, where the radius was r = (x2 + y2)1/2 and the 227 

phase angle was θ = tan-1 [y/x] (Kurz  Stergiou, 2002; Kurz et al., 2005; Rosen, 1970). 228 

Phase angles calculated from these trajectories had a range of 0° to 180°. Phase angles 229 

allow for the incorporation of angular displacements and velocities to examine 230 
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coordinative strategies. Subsequently, the normalized phase angles were used to 231 

determine the phasing relationships between the segments. The foot and the shank can be 232 

viewed as respectively rotating clockwise and counterclockwise around the ankle joint 233 

axis, while the shank and the thigh can be viewed as rotating clockwise and 234 

counterclockwise around the knee joint axis. Continuous relative phase represents the 235 

phasing relationships or coordination between the actions of the two interacting segments 236 

at every point during a specific time period (i.e., it depicts how the two segments are 237 

coupled in their movements while performing the task) (Barela et al., 2000; Hamill et al., 238 

1999; Heiderscheit et al., 1999, 2000; Kwakkel  Wagenaar, 2002; Scholz, 1990). 239 

Relative phase was calculated throughout the stance period by subtracting the phase 240 

angles of the corresponding segments: 241 

ΦSAGITTAL ANKLE RELATIVE PHASE = ΦFOOT – ΦSHANK 242 

and 243 

ΦSAGITTAL KNEE RELATIVE PHASE = ΦSHANK – ΦTHIGH 244 

Values close to 0° indicate that the two segments are moving in a similar fashion or in-245 

phase. Values close to 180° indicate that the two segments are moving in opposite 246 

directions or out-of-phase. The relative phase curves for each segmental relationship 247 

(ankle and knee) were averaged across trials, and mean ensemble curves were generated 248 

for each participant for all conditions. The participant mean ensemble curves were also 249 

averaged to generate group mean ensemble curves for all conditions. However, to 250 

statistically test differences between relative phase curves, it was necessary to 251 

characterize the curves by single numbers. Therefore, two additional parameters were 252 

calculated using the participant mean ensemble curves (Byrne et al., 2002; Hamill et al., 253 
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1999; Heiderscheit et al., 1999, 2000; Kurz  Stergiou, 2004b, 2004c; Stergiou et al., 254 

2001a, 2001b; Van Emmerik  Wagenaar, 1996). 255 

The first parameter was the mean absolute value of the ensemble relative phase 256 

curve values (MARP). This parameter was calculated by averaging the absolute values of 257 

the ensemble curve points for the designated periods (stance, absorption and propulsion): 258 





N

i N

elativePhas
MARP

1

Re
 259 

where N is the number of points in the relative phase mean ensemble. Functionally, a low 260 

MARP value indicated that the oscillating segments have a more in-phase coordinated 261 

relationship; a high MARP value indicates that the oscillating segments have a more out-262 

of-phase coordinated relationship. 263 

The second parameter was the deviation phase of the relative phase for the two 264 

interacting segments provides a measure of stability of the neuromuscular system. 265 

Deviation phase was calculated by averaging the standard deviations of the ensemble 266 

relative phase curve points for the designated periods (stance, absorption and propulsion): 267 

N

SD

DP

N

i

i
 1  268 

where N is the number of points in the relative phase mean ensemble and SD is the 269 

standard deviation of the mean ensemble at the ith point. Functionally, a low DP value 270 

indicates a more stable organization of the neuromuscular system (i.e., a less variable 271 

relationship between the two segments’ actions); a high DP value indicates less stability 272 

in the organization of the neuromuscular system. 273 

 274 
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2.5. Statistical treatment 275 

Group means and standard deviations were calculated for MARP and DP for each 276 

segmental relationship, for each period, and for each condition. A two-way repeated 277 

measures ANOVA (shoe traction  obstacle) was performed on the group means for 278 

MARP and DP. Statistical analysis was performed for each coordinative relationship 279 

(foot-shank and shank-thigh) and for each period (stance, absorption and propulsion). In 280 

tests that resulted in significant F-ratios (P < 0.05), post-hoc analysis was performed 281 

using Tukey tests. 282 

283 
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3. Results 284 

The shank-thigh (S-T) MARP group results were statistically significant for both 285 

factors (shoe traction  obstacle) during all the three periods (stance, braking, and 286 

propulsion; Tables 1 and 2). The S-T MARP values were significantly larger for the high 287 

traction shoe, and decreased as the obstacle height increased in both shoes. Specifically, 288 

the decrease in the S-T MARP values was symmetrical between obstacle conditions for 289 

the stance and the propulsive periods in both shoes. However, for the braking period this 290 

decrease was only noticeable from the level walking to the 10% obstacle conditions; the 291 

post-hoc analysis showed no statistical differences between the obstacle conditions. 292 

Regarding the foot-shank (F-S) MARP group results, no statistically significant 293 

differences were found between conditions. 294 

[Insert Tables 1 and 2 about here] 295 

The DP group results were statistically significant for both S-T and F-S segmental 296 

relationships for all three periods analyzed regarding the obstacle factor (Tables 1 and 2). 297 

For the shoe factor all S-T segmental relationships were significant, while for the F-S 298 

only the propulsive period was significantly different. All the DP group results increased 299 

in value as the obstacle height increased for both shoes. Furthermore, the S-T DP results 300 

were larger for the low traction shoes for all periods. 301 

Graphically, the thigh segment during the stance phase showed a segmental 302 

reversal which occurs towards the later part of stance (Figure 1a). Functionally, every 303 

time that a trajectory goes through zero a segmental reversal is observed. It is worth 304 

noting that the thigh exhibited a fairly constant velocity during the middle part of the 305 

stance period, especially in the no obstacle conditions. Constant velocity is depicted by 306 
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flat horizontal sections. However, spatial aspects of the phase portraits expressed the 307 

same general shape from one condition to the next. However, in level-walking (0% 308 

obstacle) and low-obstacle (10%) conditions, low traction shoes caused an additional 309 

curve segment to be developed within the original pattern during late stance. The shank 310 

segment phase portraits revealed no reversals, indicating a backward only rotation around 311 

the knee joint during the stance phase of walking (Fig. 1b). However, the foot behaved 312 

differently than the other lower extremity segments (Fig. 1c). The foot segment during 313 

stance displayed a cusp shape. Cusps in the foot trajectory path, when the velocity is near 314 

zero, indicate sudden interruption in the movement pattern. This is due to the fact that the 315 

foot remained flat on the ground for a period of time during midstance. The foot 316 

trajectories were more similar geometrically between conditions; however, the angular 317 

velocity of the foot segment appeared to increase during the later part of the stance period 318 

in the high traction condition, as compared to the low traction situation. This observation 319 

was graphically visible thought a more pronounced concave-down configuration during 320 

the later portion of the stance phase. 321 

[Insert Figure 1 about here] 322 

The group mean ensemble foot-shank (F-S) and shank-thigh (S-T) relative phase 323 

curves for the stance period are displayed in figure 2. In general, it can be observed that 324 

segmental relative phase relationships are non linear i.e., neither in-phase (0º values) nor 325 

out-of-phase (180º values) by a constant magnitude during stance. In addition, during 326 

level-walking, F-S and S-T relative phases began differently than for obstacle conditions. 327 

Indeed, both segmental relative phases began around 0º for the no obstacle conditions, 328 

whereas F-S relative phase began around -25º and S-T relative phase around +50º for the 329 



18 

obstacle conditions. Therefore, the effect of the obstacle on the relative phase caused the 330 

segments to be more out of phase at touchdown. 331 

The group mean ensemble F-S relative phase curves had similar configurations 332 

for all conditions (Figure 2a). All curves began with negative values (or negative zero 333 

values for the level-walking conditions) that indicated that the shank was leading the foot 334 

(i.e., the shank was moving faster in phase space) during the first initial portion of stance. 335 

Early in stance, the relationship between the foot and shank reversed. Reversal in the 336 

relationship between the two segments was evident by the local minimum in the relative 337 

phase graph. The positive slope after the local minimum indicated that the foot was 338 

leading the shank segment (i.e., the foot was moving faster in phase space). During mid-339 

stance, the foot-shank relationship became more out of phase, and the foot clearly was 340 

leading the shank (positive values: 25-50º). Moreover, there was not a distinct (unique) 341 

local maximum in the F-S relative phase. In fact, inspection of the F-S relative phase 342 

curve indicated that there were multiple fluctuations during midstance. Local minimums 343 

and maximums suggest a change in direction of the relationship between the two 344 

segments. During the late portions of the stance, the relationship between the foot and 345 

shank became progressively in-phase. 346 

The group mean ensemble S-T relative phase curves also displayed quite similar 347 

trends (Figure 2b). For the obstacle conditions, all curves began with positive values that 348 

indicated that the shank was leading the thigh. Immediately after the shank-thigh 349 

relationship became more in-phase (0º) during mid-stance. During late stance, the 350 

relationship between the shank and thigh became progressively out of phase with the 351 

thigh leading. A slightly different segmental relationship occurred for the level-walking 352 
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conditions. As previously mentioned, the S-T segments began more in-phase (i.e., close 353 

to zero degree). However, early in stance the relative phase became more-out-of-phase 354 

with the thigh leading the shank before returning to a more in-phase relationship 355 

throughout the middle portion of the stance period. During late stance, the relationship 356 

became progressively out of phase, similarly to what was observed in the obstacle 357 

conditions. 358 

[Insert Figure 2 about here] 359 

360 
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4. Discussion 361 

Both our graphical and statistical results revealed that stepping over obstacles of 362 

different height with shoe of varied traction may affect the motor control of the 363 

neuromuscular system and will affect intralimb phasing relationships. The partitioning of 364 

the stance period assisted in further understanding the strategies used and better evaluate 365 

the results functionally. 366 

Specifically, the phasing relationship between the foot and the shank segments 367 

was not affected by either shoe traction or obstacle height changes. Graphically, 368 

ensemble curves displaying the F-S relative phase support this statistical result (Fig. 4a). 369 

However, the more in-phase relationship observed at initial foot contact in walking-level 370 

conditions did change to become more out-of-phase in obstacle conditions. Furthermore, 371 

early in stance, the magnitude of the curves’ concavity was more prominent when the 372 

obstacle height was increased. Even though these differences were not found to be 373 

significant, probably due to the large similarities of the curves throughout the remaining 374 

portion of the braking and the stance periods, they may be important due to the increased 375 

danger of slipping during the braking period. Indeed, according to Perkins (1978), the 376 

most dangerous slipping is most likely to occur in this period due to a low initial vertical 377 

ground reaction force (GRF) at heel strike, which produces a small amount of friction. If 378 

friction is not sufficient during the braking period, an anterior slip of the foot would 379 

likely occur. This slip could be particularly dangerous due to the rapid transfer of weight 380 

to the landing foot. 381 

Contrary to F-S, S-T MARP showed significant differences for both factors 382 

during all periods. The introduction of low traction shoes had as a result a more in-phase 383 
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relationship. Furthermore, the increasing obstacle height resulted in a more in-phase 384 

relationship for both shoes. Thus, it seems that both independent variables affected the 385 

coordinative behavior of the system at the knee. The more in-phase S-T segmental 386 

relationship may indicate a tendency towards a behavioral change that eventually could 387 

result in the emergence of a new behavioral state (i.e., slipping and/or falling). Therefore, 388 

this relationship deserves more attention in future ergonomics studies that further want to 389 

explore the relationship between shoe-floor traction following obstacle clearance.  390 

In the present study, stability of the coordinated relationship between the two 391 

interacting segments was measured by DP which describes the variability of the relative 392 

phase. An interesting observation is that the increases in obstacle height resulted in 393 

significantly increased F-S DP values. Thus, even though the F-S relative phase remained 394 

similar (as indicated by the lack of differences for F-S MARP values), the F-S DP 395 

increased significantly as the obstacle height increased. This result can be explained as an 396 

increased instability based on the theoretical premises of the coordination analysis 397 

performed (Kurz & Stergiou, 2004b). For the shoe traction factor, only F-S DP values 398 

during propulsive period showed significant differences. The fact that DP increased for 399 

the F-S segmental relationship in the low traction shoes indicates instability and lack of 400 

coordination at the ankle joint during the propulsive period. This is further supported by 401 

the fact that the smaller F-S DP values during propulsion were present at the high traction 402 

conditions, which theoretically means that when the system is under normal preferred 403 

conditions (normal walking) it would be highly stable. Furthermore, the S-T DP 404 

increased as the obstacles height increased for both shoes in all periods. Moreover, the 405 

low traction shoe had generally larger S-T values. These findings further supported the 406 
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hypothesis that increased instability would be present when the obstacle height and shoe 407 

traction changed and became more unsafe. 408 

Previously, angle-angle diagrams have been used to depict the organization of the 409 

multiple degrees of freedom needed to complete one walking gait cycle (Grieve, 1968), 410 

and several investigators have suggested methods for quantifying the coordination that is 411 

qualitatively observable in these relative patterns (Sidaway et al., 1995; Sparrow et al., 412 

1987; Whiting and Zernicke, 1982). However, quantitatively understanding the control 413 

mechanisms cannot be achieved with this methodology alone (Burgess-Limerick et al., 414 

1993). The usage of phase portraits and subsequently of relative phase, allows the 415 

incorporation of both angular displacement and velocity to examine coordination and 416 

movement (Kurz  Stergiou, 2004a, 2004b, 2004c; Kurz et al., 2005; Kwakkel  417 

Wagenaar, 2002; Scholz, 1990). Functionally, this approach is advantageous since there 418 

is evidence that receptors exist within the muscles and tendons for controlling both 419 

displacement and velocity (McCloskey, 1978). This is a particular strength of the present 420 

study. 421 

However, we should also consider several limitations of our study. First and most 422 

importantly, the sample procedure lacks randomization. Indeed, from a practical and 423 

methodological point of view randomization was in fact difficult to achieve. Because the 424 

participants knew the shoe condition, it was not possible to eliminate the awareness of a 425 

potential slip/fall (while wearing shoes with low friction) or trip/fall (while avoiding 426 

obstacles). Accordingly, some caution with regard to generalization of the results must be 427 

taken due to the lack of randomization. On the other hand, in our pilot work we found 428 

that the order of the testing conditions did not reveal significant learning effects. 429 
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Additionally, participants were given one or more practice trials prior each condition to 430 

familiarize themselves with the task and the environmental constraints. Our results in 431 

terms of gait adaptations are also in agreement with those found in the literature (obstacle 432 

clearance strategies: e.g. Begg et al., 1998; Chen et al., 1991; corrective reactions to slip 433 

events: e.g. Perkins, 1978; Frederick, 1993; Cham & Redfern, 2001). 434 

A second limitation of the present study is the extent to which the findings can be 435 

generalized, as it is not possible to know how the laboratory slipping responses differed 436 

from those that occur in a non-laboratory environment (Brady et al., 2000). It has been 437 

proven that reproducing the unexpected nature of real-life slip, trip, and fall accidents in 438 

laboratory settings is quite difficult. Therefore, the conclusions reported here underline 439 

the importance of being conservative when applying research findings from slip, trip, and 440 

fall experiments using human participants to design criteria of environmental safety (e.g. 441 

friction requirements). 442 

However, the findings of this investigation can provide the necessary foundation 443 

to further investigate the coordinative control strategies utilized in more challenging 444 

environments that may actually be associated with slips and falls. Additionally, further 445 

investigation should be conducted to explore the anticipatory intralimb coordinative 446 

strategies leading up to the stance phase of gait, as such adaptations could be critical in 447 

order to successfully avoid slips, trips, and eventual falls. From an ergonomic 448 

perspective, such investigations can have crucial implications to slip, trip, and fall injury-449 

prevention strategies in occupational and non-occupational environments, and how a 450 

potentially hazardous situation is perceived. 451 

452 
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5. Conclusions 453 

Our approach provided information to understand how young healthy adults 454 

change their gait to reduce the likelihood of a slip following clearance of obstacles of 455 

varied heights and landing with shoes of low traction. The changes in phasing 456 

relationship and variability are possible indicators of alterations in coordinative behavior, 457 

which may emerge to reduce the risk to the participant when confronted with an 458 

environment characterized by low traction and high obstacles. Changes do not suggest 459 

that falling or slipping did or will occur. However, if shoe traction and/or obstacle height 460 

would have been more extreme, falling may have occurred. Qualitative analysis during 461 

data processing did reveal that slippage occurred at initial foot contact. This slippage was 462 

of the type “slip-sticks” as described by Standberg and Lanshammar (1981). These slips 463 

never resulted in obvious postural or upper extremity adjustments. Slipping also occurred 464 

late in the propulsive period just prior to toe-off. This slipping was of little consequence, 465 

due to majority of weight acceptance to the opposing limb (Perkins, 1978). 466 

467 
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Figure Captions 1 

 2 

Figure 1. Phase portraits (or phase planes) of the sagittal foot (a), shank (b), and thigh (c) 3 

motions from a representative trial for all conditions during stance. Black solid lines: low 4 

traction shoes; grey solid lines: high traction shoes. 5 

 6 

Figure 2. Relative phase curves for the sagittal foot-shank (a) and shank-thigh (b) 7 

segmental relationships from the same representative trial for all conditions during stance. 8 

Each curve is an ensemble average over all trials. The standard deviation curves are not 9 

represented on the graphs. Black solid lines: low traction shoes; grey solid lines: high 10 

traction shoes. Heel contact occurs at 0% of the stance phase, and toe-off occurs at 100% of 11 

the stance phase. 12 
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Table Captions 

 

Table 1. Group means (M) and standard deviations (SD) for MARP and DP. 

MARP: Mean Absolute value of the ensemble Relative Phase; DP: Deviation Phase of the 

relative phase). The values (in degrees) presented are for each coordinative relationship (F-

S: foot-shank and S-T: shank-thigh) and for each period (stance, braking, and propulsion). 

 : significantly different between shoes within the same obstacle height (p < 0.01). 

† : significantly different between shoes within the same obstacle height (p < 0.05). 

10,20,40% : significantly different between obstacle heights within the same shoe (p < 0.01). 

 

Table 2. F-ratios from the two-way ANOVA with repeated measures on both factors: shoe 

traction (s)  obstacles (o). MARP: Mean Absolute value of the ensemble Relative Phase; 

DP: Deviation Phase of the relative phase; F-S: foot-shank; S-T: shank-thigh. Fs: between 

shoes; Fo: between obstacles; Fso: interaction. 
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