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ABSTRACT 

The scope of this thesis project was to refine the development of live load distribution factors for 

tub girders. This was done in three stages. First, experimental data was gathered to assess live 

load distribution on the Amish Sawmill Bridge located in Fairbank, Iowa. Then, finite element 

analysis models were developed to benchmark against experimental data. Finally, a series of 

parametric studies were performed to explore the distribution factors of steel tub girders under 

various design conditions and to generate more accurate live load distribution factors. Results 

drawn from this research project demonstrate that press-brake-formed steel tub girders exhibit 

consistent performance and are a practical option in short span bridge construction. In addition, it 

was found that the current AASHTO LRFD Bridge Design Specifications can overestimate 

distribution factors for interior girders and fails to estimate distribution factors for exterior 

girders depending on girder spacing and length of bridge. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Press-brake-formed tub girder superstructures are a new technology and consist of 

modular galvanized shallow trapezoidal boxes, fabricated from cold-bent structural steel plate(s). 

In 2009, the Federal Highway Administration (FHWA) and the North American steel industry 

decided to develop a cost-effective short span steel bridge, up to 140 feet in length, with modular 

components that could be installed in a short period of time. Early investigation on press-brake-

formed steel tub girders began in October 2011 (Michaelson, 2014). Since then, more and more 

studies have been performed to improve: 1. Design, 2. Applications, 3. Constructability and 4. 

Evaluation of the steel tub girder system.  

There have been increased efforts to determine a design solution to utilize steel in short-

span bridge applications. Previous research has been conducted to try and utilize numerous tub 

girder designs in bridge applications. Researchers have found the steel tub girder design to be 

practical and cost-effective. The noteworthy advantage is that 95% of the girder system can be 

fabricated off-site and then transported to the bridge construction site. By using a press-brake to 

cold form the tub girders, manufacture costs are reduced significantly when compared to 

traditional fabrication processes for box girders. In addition, the bridge superstructure is 

lightweight, allowing low capacity equipment to be used during its construction (Taly and 

Gangarao, 1979; Nakamura, 2002; Michaelson, 2014; Kelly 2014; Gibbs, 2017). 

The American Association of State Highway and Transportation Officials (AASHTO) 

holds the current standards and specifications for bridge construction. A recent study performed 

at West Virginia University has shown that, although AASHTO standards for box girders work 

for designing press-brake-formed steel tub girders, the computation of LLDFs needs to be further 
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optimized (Gibbs, 2017). There are many different types of girders with different shapes 

constructed with either concrete or steel. All shapes contained in the Section 4: Structural 

Analysis and Evaluation Chapter of AASHTO LRFD Bridge Design Specifications Manual have 

different live load distribution factor models based on exterior beams or interior beams, except 

for steel tub girders which have one equation for either type of girder based on number of beams 

and number of designed lane (AASHTO, 2014). Assessment studies on the subject and 

experimental data suggest that even though AASHTO distribution factors may be able to design 

tub girder superstructures, they end up overestimating sections and therefore make the design 

project more expensive than it could be. 

The findings of the study in this thesis will propose an original contribution for this 

growing body of literature on tub girder superstructures by improving live load distribution 

factors for press-brake-formed steel tub girder systems. Furthermore, providing 

recommendations of practical value for the design of the system is expected to be beneficial for 

engineers, manufacturers and the public. 
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1.2 PROJECT SCOPE & OBJECTIVES 

The work presented in this thesis was to assess and refine AASHTO live load distribution 

factors for tub girders and evaluate its effectiveness and drawbacks in order to propose more 

accurate distribution factors for its computation and design. The objectives of this work were 

achieved in the following manner: 

• Assessment of AASHTO specifications for box section flexural members (tub girders), as 

well as the computation of live load distribution factors (LLDFs) using AASHTO 

standards. 

• Finite element analysis of Amish Sawmill Bridge, located in Fairbank, Iowa, to 

benchmark against experimental data in order to generate analytical live load distribution 

factors. 

• Field performance assessment of Amish Sawmill Bridge and strain data collection from 

Gibbs (2017) to validate finite element model presented in this study as well as 

description of experimental investigation and testing procedures conducted by Gibbs 

(2017). 

• Comparison of analytical and experimental LLDFs using AASHTO specifications. 

• Parametric study to understand which parameters affect the computation LLDFs for steel 

tub girders and to compute more accurate LLDFs for AASHTO limit state evaluations. 
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1.3 ORGANIZATION 

• Chapter 2: Literature Review 

o This chapter summarizes previous studies on LLDFs, AASHTO distribution 

factors as well as previous research performed on cold-bent tub girder 

applications. 

• Chapter 3: Finite Element Modeling Techniques 

o This chapter outlines the finite element modeling techniques utilized for this 

research project. 

• Chapter 4: Benchmark Experimental Study 

o This chapter summarizes the Amish Sawmill Bridge field test procedures to 

assess LLDFs. Additionally, data validation is described in this chapter which was 

performed to benchmark experimental data against finite element model. 

• Chapter 5: Parametric Assessment of Live Load Distribution Factors 

o This chapter describes the matrices of parametric assessments along with both 

constant and varied parameters. The results and achievements of this study are 

also discussed in this chapter. 

• Chapter 6: Summary & Concluding Remarks 

o This chapter provides a summary of the scope of work and objectives of this 

project as well as suggestions for future research in LLDFs for tub girders. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

Assessment studies on tub girders and experimental data on tub girder live load 

distribution factors suggest that even though AASHTO distribution factors are functional for the 

design tub girder superstructures, the specifications result in overestimating computation of 

LLDFs (Gibbs, 2017). This overestimation results in a design project that is more expensive and 

not maximally cost effective. These findings indicate the need for a review of current methods 

and discussion of possible improvements to current AASHTO specifications. The following 

literature review discusses the history and investigative research findings of steel-tub girders and 

leads us to discussion of future areas of research.  

2.2 HISTORY OF COLD-BENT STEEL GIRDERS IN BRIDGE APPLICATIONS 

2.2.1 Prefabricated Press-Formed Steel T-Box Girder Bridge System (Taly & Gangarao, 1979) 

The steel-tub girder design originated when Taly and Gangarao (1979) proposed a press-

brake to bend an A36 3/8-inch steel plate to form a tub girder in a short-span modular bridge 

system. Since this design was innovative, the AASHTO manual did not provide specifications 

for bridge members using a press-brake cold form in the shape of tub girders. To account for 

various bridge widths, without AASHTO specifications, the researchers proposed that several 

prefabricated tub girder units should be placed adjacent to one another and joined with a 

longitudinal closure placement. The ends of the tub girder beams were closed off with a 3/8-inch 

thick steel plate diaphragm that was completely welded around the perimeter of the tub girder. 

To provide additional support, bearing stiffeners were provided at the tub girder ends along with 

the 3/8-inch thick diaphragm as shown in the following figure.  
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Figure 1: Taly and Gangarao’s Proposed Superstructure System (Taly & Gangarao, 1979) 

Ultimately, Taly and Gangarao (1979) estimated that 95% of the bridge, using press-

brake cold bent girders, could be fabricated off site. Bridge fabrication costs could be 

significantly reduced in comparison to traditional fabrication processes for tub girders. Although 

that was a breakthrough and promising design, AASHTO still had not developed specifications 

for such a design to make the technology standardized and usable. 

2.2.2 Composite Girders with Cold-Formed Steel U-sections (Nakamura, 2002) 

Like Taly’s and Gangarao’s proposed design, Nakamura (2002) proposed a bridge 

superstructure system that exploited a press-brake to cold form steel tub girders shown in Figure 

2. Nakamura (2002) proposed a continuous superstructure system with multiple intermediate 

piers to support the deck. The researcher designed the tub girders to be filled with concrete and 

bars to compensate for the possible buckling of the bottom flange at pier locations, resulting in 

an increased required strength against buckling at the support locations.  
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Figure 2: Nakamura’s Proposed Bridge System (Nakamura, 2002) 

Nakamura (2002) performed several bending tests and concluded that the tub girder 

behaved as a composite beat at the center span, making the system feasible due to its adequate 

bending strength and deflection capacity. The main drawback to Nakamura’s design was that the 

tub girders required additional steel compared to conventional plate girders. However, Nakamura 

suggested that the costs could be offset if decreased fabrication costs were achieved, thus 

resulting in a more economical design. 

2.2.3 Folded Plate Girders (Burner 2010 & Glaser 2010) 

Burner (2010) and Glaser (2010) also researched cold-bent steel girders and the proposed 

system utilizes an inverted tub girder where the flanges of the girder are bent inwards (See 

Figure 3). The concrete deck is then cast on the wider center flange as opposed to previously 

developed systems, where the deck is cast on the two smaller exterior flanges. The main 

advantages of this system include ease of inspection, easier maintenance of the folded plate 

girder, and safe work area during construction due to the wider flange being the top surface.  
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Figure 3: Bridge System Proposed by Burner and Glasser (Burner, 2010) 

2.2.4 TxDOT Rapid Economical Bridge Replacement (Chandar et al., 2010) 

Alternatively, the Texas Department of Transportation (TxDOT) developed a tub girder 

bridge design which consisted of a 5-foot-wide bottom flange with a 3-foot-deep web, as shown 

in Figure 4. The proposed bridge system has a shallower bridge superstructure with shallow steel 

tub girders, shear studs welded to the top flanges and reinforced concrete deck casted on top 

(Chandar et al., 2010).  

 

Figure 4: TxDOT Tub Girder Design (Chander et al., 2010) 
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The designed displayed in Figure 4 was developed to construct a bridge located 75 miles 

north of Austin on I-35. The main goal of the project was to create an aesthetically pleasing 

design as well as provide a rapidly constructible and cost-efficient structure. It is important to be 

noted that the girder system employed conventionally fabricated tub girders as opposed to cold-

bent steel tub girders.  

2.3 BEHAVIORAL STUDIES ON TUB GIRDERS  

2.3.1 Development and Feasibility Assessment (Michaelson, 2014) 

The innovative publication that combines press-brake-formed manufacturing techniques 

with steel tub girders, while creating a set of standards for its use, originates from Michaelson 

(2014). Michaelson produced a set of standardized press-brake-formed tub girder designs which 

would be fabricated from commonly sized steel plates that mills produce regularly. The focal 

concept was that the construction of such girders would be feasible and economic. The author 

performed a series of laboratory experiments that tested the tub girders both compositely and 

non-compositely.  

 
Figure 5: Michaelson’s Press-Brake-Formed Steel Tub Girder System (Michaelson, 2014) 
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Michaelson (2014) performed several studies assessing the behavior of the composite 

systems. The objective of these studies was to compare the testing results to the AASHTO LRFD 

specifications to determine if the specifications were reasonably applicable to this new design. It 

was discovered that the AASHTO LRFD specifications were conservative in computing the 

nominal capacity of the modular composite specimens. Following this data collection, 

Michaelson (2014) derived an improved, simplified expression to compute the nominal capacity 

of the proposed system which is shown below: 

𝑀𝑛 = {
𝑀𝑝

𝑀𝑝 (1.025 − 0.25
𝐷𝑝

𝐷𝑡
)            

𝐷𝑝 ≤ 0.1 𝐷𝑡
0.1𝐷𝑡 < 𝐷𝑝 ≤ 0.42𝐷𝑡

 

Equation1: Nominal Capacity Equation (Michaelson, 2014) 

Where, 

𝑀𝑛 is the nominal flexural resistance 

𝑀𝑝 is the plastic moment of the composite section 

𝐷𝑝 is a distance from the top of the concrete deck to the neutral axis of the composite section at  

      the plastic moment 

𝐷𝑡 is a total depth of the composite section 

After the performance of the proposed system was fully evaluated, a feasibility analysis 

was performed on different tub girder sizes against traditional analysis, such as steel rolled 

beams, to determine if the tub girders could be a viable design solution for superstructures using 

steel in short span bridge applications. Michaelson’s specimens were able to withhold greater 

loads than the non-composite specifies. That outcome was achieved due to the specimens being 

governed by the section’s ductility. The average of the maximum applied load on specimens 

tested by the researcher was of 304 kips with maximum deflection of 3.1 inches at failure during 

his lab tests.  
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Figure 6: Typical Failure mode for Composite Specimens (Michaelson, 2014) 

Michaelson (2014) discovered that tub girder systems employing a 120” x 5/8” plate 

worked for spans up to 80 feet, exceling in performance, and competitive with other construction 

solutions, especially in applications with span lengths 60 feet and less. Michaelson (2014) 

advises that while AASHTO standards for tub girders conservatively estimates live load 

distribution, the economic competitiveness of the proposed system is maximized. An increased 

accuracy in determining live load distribution factors would result in increased span applicability 

of Michaelson’s proposed system. 

2.3.2 Evaluation of Non-Composite Tub Girders (Kelly, 2014) 

In addition to the work detailed in Michaelson (2014), further studies and testing were 

completed to develop a complete understanding of the stability and torsional behavior of the non-

composite press-brake-formed steel tub girders. Kelly (2014) included destructive flexural 

testing of two non-composite girders to physically validate their buckling capacity and behavior, 

as well as developing finite element models to simulate the behavior of the specimens to 

compare with the experimental data. 
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The goal of the study in Kelly (2014) was to use the experimental data along with the 

finite element analysis results to determine a need for bracing options and develop 

recommendations for future research. Moreover, Kelly concluded that initial imperfections and 

other second-order effects can greatly contribute to the loss of capacity for the specimens.  

2.3.3 Field Performance Assessment (Gibbs, 2017) 

More recently, Gibbs (2017) performed a field test and assessment of the performance of 

press-brake-formed steel tub girders of the Amish Sawmill Bridge in Buchanan County, Iowa, 

and compared it to analytical testing completed through finite element modeling. The Amish 

Sawmill Bridge is a 52-foot long, single span press-brake-formed steel tub girder bridge. 

Construction on the bridge initiated late in the summer of 2015 and was finished in December 

2015, Figure 7.  

 
Figure 7: Photo of the Amish Sawmill Bridge (Gibbs, 2017) 
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The press-brake-formed tub girders are made of galvanized steel and have the following 

dimensions: 

• 96-inch-wide by ½-inch thick steel plates 

• 7 ½-foot-spacing girders 

• 6 steel diaphragms, two between each girder, with 17 ½ feet from each end 

• 31-foot-3-inch-wide concrete deck with thickness of 8 ½ inches 

 
Figure 8: Dimensional Cross-Section of Single Girder (Gibbs, 2017) 

 

Figure 9: Cross-Section of Amish Sawmill Bridge (Gibbs, 2017) 
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Gibbs (2017) discovered that the magnitude of bottom flange bending stress varied 

between the FEA and filed test due to the difference in boundary conditions between the finite 

element model and the field; the two sets of results exhibited correlated behavior. Additionally, 

Gibbs’ work aimed to compare LLDFs calculated from the experimental and analytical testing to 

LLDFs calculated using AASHTO specifications. The study concluded that AASHTO 

specifications for calculating LLDFs for tub girders can safely be applied to press-brake-formed 

tub girders, but are very conservative, resulting in an over-estimation of the materials to be used.  

2.4 HISTORICAL DEVELOPMENT OF LIVE LOAD DISTRIBUTION FACTORS 

2.4.1 General Overview on AASHTO Live Load Distribution Factors 

LLDFs have been introduced to American bridge codes in the first edition of AASHO at 

the time, in 1931. In 1994, AASHTO adopted the LRFD Bridge Design Specifications, which 

contain a new procedure for computation of distribution factors that embodied the first major 

change to these equations since 1931.  

Even though the provisions of the AASHTO Standard Specifications allow for more 

detailed analyses of various bridge systems, the use of simplified methods to determine bridge 

load response were employed. These simplified methods involved the use of wheel load 

distribution factors. Specifically, these factors are used in combination with a line-girder analysis 

to determine the maximum number of wheels that would be resisted by a given girder.  

Most of the distribution factors empirical equations have the following form: 

𝑔 =
𝑆
𝐷

 
Equation 2: General LLDFs Computation 

Where, 

𝑔 is the distribution factor 

𝑆 is the center-to-center girder spacing 
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𝐷 is a constant varying with the bridge type and number of loaded lanes 

2.5.2 Previous Studies on Live Load Distribution Factors 

It has been discovered that different parameters, such as girder spacing, girder location, span length 

and girder stiffness affect the computation of live load distribution in slab-and-beam bridges. Other 

parameters are noted to have influence in distribution factors; however, their effect is considered negligible. 

In addition, it is important to mention that studies performed in the past, regarding live load distribution, are 

based on I-girder bridges due to their popular shape. (Eom & Nowak, 2001; Kim & Nowak, 1997; 

Mabsout, Tarhini, Fredick & Kobrosly, 1997; Newmark and Siess, 1942; Newmark, 1949; Nutt, Schamber, 

Zokaie, 1988; Tarhini and Frederick, 1992; Tarhini, Mabsout, Kobrosly, 1996; Walker, 1987; Zokaie, 

2000). 

2.4.2.1 Girder Spacing  

Girder spacing has been determined to be the most influential parameter affecting live load 

distribution since early work by Newmark (1938). Newmark and Siess (1942) developed simple, empirical 

equations expressing distribution factors as a function of girder spacing, span length, and girder stiffness.  

Later, the effects of span length and girder stiffness were neglected, and the distribution factors were derived 

solely as a linear function of girder spacing (Newmark, 1949). These relationships are still incorporated in 

the AASHTO LRFD Bridge Design Specification with some modifications since their implementation. 

In addition, sensitivity studies presented in NCHRP Project 12-26 (Nutt et al., 1988) and analytical 

studies by Tarhini and Frederick (1992) have shown that, whereas girder spacing significantly affects live 

load distribution characteristics, the relationship is not linear as implied by the Equation 2, and consequently 

does not correlate accurately with the AASHTO Standard Specifications. The S/D factor consistently 

overestimates the actual live load distribution factors. 
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2.4.2.2 Girder location  

Interior and exterior girders have an influence on live-load distribution factors, according to Walker 

(1987). Walker’s distribution factors were used to calculate an equivalent value of D (as used in the S/D 

formulas) that would have produced the same distribution factor. Results confirmed that the S/D factors 

overestimated actual distribution to a reduced magnitude in exterior girders. Additionally, for bridges with 

five equally spaced girders, the calculated value of D was greater for the center girder than the value for the 

first interior girder. In addition, Zokaie (2000) discovered that exterior girders are more sensitive to truck 

placement than interior girders. In order to overcome the issue, a combination of these two methods is 

incorporated into the LRFD Specifications. The lever rule is used for cases involving one traffic lane and a 

correction factor is used for two or more traffic lanes. 

2.4.2.3 Span Length  

Span length has been determined to share a non-linear relationship with girder distribution factors 

(Nutt et al., 1988; Tarhini and Frederick, 1992). The study conducted by Nutt et al. (1988) revealed that the 

non-linear nature of this relationship was consistently most evident in interior girders compared to exterior 

girders, throughout the span lengths tested. Tarhini and Frederick (1992) discovered that, accounting for the 

increased potential number of vehicles with a larger span length, there was a quadratic increase in the 

distribution factor. With finding this relationship, they proposed a function of girder spacing (S) and span 

length (L) be used to compute distribution factors: 

( )
10

725.1021.000013.0 2 +
−+−=

SSLLDF  

Equation 3: Distribution Factor Equation (Tarhini and Frederick, 1992) 

Where, 

𝐷𝐹 is the distribution factor 

𝑆 is the center-to-center girder spacing 
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𝐿 is the length of the bridge 

2.4.2.4 Girder Stiffness 

Various studies have indicated that relative stiffness has a negligible effect on live load distribution 

(Newmark & Siess, 1942; Nutt et al., 1988; Tarhini & Frederick, 1992). In the reviewed studies, different 

parameters of stiffness were assessed, but findings were comparable.  

Earlier works of Newmark and Seiss (1942) expressed the amount of live load distributed across 

individual bridge girders by discussing relative stiffness of the girder compared to the stiffness of the slab, 

expressed by the dimensionless parameter H.  

aEI
IEH bb=  

Equation 4:Distribution Factor Equation (Newmark and Seiss, 1942) 

Where, 

Eb is the modulus of elasticity of the material of the beam 

Ib is the moment of inertia of the cross section of the beam 

a is the span length  

E is the modulus of elasticity of the slab material  

I is the moment of inertia per unit of width of the cross section of the slab 

Results, using parameter H, revealed that this relative stiffness did have a small effect on live load 

distribution. In sequential literature produced by Newmark and Siess (1942), it was clarified that the range 

of H for a particular type of bridge is small enough that this variable can usually be neglected. 

Nutt et al. (1988) used a different parameter to define girder stiffness with similar results. In this 

study, girder stiffness was defined by parameter Kg,: 
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2AeIKg +=  
Equation 5: Parameter K Equation (Nutt et al., 1988) 

Where, 

I is the moment of inertia of the cross section of the beam 

A is the area of the girder cross section  

e is distance between centers of gravity of the slab and beam 

In order to confirm that this was an acceptable means of quantifying girder stiffness, individual 

values of moment of inertia, area, and eccentricity were varied, while maintaining a constant value of Kg,. 

Findings exhibited that if Kg, was held constant, varying individual parameters was relatively 

inconsequential, with only 1.5% difference noted. By defining girder stiffness in this manner, Nutt et al. 

(1988) found there was a significant relationship between girder stiffness and live load distribution. 

However, the effect of increasing the distribution factor by increasing girder stiffness was largely reduced 

when increasing the span length, as increasing the span length decreases the distribution factor. Since the 

girders used in longer span bridges often possess larger stiffness values, the two parameters were reduced. 

The effects of varying torsional stiffness were also evaluated in this study with results showing this 

parameter caused only a 3% difference on girder distribution factors. 

 In more recent studies, Tarhini & Frederick (1992) studied the impact of changes in moment of 

inertia of the cross section. Changes, such as doubling the cross-sectional area of the girder and altering the 

thickness of the slab, resulted in approximately a 5% variance in comparison to the initial design, which was 

considered to be an insignificant effect.  

2.4.2.5 Continuity Conditions  

Nutt et al. (1988) examined the difference in distribution factors between simple span and two-span 

continuous bridges. The two-span bridges that were analyzed had two equal length spans, five girders, and 

were not skewed.  The results exhibited that the distribution factors obtained for the two-span bridges were 
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up to 11% higher than the distribution factors that resulted from the corresponding simple-span bridges. By 

examining the average increase in distribution factor between simply- supported and two-span continuous 

bridges, Nutt et al. (1988) recommended that a distribution factor of 1.10 be used for all bending moments. 

Zokaie (2000) also researched the continuity conditions effect on live load distribution factors. The 

author states that there is a 5% variance between positive moments and 10% variance between negative 

moments for simple span versus continuous bridges, though, it is assumed that moment redistribution will 

cancel this effect and no correction factor is recommended. The formulas for distribution factors are 

therefore considered to be directly applicable to continuous span bridges and it is recommended that the 

average length of the adjacent spans be used in the formulas.  

2.4.2.5 Deck Thickness  

There are conflicting research findings regarding the relationship of concrete deck 

thickness and live load distribution. An earlier article by Newmark (1949) reported that since 

deck thickness directly influences relative stiffness, there will be a resulting impact on wheel 

load distribution. However, Tarhini & Frederick researched varying concrete slab thicknesses, 

from 5.5 in. to 11.5 in., where analyses indicated varying thickness levels had a negligible 

influence on live load distribution (1992). Nutt et al. (1988) also researched varying concrete 

slab thicknesses, 6 in. and 9 in., and determined the 10% difference to be a small difference, but 

they did include this parameter in the recommended distribution factor equations contained in 

NCHRP Project 12-26.  

2.4.2.6 Skew 

A singular study by Nutt et al. (1988) has investigated the impact of skew on live load distribution. 

Findings indicated skew did impact live load distribution by decreasing the wheel load distribution for 

moment as well as increasing the shear force dispersed to the obtuse corner of the bridge. They also 
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discovered this effect to be non-linear and stated the effect would be larger for increasing skew. As a result 

of their sensitivity studies, two correction factors for skewed bridges were developed. One suggested 

correction factor is to be used for moment and the second is to be applied to the distribution factor for shear 

in the obtuse corner of the bridge.  These correction factors are a function of girder spacing, span length, slab 

thickness, transformed moment of inertia of the girder, transformed area of the girder, girder eccentricity, 

and skew angle.   

2.5 AASHTO LIVE LOAD DISTRIBUTION FACTORS (LLDFS) FOR BOX GIRDERS 

2.5.1 AASHTO Empirical Approach  

AASHTO LRFD Design Specifications includes live load distribution factors for several 

girder shapes. These factors provide distributed moment along a girder, which are needed for 

designing bridges. The parameters contained on AASHTO specifications for box girders are 

unknown and thereby unfeasible and overestimating. Furthermore, AASHTO model for tub 

girders utilizes only one equation to determine distribution factors on interior and exterior 

girders.  

Table 1 through Table 3 present the distribution factors in the AASHTO Bridge Design 

Specifications 2014 organized based on bridge type. 
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Table 1: AASHTO LRDF Table 4.6.2.2.2b-1 - Distribution of Live Loads Per Lane for 
Moment in Interior Beams 
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Table 2: AASHTO LRFD Table 4.6.2.2.2b-1 - Distribution of Live Loads Per Lane for 
Moment in Interior Beams (Continued) 
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Table 3: AASHTO LRFD Table 4.6.2.2.2b-1 - Distribution of Live Loads Per Lane for 
Moment in Exterior Beams 
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The current AASHTO model, used for computing LLDFs for tub girders, is shown as 

well as its set of assumptions and constraints. The following equation can be found on AASHTO 

LRFD Bridge Design Specifications Manual, Chapter 4 and showed in the previous tables. 

𝐷𝐹 = 0.05 + 0.85
𝑁𝐿

𝑁𝑏
+

0.0425
𝑁𝐿

 

Equation 6:Concrete deck on Multiple Steel Box Girders LLDFs Equation (AASHTO, 2014) 

Where, 

DF  is the 𝑙𝑖𝑣𝑒 𝑙𝑜𝑎𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑁𝐿𝑁𝐿 is the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑖𝑔𝑛 𝑙𝑎𝑛𝑒𝑠 𝑎𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑇𝑎𝑏𝑙𝑒 4.6.2.2.2𝑏−1 

𝑁𝑏𝑁𝑏 is the𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑖𝑟𝑑𝑒𝑟𝑠 

• Assumption 1. Bearing lines shall not be skewed. 

• Assumption 2. Inclination of the web plates to a plane normal to the bottom flange shall 

not exceed a 1 to 4 slope. 

• Assumption 3. The cantilever overhang of the concrete deck, including the curb and 

parapet, shall not be greater than either 60 percent of the average distance between the 

centers of the top steel flanges of adjacent box sections (see Figure 10) or 6.0 feet. 

• Assumption 4. The distance taken at midspan shall neither be greater than 120 percent 

nor less than 80 percent of the distance center-to-center of the flanges of each adjacent 

box (see Figure 10).  

• Assumption 5. If nonparallel box sections are used, the distance center-to-center of the 

flanges of each adjacent tub girders shall neither be greater than 135 percent nor less than 

65 percent. 
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Figure 10: Center-to-Center Flange Distance (AASHTO, 2014) 

• Constraint 1.  AASHTO specifies the range of applicability of the live load distribution 

equation for Concrete Deck on Multiple Steel Box Girders, as follows: 

0.5 ≤
𝑁𝐿

𝑁𝑏
≤ 1.5 

Where, 

𝑁𝐿 is the number of design lanes as specified in Table 4.6.2.2.2b-1 

𝑁𝑏 is the number of girders 

Furthermore, AASHTO specifications make use of multiple presence factors to account 

for multiple lanes loading simultaneously on the bridge (See Table 4). It is important to mention 

that the multiple presence factors are not to be used when evaluating fatigue, so that one design 

truck is used, regardless of the number of design lanes. 

 

Table 4: AASHTO LRDF Table 3.6.1.1.2-1 Multiple Presence Factors, m 

Number of Loaded 
Lanes 

Multiple 
Presence 

Factors, m 

1 1.20 
2 1.00 
3 0.85 

>3 0.65 
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2.5.2 AASHTO Refined Analysis  

Although the utilization of the empirical models described in this chapter is the most 

common method of determining distribution factors, AASHTO LRFD specifications allow the 

use of more refined analysis techniques to determine the transverse distribution of wheel loads in 

a bridge superstructure. 

The first level of refined analysis permitted in the AASHTO LRFD specifications is the 

utilization of computer aided techniques in order to determine appropriate wheel load 

distribution factors. More specifically, computer software which simplifies bridge behavior using 

influence surface or influence section concepts, which are then used to determine distribution 

factors. Detailed computer analysis may be used for bridges that do not meet the AASHTO 

geometric limitations required for the use of simplified distribution factors. In this case, the 

actual forces occurring in the superstructure are calculated making the use of distribution factors 

unnecessary. 

It is worth mentioning that if either method is used, it is the designer’s responsibility to 

determine live loads critical locations. 

2.6 CONCLUSION 

Based on the results and conclusions drawn from this literature review, press-brake-

formed steel tub girders are expected to exhibit consistent performance and are a practical option 

in the short span bridge industry, that prove to be reliable. However, more accurate specifications 

and mathematical models for live load distribution factor calculations need to be developed for 

the optimization of tub girder design. Assuming a more optimized design is developed, press-

brake-formed steel tub girder bridges are expected to become even more cost-beneficial, faster to 

fabricate and section-material-saving due to its efficient design.  
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CHAPTER 3: FINITE ELEMENT MODELING TECHNIQUES 

3.1 INTRODUCTION 

This chapter outlines the finite element modeling techniques used for the research 

project. Details such as element type and material type, mesh discretization, boundary conditions 

used, and load applications are discussed in this chapter. In addition, the methods used to 

compute deflections and distribution factors can be found in this chapter. Finite element analysis 

was performed in this project using the commercial finite element software suite ABAQUS/CAE 

6.14 by Dassault Systèmes. Modeling results from ABAQUS were benchmarked against 

experimental data from the Amish Sawmill bridge located in Fairbank, Iowa, (Gibbs, 2017) to 

evaluate their validity and accuracy in Chapter 4 of this thesis. 

3.2 ELEMENT SELECTION CRITERIA 

ABAQUS provides a large elements library for three-dimensional stress analysis such as 

T2D2, S4R and C3D8R amongst others. It is crucial to define the suitability of the selected 

element type for the given research model, steel plate girders. According to Michaelson (2014), 

S4R shell elements are accurate in modeling the physical behavior of steel plate girders. S4R 

elements were used to simulate the girder, deck and bearing stiffeners in all finite elements 

model for this research project. The S4R element is a 4-node multi-purpose shell element 

designed to provide accurate solutions for both thin and thick shells, using classical shell theory 

(Kirchoff) for thin shells as well as thick shell theory (Mindlin). In addition, S4R employ 

reduced integration schemes; only one Gauss integration point is used to form the element 

stiffness matrix, therefore, yielding advantage over traditional shell elements due to its reduced 

computing time and storage requirements. 
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 Although the S4R proves to be an efficient element for modeling physical behavior of 

both noncomposite and composite steel plate girders (Yang, 2004; Roberts, 2004; Righman, 

2005), the primary disadvantage of using S4R and its reduced integration is that the deformation 

modes may cause no strain at integration points, leading to inaccurate results if these no-strain 

modes propagate through the structure. This phenomenon is known as hourglassing, and though 

this issue might seem detrimental to the results, it can be easily prevented by the user adding 

artificial stiffness associated with no strain deformation modes under the “Section Controls” on 

ABAQUS. In order to model the composite interaction between the steel girders and the concrete 

deck, node-to-node multiple point constraints (MPC) were used. MPC allowed the degrees of 

freedom between the deck nodes and the girder nodes to be restrained.  

3.3 MATERIAL PROPERTIES 

In structural analysis, strain is a phenomenon with nonlinear behavior. Although this 

phenomenon can be simply observed as nonlinear, the incorporation of such behavior to predict 

strain values and live load distributions can be difficult if stresses exceed the material yield point. 

In order to overcome the issue, Eom and Nowak (2001) tested 17 steel I-girder bridges in 

Michigan and concluded that girders under the application of live load presented linear, elastic, 

and isotropic behavior throughout their study when maximum stress values, for both steel and 

concrete, are below the yield stress of steel and the compressive strength of concrete. Therefore, 

it was assumed that the model created for this research project followed such material properties.  
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Details of the material properties as follows: 

For reinforced concrete, which was taken to have a compressive strength of 4.0 ksi, 

according to the previsions of AASHTO LRFD Section 5.4.2.4, the modulus of elasticity 

of concrete was determined to be 3640ksi. In addition, according to AASHTO LRFD 

Section 5.4.2.5, and Poisson’s ratio to be 0.2. 

 

For steel, which was taken to have a yield strength of 50ksi, according to the previsions 

of AASHTO LRFD Section 6.4.1, the modulus of elasticity of steel was taken to be 

29000 ksi and Poison’s ratio to be 0.3. 

3.4 MESH DISCRETIZATION 

AASHTO LRFD Section 4.6.3.3 describes specifications that should be followed when 

modeling beam-slab bridges. The AASHTO guidelines states that the aspect ratio of finite 

elements mesh measure should not exceed 5.0. In addition to such restriction in mesh proportion, 

the mesh elements should not have abrupt changes in its shape and size. In addition, it should be 

mentioned that research by Michaelson (2014) has demonstrated that these mesh densities 

precisely represent the composite steel bridge load response as well as attaining accurate results 

while adhering to AASHTO LRFD specifications. 
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For the model of the Amish Sawmill Bridge in this study, the mesh discretization dimensions 

utilized can be found as follows: 

• 210 elements along the length of the bridge 

• 116 elements along the width 

• Each deck element is approximately 3 inches by 3 inches 

• 2 elements along the widths of the top flanges 

• 3 elements along the bend region 

• 7 elements along the flat portions of the webs 

• 7 elements along the flat portions of bottom flanges 

• Steel channel diaphragms were discretized through trial and error method until desired 

mesh achieved 

• Connection plates were discretized to match each girder mesh 

 
Figure 11: Mesh Discretization (Fully Rendered Profiles) 
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3.5 BOUNDARY CONDITIONS 

In order to satisfy the boundary conditions for the problem, the hinge-roller conditions 

were applied, due to its continuous span. In addition, the girder ends were also restrained from 

lateral movement so that the bridge does not “slide off” its supports. These restrictions were 

applied at the nodes along the edges of the bottom flange of each girder. 

3.6 MULTI-POINT CONSTRAINTS 

As previously mentioned in this chapter, MPCs were used in order to create the 

composite action between the steel girders and the concrete deck. In ABAQUS, MPC is a tool 

which relates to degrees of freedom between multiple geometries within the bridge model. If 

MPCs are not used, ABAQUS would not be able to transfer the live loads from the concrete deck 

to the steel girder, as the software would process that the concrete deck would be “hovering” on 

top of the girders with no interaction between such structures.  

The MPCs were placed at every node between the concrete deck and top flanges of each 

girder, where both structures are connected to one another. In addition, MPCs were placed at 

nodes between the steel channel diaphragms and their respective connection plates 

3.7 LOAD APPLICATIONS 

3.7.1 Dead Load Applications 

The dead load of the system can be interpreted as the self-weight of the system, also 

known as gravity load. In order to compute dead loads, gravity was assumed to be 32.2 ft/s2. The 

unit weight of each material was defined as density. Therefore, in order to compute the weight of 

each element, the multiplication of density, volume and gravity was performed.  

The following parameters were utilized in order to assess dead load applications for the Amish 

Sawmill Bridge model: 
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• Normal weight of concrete was taken to be 0.150 kip/ft3 throughout the deck 

• Unit weight of steel was taken to be 0.490 kip/ft3 for the girders 

3.7.2 Live Load Applications 

Live load deflection characteristics and truck placement need to be assessed in order to 

compute live load distributions. This assessment and computation will be further discussed in 

Chapter 4 of this thesis. With the truck placement positions determined from the experimental 

test performed by Gibbs (2017), the wheel point load elements were linearly distributed amongst 

the 4 neighboring nodes in Figure 12. 

 
Figure 12: Nodal Distribution of Point Load (Michaelson, 2014) 

Furthermore, AASHTO LRFD Section 4.6.3.3.1 states that nodal loads must be statically 

equivalent to the actual point load applied. Therefore, in order to fulfill the requirement, the 

equations to compute the nodal loads are listed as follows. 

𝐴 = 𝑃 (1 −
ξ
𝑥

) (1 −
η
𝑦

) 

Equation 7: Nodal Computation A 

 



33 

𝐵 = 𝑃 (
ξ
𝑥

) (1 −
η
𝑦

) 

Equation 8: Nodal Computation B 

 

𝐶 = 𝑃 (1 −
ξ
𝑥

) (
η
𝑦

) 

Equation 9: Nodal Computation C 

 

𝐷 = 𝑃 (
ξ
𝑥

) (
η
𝑦

) 

Equation 10: Nodal Computation D 

3.9 CONCLUSION 

The preceding chapter describes the finite element modeling techniques used for this 

thesis, specifically, element type and material type, mesh discretization, boundary conditions 

used, and load applications. In addition, the methods used to compute deflections and 

distribution factors can be found in this chapter. Finite element analysis was performed in this 

thesis using the commercial finite element software suite ABAQUS/CAE 6.14 by Dassault 

Systèmes.  

The results obtained by the finite element analysis are utilized in the following chapter to 

investigate the accuracy and validity of the AASHTO live load distribution factor mathematical 

model and propose an alternate, more optimized computation method. 
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CHAPTER 4: BENCHMARK EXPERIMENTAL STUDY 

4.1 INTRODUCTION  

The following chapter discusses the research method used to assess experimental data of 

the Amish Sawmill Bridge obtained by Gibbs (2017). This chapter also includes a summary of 

the bridge design, testing equipment, and testing procedures. The strain data obtained from Gibbs 

(2017) will be used for the data validation and comparison of the actual LLDFs and the FEA 

LLDFs generated by the bridge’s model on ABAQUS presented in Section 4.5 of this thesis. 

4.2 BRIDGE DESCRIPTION 

As discussed in Section 2.3.3 of this report, the Amish Sawmill Bridge is a 52-foot long, 

single span press-brake-formed steel tub girder bridge. More details on the bridge specifications 

can be found in Section 2.3.3.  Construction on the bridge initiated late in the summer of 2015 

and was finished in December 2015.  

4.3 EXPERIMENTAL TESTING EQUIPMENT  

4.3.1 STS-Wi-Fi Data Acquisition System 

The Bridge Diagnostics, Inc. (BDI) Data Acquisition System includes a series of wireless 

nodes, which can each accommodate up to four BDI strain transducers and a wireless base 

station. It is important to note that a mobile device running full Windows is necessary in order to 

run BDI Data Acquisition Software. The instruments used for Gibbs’ (2017) field test were BDI 

strain transducers. Each instrument used was equipped with BDI’s “Intelliducer” chip, giving the 

equipment the advantage to identify itself in BDI’s software. The benefit of such capabilities is 

that it makes data collection and data organization distinguishable from different gauges during 

the post-processing phase.  
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The primary physical components of the system used consist of a wireless base station 

(Figure 13)  and multiple 4-channel nodes (Figure 14). The base station obtains data by 

monitoring real-time wireless broadband signals that are transmitted from the 4-channel nodes. 

The base station can take readings of up to 500 samples per second and can monitor a vast 

number of devices on 4 to 128 channels.  

 
Figure 13: STS WiFi Base Station (Bridge Diagnostics, Inc.) 

 
Figure 14: STS WiFi 4-Channel Node (Bridge Diagnostics, Inc.) 

The base station and 4-channel nodes are powered by rechargeable 9.6V Makita Nickel-

Metal Hydride batteries that can last up to six hours under continuous use. Additionally, having 

wireless equipment allows for much easier data acquisition when testing location is difficult to 

access. 
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4.3.2 BDI Strain Transducers 

Gibbs (2017) used BDI’s re-usable strain transducers as the strain gages to be utilized 

during the bridge field testing (See Figure 15). Each strain gage has a range of ±2,000 με with an 

accuracy of ±2 percent. The gages have a temperature range of -60°F to +250°F and require 

minimal surface preparation and effort to install. The gages are attached to the girder by two re-

usable mounting tabs provided by BDI. The mounting tabs fit through two holes on each end of 

the gage and the gage is tightened snug with two 7/16-in. nuts. Each tab is placed into a slotted 

BDI jig during the installation process to ensure proper alignment and spacing.  

 

 
Figure 15: BDI Strain Transducer (Bridge Diagnostics, Inc.) 

4.3.3 Truck Specification 

Gibbs (2017) described the live load for the field test was produced by a fully loaded 

tandem-axle dump truck provided by the Buchanan County Secondary Roads Department, which 

is shown in Figure 18. The weight of each axle was taken preceding the arrival of the truck at the 

bridge location shown in Figure 18. 
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Figure 16: Tandem-Axle Dump Truck (Gibbs, 2017) 

4.4 EXPERIMENTAL TESTING PROCEDURES 

The field test of the Amish Sawmill Bridge was completed in three days, per Gibbs 

(2017). A total of 16 gage locations were utilized for Gibbs’ field test. Each girder was equipped 

with a minimum of three gages on the bottom flange at midspan. Girders 1 and 2 were equipped 

with two additional gages each at midspan; one on each web of each girder, three inches above 

the bend in the girders. The bottom flange gages were spaced six inches apart along quarter 

points across the width of the bottom flange. The gage arrangement is shown in Figure 17.  

The following steps were completed to set up the gages for completion of the experimental data 

collection: 

1. Measurements were taken and locations were marked for every strain gage location on 

the tub girders. 

2. Surface roughness of girders was reduced by using disk grinders to ensure proper surface 

adherence with gage tabs. 

3. Gages were tightened on each set of tabs and plugged into wireless nodes. 

4. Girders were labeled 1 through 4 from left to right, looking north, as shown in Figure 17. 
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5. Data collection was performed. 

 

 
Figure 17: Gage Locations (Gibbs, 2017) 

Axle measurements of the tandem-axle dump truck were taken upon its arrival to the 

bridge site. The dimensions, as well as the wheel weights are shown in Figure 18. Gibbs (2017) 

concluded the truck was considered appropriate for the field test due to its similarity to the 

AASHTO HS-20 design load truck. 

 
Figure 18: Truck Dimensions and Wheel Loads (Gibbs, 2017) 

A total of five truck runs were mapped out onto the bridge deck using chalk at each tenth 

point along the length of the bridge. Considering the bridge is symmetric and not skewed, only 

five truck runs were needed to complete the field test. For each run, the truck was directed to 

stop with the center axle resting at each tenth point on the previously marked spots. Upon 

moving to each new spot, time was taken to let vibration in the girders end so that the data results 
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would be as accurate as possible. Measurements for each truck run were taken from the west 

guard rail to the center line of the front tire closest to the guard rail (See Figure 19).  

 
Figure 19: Live Load Truck Placements (Gibbs, 2017) 

Truck Run 1 was placed two feet from the guard rail following AASHTO 2014 Section 

3.6 specifications which states that such distance accounts for the worst-case loading scenario for 

an exterior girder. Truck Run 2 was placed so that one-wheel line was directly above Girder 2 to 

maximize load effects on the interior girder. Truck Run 3 was placed in the center of the bridge 

to detect if symmetrical results were produced. Truck Run 4 was placed 12 feet from Truck Run 

1, and Truck Run 5 was placed 12 feet from Truck Run 2. The standard lane width is equal to 12 

feet according to AASHTO Section 3.6. Consequently, Truck Runs 4 and 5 were placed 12 feet 

from Truck Runs 1 and 2, respectively, thus the results for two-lane loading scenarios could be 

calculated. The combination of Truck Runs 1 and 4 maximized load effects on the exterior 
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girder, while the combination of Truck Runs 2 and 5 maximized load effects on the interior 

girder. 

4.5 DATA VALIDATION  

This subsection will summarize Gibbs’ (2017) experimental results in comparison to the 

analytical results achieved for this study. Results include flange stresses at midspan and LLDFs. 

This comparison is necessary to benchmark the FEA model and proceed with sensitivity and 

parametric studies (Chapter 5) in order to generate a more optimized LLDFs computation model. 

4.5.1 Computation of Bending Stresses at Midspan 

The following procedure was used to calculate the bending stresses at midspans. These 

calculations were performed for all five truck runs with the experimental strain data gathered by 

Gibbs (2017). In order to obtain midspan bending stresses, the strain values were divided by 

1,000,000, due to the fact that the gages report the values in microstrain. After the unit 

conversion, the values were multiplied by the steel Young’s Modulus of 29,000 ksi to obtain 

stresses. 

1. Average Strain Reading Value By Using The Equation: 

 

𝜀𝑎𝑣𝑔 =
∑ 𝜀

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 𝑔𝑖𝑟𝑑𝑒𝑟
 

Equation 11: Computation of Average Strain 

Where, 

𝜀𝑎𝑣𝑔 is the average bottom flange strain ith girder 

∑ 𝜀   is the summation of bottom flange strain generated by ith girder 
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2. Strain to Bending Stress Conversion: 

𝜎 =
𝜀𝑎𝑣𝑔

1,000,000
𝑥𝐸𝑠 

Equation 12: Bending Stress Computation 

Where, 

𝜎      is the bottom flange bending stress of ith girder 

𝜀𝑎𝑣𝑔 is the average bottom flange strain of ith girder 

𝐸𝑠  is Young’s Modulus of steel 

4.5.2 Computation of Empirical Live Load Distribution Factors (LLDFs) 

LLDFs are based on the average strain values for each girder as shown in Equation 11. 

To calculate LLDFs for each panel point, the strain for each girder was divided by the total strain 

in the system at that respective panel point. This process was repeated for each panel point at a 

given truck run with a total of 5 truck runs. In order to obtain the average distribution factor for 

each girder per truck run, the distribution factor obtained per panel point was averaged. Finally, 

the distribution factor values obtained were compared to AASHTO LLDFs in order to determine 

their validity. 

𝑔𝑖 =
𝑛𝜀𝑖

∑ 𝜀𝑗
𝑘
𝑗=1

𝑥 𝑚 

Equation 13: Empirical Computation of LLDFs 

Where, 

𝑔𝑖 is the distribution factor for the ith girder 

𝜀𝑖 is the bottom flange static strain at the ith girder 

𝑛 is the number of applied design trucks 

𝑘 is the number of girders 
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𝑚 is the AASHTO multiple presence factor 

In addition, live load distribution factors were calculated where two lanes were loaded 

simultaneously in the respective order: 

• Truck Run #1 and Truck Run #4 

• Truck Run #2 and Truck Run #5 

Example calculations of live load distribution factors containing single-lane and two-lane loaded 

are shown on the following page: 

4.5.2.1 Computation of Live Load Distribution Factors for Single-Lane Loading 

LLDF Calculation of Girder ith During Truck Run jth 

𝐿𝐿𝐷𝐹𝑖−𝑗 =
𝜀𝐺𝑖

∑ 𝜀𝑗
𝑘
𝑗=1

𝑚 

Equation 14: LLDFs Computation for Single-Lane Loading 

Where, 

𝐿𝐿𝐷𝐹𝑖−𝑗 is the distribution factor for the ith girder at jth panel point 

𝜀𝐺𝑖 is the bottom flange static strain at the ith girder 

∑ 𝜀𝑗
𝑘
𝑗=1  is the summation of average strain of all girders 

𝑚 is the AASHTO multiple presence factor 

 

4.5.2.2 Computation of Live Load Distribution Factors for Two-Lane Loading 

LLDF Calculation of Girder ith During Truck Run jth 

1. Average Strain Values for Girder ith, Truck Runs i & j 

𝜀𝐺𝑖 = 𝜀𝐺𝑖𝑎𝑣𝑔 +  𝜀𝐺𝑗𝑎𝑣𝑔 

Equation 15: Total Average Strain Computation 
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Where, 

𝜀𝐺𝑖 is the bottom flange static strain at the ith girder 

𝜀𝐺𝑖𝑎𝑣𝑔  is the average strain for Truck Run i 

𝜀𝐺𝑗𝑎𝑣𝑔  is the average strain for Truck Run j 

Then, 

2. Average LLDFs for Girder ith, Truck Runs i & j 

𝐿𝐿𝐷𝐹𝑖 =
∑ 𝐺𝑖𝐿𝐿𝐷𝐹𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑛𝑡𝑠
 

Equation 16: : LLDFs Computation for Two-Lane Loading 

Where, 

𝐿𝐿𝐷𝐹𝑖−𝑗    is the distribution factor for the ith  

∑ 𝐺𝑖𝐿𝐿𝐷𝐹𝑠 is the summation of average live load distribution factors for girder ith 

4.5.3 Computation of AASHTO Live Load Distribution Factors 

In order to benchmark and compare experimental data and analytical data to AASHTO 

specifications, live load distribution factors were calculated using AASHTO’s methodology 

found on AASHTO LRFD Bridge Design Specification Chapter 4 and discussed in this thesis in 

Section 2.6.1. Therefore, 

𝐷𝐹 = 0.05 + 0.85
𝑁𝐿

𝑁𝑏
+

0.0425
𝑁𝐿

 

Equation 6: Concrete deck on Multiple Steel Box Girders LLDFs Equation (AASHTO, 2014) 

Where, 

DF  is the live load distribution factor 

𝑁𝐿 is the number of design lanes as specified in Table 4.6.2.2.2b-1 

𝑁𝑏 is the number of girders 
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And, 

0.5 ≤ 𝑁𝐿
𝑁𝑏

≤ 1.5  

𝑁𝐿 is the number of design lanes as specified in Table 4.6.2.2.2b-1 

𝑁𝑏 is the number of girders 

4.5.4 Comparison of Results 

This subsection will further discuss the results and comparisons between analytical 

LLDFs, Gibbs’ experimental live load distribution factors and AASHTO live load distribution 

factors. Section 4.5.3.1 will compare the similarities and differences between the analytical 

results generated by finite elements modeling techniques and Gibbs’ experimental results. 

Section 4.5.3.2 will demonstrate that AASHTO live load distribution factors are overestimated 

when compared to analytical and experimental data. 

4.5.4.1 Analytical Data vs. Gibbs’ Experimental Data 

The primary observation when calculating average stresses for the superstructures was 

that the stresses on the finite elements model were considerably higher than the experimental 

results. It is also notable that the Amish Sawmill Bridge had integral abutments. Integral 

abutments are when the end of the girders are completely encased by concrete, which makes the 

structure much stiffer than the conventional simply-supported boundary conditions (high-roller). 

Table 5 and Table 6 provide the FEA and Gibbs’ results, respectively. 
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Table 5: Finite Element Analysis Bottom Flange Bending Stress 

 

 
Table 6: Gibbs, 2017 Experimental Bottom Flange Bending Stress 
 

Integral abutment as boundary conditions was not used in the finite element model due to 

its controversy in the structural engineering community. In addition, there is no conventional 

technique to create integral abutment and replicate such boundary conditions on finite element 

modeling software. Figure 20 and Figure 21 demonstrate that, even though the boundary 

conditions differ between finite modeling techniques and actual bridge boundary conditions, the 

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.76 0.92 0.92 0.77
10.4 0.2 1.18 1.56 1.57 1.20
15.6 0.3 1.49 1.92 1.93 1.51
20.8 0.4 1.64 2.17 2.18 1.67
26 0.5 1.64 2.50 2.52 1.67

31.2 0.6 1.47 2.27 2.29 1.50
36.4 0.7 1.17 1.58 1.58 1.19
41.6 0.8 0.87 1.00 1.01 0.88
46.8 0.9 0.54 0.57 0.56 0.54
52 1 0 0 0 0

Truck Run 3, Bending Stress
Average Stress (ksi)Panel Points

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.33 0.37 0.37 0.29
10.4 0.2 0.49 0.70 0.71 0.45
15.6 0.3 0.63 0.79 0.79 0.60
20.8 0.4 0.74 0.97 0.94 0.70
26 0.5 0.76 1.32 1.25 0.76

31.2 0.6 0.65 1.19 1.10 0.66
36.4 0.7 0.46 0.62 0.58 0.45
41.6 0.8 0.26 0.28 0.27 0.32
46.8 0.9 0.12 0.13 0.13 0.20
52 1 0 0 0 0

Truck Run 3, Bending Stress
Average Stress (ksi)Panel Points
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behaviors correlated. The following figures show such correlation in Girder 1 and Girder 3 

during the same truck run. 

 
Figure 20: Comparison of Finite Element Analysis vs. Experimental Flange Bending Stress 
for Girder 1 Truck Run 3 

 
Figure 21: Comparison of Finite Element Analysis vs. Experimental Flange Bending Stress 
for Girder 3 Truck Run 3 
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Figure 22 and Figure 23 show the distribution factors for Truck Run 3 are approximately 

the same values for both the finite element analysis model results and the experimental data 

results. For this specific truck run, each graph is showing that Girders 2 and 3 supported most of 

the truck load, while Girders 1 and 4 supported a lesser portion of the load. 

 
Figure 22: Comparison of Finite Element Analysis vs. Experimental Average Distribution 
Factors for Truck Run 3 
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Figure 23: Comparison of Finite Element Analysis vs. Experimental Distribution Factors for 
Truck Run 3 

Additionally, further analyses were performed to calculate the distribution factors for the 

scenario in which two of the load trucks were simultaneously on the bridge. To simulate the two-

lane loaded scenario, data resulted in the combination of Truck Runs 1 and 4, and the 

combination of Truck Runs 2 and 5. The run combination was performed for two separate 

scenarios; the combination of the bottom flange stresses of Girder 1 and Girder 4 for the 

combined loading scenario of Truck Runs 1 and 4 (See Figure 24 and Figure 25). The finite 

element model still resulted in higher stresses than the field, which is expected to be due to the 

difference in integral abutments previously discussed. 
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Figure 24: Comparison of Finite Element Analysis vs. Experimental Bottom Flange Stress for 
Two-Lane Loaded Scenario for Girder 1 

 
Figure 25: Comparison of Finite Element Analysis vs. Experimental Bottom Flange Stress for 
Two-Lane Loaded Scenario for Girder 4 

To summarize the remaining distribution factor data between the finite element analysis 

model and experimental results, Figure 26 displays a quantile-quantile (Q-Q) plot containing all 

the calculated average distribution factors for each truck run in both the one-lane-loaded scenario 

as well as the two-lane-loaded scenario. Figure 26 also shows the correlation between the FEA 
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distribution factors and the experimental distribution factors with a R2 of 0.9433 or roughly 94% 

correlation. Appendix B includes a complete collection of tables, graphs, and diagrams that 

summarize the data results from every truck run. 

 
Figure 26: Distribution Factor Analysis Summary Graph (FEA vs. Experimental) 

4.5.4.2 Comparison of Live Load Distribution Factors 

Both finite element analysis and experimental live load distribution factors are very 

similar. Both analyses are well correlated and have the same magnitude of variance between 

interior and exterior girders. However, live load distribution factors computed by using 

AASHTO specifications are significantly higher than the other LLDFs computation method 

studied in this project. Table 7 and Figure 29 demonstrate the discrepancies between AASHTO 

distribution factors and FEA/experimental distribution factors.  
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Table 7: FEA LLDFs vs Experimental LLDFs vs AASHTO LLDFs Comparison for Truck 
Run 3 

 

 
Figure 27: FEA LLDFs vs Experimental LLDFs vs AASHTO LLDFs Comparison for Truck 
Run 3 

Per the findings of this data collection, AASHTO specifications were very conservative 

when computing distribution factors for the studied superstructure. In certain girders, the 

AASHTO Specifications predict a live load distribution factor three times higher than it should. 

 

 

 

 

 

 

Analysis/Girder G1 G2 G3 G4
FEA 0.217 0.281 0.283 0.220

Experimental 0.213 0.284 0.277 0.225
AASHTO 0.688 0.688 0.688 0.688
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4.6 CONCLUSION 

This chapter included a full benchmark experimental study of the field test performed by 

Gibbs on the Amish Sawmill Bridge, and finite element analysis (FEA) model. The data 

analyzed included bottom flange stresses at midspan and live load distribution factors for each 

girder in both one-lane-loaded and two-lanes-loaded scenarios. It has been found that the FEA 

model and the experimental data from field tests correlate very closely when compared to each 

other. On the contrary, AASHTO distribution factors tend to overestimate live load distribution 

factors due to its computation method being based solely on number of lanes and number of 

beams. 
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CHAPTER 5: PARAMETRIC ASSESSMENT OF LIVE LOAD DISTRIBUTION 
FACTORS 

 
5.1 INTRODUCTION 

A series of parametric studies were performed using the finite element modeling 

techniques discussed in Chapter 3. For each of these studies, a custom MATLAB script was 

written that would generate finite element models of the proposed composite bridge system 

based on desired input. The primary goal of these analyses was to explore the distribution factors 

of press-brake-formed steel tub girders under various design conditions and to generate more 

accurate live load distribution factors.  

In order to evaluate the distribution factors under different design conditions, girder 

spacing (S), number of girders (Nb) and span length (L) were analyzed and described in the 

following sections in order to determine which parameter has influence in the live load 

distribution factor. The parametric matrices used in order to evaluate those parameters are 

described in the following sections. 

5.2 DESCRIPTION OF PARAMETRIC MATRIX 

As previously mentioned, MATLAB R2018b was used to perform the parametric study. 

A script was written that would generate “n” numbers of finite element models of the proposed 

bridge system. This script was then looped to generate a model for each increment of desired 

span length. For each of these studies, span lengths from 40 ft to 100 ft, in 5 ft increments were 

investigated in order to determine the maximum span range given AASHTO performance limits. 

The parametric assessment performed in this study did not investigate effects of skew, stiffness 

or deck thickness on live load distribution factors for press-brake tub girders. The main goals of 

these studies were to:  
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1. Understand which of the following parameters affect the computation of live load 

distribution factors for press-brake-formed steel tub girders: girder spacing (S), number 

of girders (Nb) and span length (L) 

2. Compute more accurate live load distribution factors for AASHTO limit state 

evaluations 

To assess and generate such distribution factors, the following sub sections of this thesis describe 

the parametric matrices that were developed. 

5.2.1 Girder Spacing (S) & Span Length (L) Assessment 

For this assessment, 91 analyses were performed. The following parameters were used to 

form the parametric matrix: 

• Span length, L: [40ft to 100ft] in 5ft increments 

• Girder spacing, S: [6ft to 12ft] in 1ft increments 

• Overhang equals to girder spacing divided by two 

 
Table 8: Parametric Matrix for Girder Spacing (S) Assessment 

The goal of this parametric analysis was to evaluate how girder spacing influences the 

computation of live load distribution given difference in span length. In addition, for each 

increment of span length in combination with each girder spacing increment, four separate 

analyses were performed with the following goals: 

 

Span Length [ft.] 40 45 50 55 60 65 70 75 80 85 90 95 100
6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12

Gird
er S

pa
cin

g [
ft.]
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• Maximizing live load deflection to the exterior girder with one lane loaded 

• Maximizing live load deflection to the exterior girder with two lanes loaded 

• Maximizing live load deflection to the interior girder with one lane loaded 

• Maximizing live load deflection to the interior girder with two lanes loaded 

5.2.2 Number of Girders (Nb) Assessment 

For this assessment, 105 analyses were performed. The following parameters were used 

to form the parametric matrix: 

• Span length, L: [40ft, 70ft, 100ft] 

• Girder spacing, S: [6ft, 9ft, 12ft] 

• Number of beams, Nb: [4 to 8] 

• Overhang equals to girder spacing divided by two 

 
Table 9: Parametric Matrix for Number of Girders (Nb) Assessment 

5.3 EFFECT OF GIRDER SPACING (S) & SPAN LENGTH (L) 

Using the methods described in Section 5.2.1 for the parametric study and the truck 

loading methodologies described in Chapter 4 of this report, analyses were performed using 

MATLAB R2018b to determine the live load distribution factors. The distribution factors (Y-

axis) were plotted against the girder spacing (X-axis) as shown in Figure 28.  

Number of Beams, Nb
Span Length [ft.] 40 70 100 40 70 100 40 70 100 40 70 100 40 70 100

6 7 84 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Gird
er S

pa
cin

g [
ft.]
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Figure 28: Comparison of Live Load Distribution Factors with Span Length of 40 feet 

As shown in Figure 28, live load distribution factors for the exterior girders were higher 

than those for the interior girders. This difference in magnitude is primarily due to the ability of 

finite element analysis software (ABAQUS) to consider three-dimensional effects (i.e., twisting 

of the exterior girders due to transverse eccentricity of truck loading). In addition, according to 

Figure 28, AASHTO LRFD Distribution Factor seems to be only reliable if girder spacing is 

roughly kept less than 7.5 feet. It is important to reaffirm that AASHTO Distribution Factors 

calculations for box girders are based only on the number of loaded designed lanes and numbers 

of beams on a given bridge. AASHTO equation does not differentiate interior or exterior beam 

when distribution factors are analyzed. Figure 29 and Figure 30 show that AASHTO LRFD 

Distribution Factor for box girder fails to estimate distribution factors when girder spacing 

exceeds approximately 9 feet for bridge span length of 70 feet and girder spacing of 10.5 feet for 

bridge span length of 100 feet.  
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Figure 29: Comparison of Live Load Distribution Factors with Span Length of 70 feet 
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Figure 30: Comparison of Live Load Distribution Factors with Span Length of 100 feet 

The same discrepancy could be found using AASHTO LRFD Distribution Factor 

calculations when a fixed girder spacing is kept and span length was variable. When girder 

spacing was kept below 7 feet, AASHTO LRFD Distribution Factor tended to overestimate the 

results for every tub girder length, see Figure 31 and Figure 32. 
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Figure 31: Comparison of Live Load Distribution Factors with Girder Spacing of 6 feet 

 
Figure 32: Comparison of Live Load Distribution Factors with Girder Spacing of 7 feet 

However, when girder spacing was increased over 7 feet, AASHTO Live Load 

Distribution computations tended to overestimate its results for certain girders as well as 
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underestimate its results for others. For example, in Figure 33, AASHTO LLDF computations 

overestimated results for exterior girders spaced at 10 feet apart and up to 70 feet of length. This 

pattern repeated for any over 9 feet of girder spacing. 

 
Figure 33: Comparison of Live Load Distribution Factors with Girder Spacing of 10 feet 

 All the other live load distribution comparisons, varying girder spacing, and span length 

contained in the S & L parametric matrix (Table 8) can be found in Appendix C. 

5.4 EFFECT OF NB 

Using the methods described in Section 5.2.2 for the parametric study and the truck 

loading methodologies described in Chapter 4 of this report, analyses were performed using 

MATLAB R2018b to determine the live load distribution factors. The distribution factors (Y-

axis) were plotted against the number of beams (X-axis) as shown in Figure 34.  
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Figure 34: Comparison of Live Load Distribution Factors with Span Length of 40 feet and 
Girder Spacing of 6 feet 

As shown in the previous figure, live load distribution factors remain nearly constant 

when compared against the number of beams. In addition, the same behavior is apparent when 

girder spacing is increased as shown in Figure 35 and Figure 36. 
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Figure 35: Comparison of Live Load Distribution Factors with Span Length of 40 feet and 
Girder Spacing of 9 feet 

 
Figure 36: Comparison of Live Load Distribution Factors with Span Length of 40 feet and 
Girder Spacing of 12 feet 

All the other live load distribution comparisons varying number of beams contained in 

the parametric matrix (Table 9) can be found in Appendix C. 
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5.5 CONCLUSION 

This chapter detailed the results of a comprehensive suite of 196 finite element analyses. 

From these analyses, essential data were queried; these data points were used to create tabulated 

results, which have been provided in the appendices of this report. The proposed live load 

distribution factors tables for steel tub girders are presented in Table 10 through Table 16. 

 

 
Table 10: Live Load Distribution Factors for Tub Girders (Girder Spacing of 6 feet) 

 
Table 11: Live Load Distribution Factors for Tub Girders (Girder Spacing of 7 feet) 

 
Table 12: Live Load Distribution Factors for Tub Girders (Girder Spacing of 8 feet) 

 
Table 13: Live Load Distribution Factors for Tub Girders (Girder Spacing of 9 feet) 

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.545 0.514 0.486 0.462 0.442 0.425 0.411 0.399 0.390 0.382 0.375 0.370 0.365

Exterior Girder, Two Lanes Loaded 0.551 0.545 0.540 0.536 0.531 0.528 0.525 0.523 0.520 0.519 0.517 0.516 0.515
Interior Girder, One Lane Loaded 0.391 0.377 0.366 0.356 0.349 0.343 0.338 0.334 0.330 0.328 0.325 0.323 0.322
Interior Girder, Two Lanes Loaded 0.503 0.502 0.501 0.500 0.500 0.499 0.499 0.499 0.499 0.499 0.499 0.499 0.499

Length of Girders, [feet]
Girder Spacing of 6 Feet

Girder Location

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.622 0.584 0.551 0.522 0.496 0.475 0.457 0.442 0.429 0.418 0.408 0.400 0.393

Exterior Girder, Two Lanes Loaded 0.633 0.621 0.610 0.599 0.589 0.580 0.573 0.566 0.560 0.555 0.551 0.547 0.544
Interior Girder, One Lane Loaded 0.421 0.402 0.387 0.375 0.365 0.358 0.351 0.346 0.342 0.338 0.335 0.332 0.330
Interior Girder, Two Lanes Loaded 0.547 0.537 0.530 0.524 0.520 0.517 0.515 0.513 0.511 0.510 0.509 0.509 0.508

Girder Spacing of 7 Feet
Length of Girders, [feet]Girder Location

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.696 0.653 0.615 0.582 0.552 0.527 0.505 0.486 0.470 0.456 0.444 0.433 0.424

Exterior Girder, Two Lanes Loaded 0.715 0.698 0.682 0.666 0.652 0.638 0.626 0.615 0.606 0.598 0.590 0.584 0.578
Interior Girder, One Lane Loaded 0.455 0.430 0.411 0.396 0.384 0.374 0.366 0.360 0.354 0.349 0.346 0.342 0.339
Interior Girder, Two Lanes Loaded 0.596 0.579 0.566 0.555 0.547 0.540 0.535 0.531 0.527 0.525 0.522 0.521 0.519

Girder Spacing of 8 Feet
Length of Girders, [feet]Girder Location

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.765 0.719 0.677 0.640 0.607 0.578 0.553 0.531 0.512 0.495 0.480 0.468 0.456

Exterior Girder, Two Lanes Loaded 0.798 0.777 0.756 0.736 0.718 0.700 0.684 0.669 0.656 0.645 0.634 0.625 0.617
Interior Girder, One Lane Loaded 0.493 0.462 0.438 0.419 0.404 0.392 0.383 0.375 0.368 0.362 0.357 0.353 0.349
Interior Girder, Two Lanes Loaded 0.648 0.625 0.606 0.590 0.577 0.567 0.558 0.552 0.546 0.542 0.538 0.535 0.533

Girder Location
Girder Spacing of 9 Feet
Length of Girders, [feet]
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Table 14: Live Load Distribution Factors for Tub Girders (Girder Spacing of 10 feet) 

 

 
Table 15: Live Load Distribution Factors for Tub Girders (Girder Spacing of 11 feet) 

 

 
Table 16: Live Load Distribution Factors for Tub Girders (Girder Spacing of 12 feet) 

  

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.829 0.780 0.735 0.695 0.659 0.627 0.599 0.575 0.553 0.534 0.517 0.502 0.489

Exterior Girder, Two Lanes Loaded 0.881 0.857 0.832 0.808 0.786 0.764 0.745 0.727 0.710 0.695 0.682 0.670 0.659
Interior Girder, One Lane Loaded 0.531 0.495 0.467 0.444 0.426 0.412 0.400 0.391 0.382 0.376 0.370 0.365 0.360
Interior Girder, Two Lanes Loaded 0.700 0.671 0.647 0.627 0.610 0.596 0.585 0.575 0.568 0.561 0.556 0.551 0.547

Length of Girders, [feet]Girder Location
Girder Spacing of 10 Feet

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.886 0.835 0.789 0.747 0.709 0.675 0.644 0.617 0.593 0.572 0.553 0.537 0.522

Exterior Girder, Two Lanes Loaded 0.963 0.936 0.908 0.881 0.854 0.830 0.806 0.785 0.766 0.748 0.732 0.717 0.704
Interior Girder, One Lane Loaded 0.569 0.529 0.497 0.471 0.450 0.433 0.419 0.407 0.398 0.390 0.383 0.377 0.372
Interior Girder, Two Lanes Loaded 0.752 0.719 0.690 0.665 0.645 0.627 0.613 0.601 0.591 0.582 0.575 0.569 0.564

Girder Spacing of 11 Feet
Length of Girders, [feet]Girder Location

40 45 50 55 60 65 70 75 80 85 90 95 100
Exterior Girder, One Lane Loaded 0.937 0.885 0.838 0.794 0.755 0.719 0.687 0.658 0.632 0.609 0.589 0.570 0.554

Exterior Girder, Two Lanes Loaded 1.043 1.012 0.982 0.951 0.922 0.894 0.868 0.844 0.822 0.801 0.782 0.765 0.750
Interior Girder, One Lane Loaded 0.605 0.562 0.526 0.497 0.474 0.454 0.438 0.425 0.414 0.404 0.396 0.389 0.383
Interior Girder, Two Lanes Loaded 0.804 0.766 0.733 0.705 0.680 0.660 0.642 0.628 0.615 0.605 0.596 0.588 0.582

Girder Location
Girder Spacing of 12 Feet
Length of Girders, [feet]
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CHAPTER 6: SUMMARY & CONCLUDING REMARKS 

6.1 PROJECT SUMMARY AND CONCLUSIONS 

The scope of this thesis was to develop more accurate live load distribution factors for 

exterior and interior girders in press-brake-formed steel tub girder superstructures. As mentioned 

in Section 1.2, the objectives of this thesis were as follows: 

• Assessment and discussion of AASHTO specifications for box section flexural members 

(tub girders), as well as the computation of live LLDFs using AASHTO standards. 

• Finite element analysis of Amish Sawmill Bridge to benchmark against experimental data 

in order to generate analytical live load distribution factors. 

• Field performance assessment of Amish Sawmill Bridge to validate finite element model 

as well as a description of experimental investigation and testing procedures conducted 

by Gibbs, 2017. 

• Comparison of analytical and experimental LLDFs using AASHTO specifications. 

• Parametric study to understand which parameters affect the computation of live load 

distribution factors for steel tub girders and to compute more accurate live load 

distribution factors for AASHTO limit state evaluations. 

Based on the results drawn from this study, press-brake-formed steel tub girders exhibit 

consistent performance and are a practical option in short span bridge construction. However, the 

current AASHTO LRFD Specifications can overestimate distribution factors for interior girders 

and fail to estimate distribution factors for exterior girders depending on girder spacing and 

length of bridge. 
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6.2 RECOMMENDATIONS FOR CONTINUED RESEARCH 

The author recommends the following tasks for future work: 

• Expand parametric matrices in this project to include more parameters to verify proposed 

live load distribution factors. 

• Investigate other parameters to determine their effect on live load distribution factor, such 

as: 

o Skew 

o Deck thickness 

o Girder stiffness 

• Assess and develop specifications to more accurately calculate the distribution of live 

load shear. 

• Determine if the live load distribution factors proposed in this study can be safely used 

for different types of box girders. 
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APPENDIX B: RESULTS OF BENCHMARK ANALYSIS 

This appendix contains the complete collection of tabulated data, graphs and diagrams 

utilized for the benchmark analysis. 
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 47.32 33.68 21.64 14.29 0.405 0.288 0.185 0.122
10.4 0.2 79.11 56.38 33.73 22.19 0.413 0.295 0.176 0.116
15.6 0.3 98.49 69.50 42.23 27.13 0.415 0.293 0.178 0.114
20.8 0.4 112.36 77.75 46.35 29.09 0.423 0.293 0.175 0.110
26 0.5 128.92 86.70 45.88 28.27 0.445 0.299 0.158 0.098

31.2 0.6 116.89 78.36 40.93 24.87 0.448 0.300 0.157 0.095
36.4 0.7 84.79 57.98 33.46 20.15 0.432 0.295 0.170 0.103
41.6 0.8 53.37 38.01 24.47 14.56 0.409 0.292 0.188 0.112
46.8 0.9 30.26 22.20 15.22 9.04 0.394 0.289 0.198 0.118
52 1 0 0 0 0 --- --- --- ---

0.420 0.294 0.176 0.110
0.018 0.004 0.013 0.009

Truck Run 1, Distribution Factors (Finite Element Analysis)
Panel Points Averages Distribution Factors

Average
St. Dev.

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 40.91 34.04 24.76 16.89 0.351 0.292 0.212 0.145
10.4 0.2 69.22 57.82 38.32 25.50 0.363 0.303 0.201 0.134
15.6 0.3 86.18 71.17 48.20 31.14 0.364 0.301 0.204 0.132
20.8 0.4 97.36 80.58 53.48 33.47 0.368 0.304 0.202 0.126
26 0.5 109.47 93.11 53.99 32.61 0.379 0.322 0.187 0.113

31.2 0.6 99.17 84.28 48.41 28.71 0.381 0.323 0.186 0.110
36.4 0.7 71.25 58.66 38.24 22.66 0.373 0.307 0.200 0.119
41.6 0.8 47.49 37.59 27.89 16.94 0.366 0.289 0.215 0.130
46.8 0.9 27.59 21.33 17.07 10.44 0.361 0.279 0.223 0.137
52 1 0 0 0 0 --- --- --- ---

0.367 0.302 0.203 0.127
0.009 0.014 0.012 0.011

Averages Distribution Factors

Average
St. Dev.

Truck Run 2, Distribution Factors (Finite Element Analysis)
Panel Points
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 26.20 31.70 31.88 26.58 0.225 0.272 0.274 0.228
10.4 0.2 40.80 53.90 54.22 41.45 0.214 0.283 0.285 0.218
15.6 0.3 51.34 66.26 66.65 52.14 0.217 0.280 0.282 0.221
20.8 0.4 56.62 74.74 75.26 57.49 0.214 0.283 0.285 0.218
26 0.5 56.64 86.12 86.91 57.55 0.197 0.300 0.303 0.200

31.2 0.6 50.84 78.42 79.12 51.59 0.196 0.302 0.304 0.198
36.4 0.7 40.44 54.31 54.64 40.95 0.212 0.285 0.287 0.215
41.6 0.8 29.97 34.64 34.67 30.19 0.231 0.268 0.268 0.233
46.8 0.9 18.54 19.51 19.45 18.60 0.244 0.256 0.256 0.244
52 1 0 0 0 0 --- --- --- ---

0.217 0.281 0.283 0.220
0.015 0.014 0.016 0.015

Truck Run 3, Distribution Factors  (Finite Element Analysis)
Panel Points Averages Distribution Factors

Average
St. Dev.

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 22.02 29.43 33.36 31.48 0.189 0.253 0.287 0.271
10.4 0.2 34.28 49.33 56.63 50.33 0.180 0.259 0.297 0.264
15.6 0.3 42.76 60.82 69.66 63.16 0.181 0.257 0.295 0.267
20.8 0.4 46.68 67.73 79.56 70.11 0.177 0.256 0.301 0.265
26 0.5 46.02 74.77 93.76 72.70 0.160 0.260 0.326 0.253

31.2 0.6 40.98 67.84 85.41 65.64 0.158 0.261 0.329 0.253
36.4 0.7 32.62 49.10 57.96 50.77 0.171 0.258 0.304 0.267
41.6 0.8 24.60 32.88 35.87 36.20 0.190 0.254 0.277 0.279
46.8 0.9 15.33 19.10 19.82 21.85 0.201 0.251 0.260 0.287
52 1 0 0 0 0 --- --- --- ---

0.179 0.257 0.297 0.267
0.014 0.003 0.022 0.011

Truck Run 4, Distribution Factors (Finite Element Analysis)
Panel Points Averages Distribution Factors

Average
St. Dev.
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 18.82 27.12 34.08 36.35 0.162 0.233 0.293 0.312
10.4 0.2 28.91 43.08 57.81 60.90 0.152 0.226 0.303 0.319
15.6 0.3 35.65 53.96 71.16 75.76 0.151 0.228 0.301 0.320
20.8 0.4 38.54 59.90 81.26 84.70 0.146 0.227 0.307 0.320
26 0.5 37.77 62.10 95.30 92.34 0.131 0.216 0.331 0.321

31.2 0.6 33.47 56.08 86.84 83.82 0.129 0.216 0.334 0.322
36.4 0.7 26.67 43.31 59.14 61.45 0.140 0.227 0.310 0.322
41.6 0.8 19.99 30.55 36.87 42.30 0.154 0.236 0.284 0.326
46.8 0.9 12.55 18.39 20.46 24.86 0.165 0.241 0.268 0.326
52 1 0 0 0 0 --- --- --- ---

0.148 0.228 0.304 0.321
0.012 0.008 0.021 0.004

Truck Run 5, Distribution Factors (Finite Element Analysis)
Panel Points Averages Distribution Factors

St. Dev.
Average

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 69.34 63.12 54.99 45.77 0.595 0.541 0.472 0.392
10.4 0.2 113.38 105.71 90.35 72.52 0.594 0.554 0.473 0.380
15.6 0.3 141.25 130.33 111.89 90.29 0.596 0.550 0.472 0.381
20.8 0.4 159.04 145.48 125.91 99.20 0.601 0.549 0.475 0.375
26 0.5 174.94 161.47 139.64 100.96 0.606 0.560 0.484 0.350

31.2 0.6 157.88 146.20 126.34 90.50 0.606 0.561 0.485 0.347
36.4 0.7 117.41 107.08 91.42 70.92 0.607 0.554 0.473 0.367
41.6 0.8 77.97 70.90 60.34 50.76 0.600 0.545 0.464 0.391
46.8 0.9 45.59 41.30 35.04 30.89 0.597 0.541 0.459 0.404
52 1 0 0 0 0 --- --- --- ---

0.600 0.551 0.473 0.376
0.005 0.007 0.008 0.019

Distribution Factors

Average
St. Dev.

Panel Points Averages
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 59.73 61.17 58.83 53.25 0.513 0.525 0.505 0.457
10.4 0.2 98.13 100.90 96.13 86.40 0.514 0.529 0.504 0.453
15.6 0.3 121.84 125.12 119.36 106.90 0.515 0.529 0.504 0.452
20.8 0.4 135.89 140.48 134.74 118.17 0.513 0.531 0.509 0.447
26 0.5 147.24 155.20 149.29 124.95 0.511 0.538 0.518 0.433

31.2 0.6 132.64 140.35 135.25 112.53 0.509 0.539 0.519 0.432
36.4 0.7 97.91 101.98 97.38 84.11 0.513 0.535 0.511 0.441
41.6 0.8 67.48 68.14 64.76 59.24 0.520 0.525 0.499 0.456
46.8 0.9 40.14 39.72 37.53 35.30 0.526 0.520 0.492 0.462
52 1 0 0 0 0 --- --- --- ---

0.515 0.530 0.507 0.448
0.005 0.006 0.009 0.011

Average
St. Dev.

Panel Points Averages Distribution Factors
Truck Runs 2 & 5, Distribution Factors  (Finite Element Analysis)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 1.37 0.98 0.63 0.41
10.4 0.2 2.29 1.63 0.98 0.64
15.6 0.3 2.86 2.02 1.22 0.79
20.8 0.4 3.26 2.25 1.34 0.84
26 0.5 3.74 2.51 1.33 0.82

31.2 0.6 3.39 2.27 1.19 0.72
36.4 0.7 2.46 1.68 0.97 0.58
41.6 0.8 1.55 1.10 0.71 0.42
46.8 0.9 0.88 0.64 0.44 0.26
52 1 0 0 0 0

Panel Points Average Stress (ksi)
Truck Run 1, Bending Stress (FEA)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 1.19 0.99 0.72 0.49
10.4 0.2 2.01 1.68 1.11 0.74
15.6 0.3 2.50 2.06 1.40 0.90
20.8 0.4 2.82 2.34 1.55 0.97
26 0.5 3.17 2.70 1.57 0.95

31.2 0.6 2.88 2.44 1.40 0.83
36.4 0.7 2.07 1.70 1.11 0.66
41.6 0.8 1.38 1.09 0.81 0.49
46.8 0.9 0.80 0.62 0.49 0.30
52 1 0 0 0 0

Truck Run 2, Bending Stress (FEA)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.76 0.92 0.92 0.77
10.4 0.2 1.18 1.56 1.57 1.20
15.6 0.3 1.49 1.92 1.93 1.51
20.8 0.4 1.64 2.17 2.18 1.67
26 0.5 1.64 2.50 2.52 1.67

31.2 0.6 1.47 2.27 2.29 1.50
36.4 0.7 1.17 1.58 1.58 1.19
41.6 0.8 0.87 1.00 1.01 0.88
46.8 0.9 0.54 0.57 0.56 0.54
52 1 0 0 0 0

Panel Points Average Stress (ksi)
Truck Run 3, Bending Stress (FEA)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.64 0.85 0.97 0.91
10.4 0.2 0.99 1.43 1.64 1.46
15.6 0.3 1.24 1.76 2.02 1.83
20.8 0.4 1.35 1.96 2.31 2.03
26 0.5 1.33 2.17 2.72 2.11

31.2 0.6 1.19 1.97 2.48 1.90
36.4 0.7 0.95 1.42 1.68 1.47
41.6 0.8 0.71 0.95 1.04 1.05
46.8 0.9 0.44 0.55 0.57 0.63
52 1 0 0 0 0

Truck Run 4, Bending Stress (FEA)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.55 0.79 0.99 1.05
10.4 0.2 0.84 1.25 1.68 1.77
15.6 0.3 1.03 1.56 2.06 2.20
20.8 0.4 1.12 1.74 2.36 2.46
26 0.5 1.10 1.80 2.76 2.68

31.2 0.6 0.97 1.63 2.52 2.43
36.4 0.7 0.77 1.26 1.71 1.78
41.6 0.8 0.58 0.89 1.07 1.23
46.8 0.9 0.36 0.53 0.59 0.72
52 1 0 0 0 0

Panel Points Average Stress (ksi)
Truck Run 5, Bending Stress (FEA)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 2.01 1.83 1.59 1.33
10.4 0.2 3.29 3.07 2.62 2.10
15.6 0.3 4.10 3.78 3.24 2.62
20.8 0.4 4.61 4.22 3.65 2.88
26 0.5 5.07 4.68 4.05 2.93

31.2 0.6 4.58 4.24 3.66 2.62
36.4 0.7 3.40 3.11 2.65 2.06
41.6 0.8 2.26 2.06 1.75 1.47
46.8 0.9 1.32 1.20 1.02 0.90
52 1 0 0 0 0

Truck Runs 1 & 4, Bending Stress (FEA)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 1.73 1.77 1.71 1.54
10.4 0.2 2.85 2.93 2.79 2.51
15.6 0.3 3.53 3.63 3.46 3.10
20.8 0.4 3.94 4.07 3.91 3.43
26 0.5 4.27 4.50 4.33 3.62

31.2 0.6 3.85 4.07 3.92 3.26
36.4 0.7 2.84 2.96 2.82 2.44
41.6 0.8 1.96 1.98 1.88 1.72
46.8 0.9 1.16 1.15 1.09 1.02
52 1 0 0 0 0

Panel Points Average Stress (ksi)
Truck Runs 2 & 5, Bending Stress (FEA)
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 19.78 13.54 8.45 5.75 0.416 0.285 0.178 0.121
10.4 0.2 36.33 24.33 12.12 7.32 0.454 0.304 0.151 0.091
15.6 0.3 42.28 26.90 14.46 10.24 0.450 0.287 0.154 0.109
20.8 0.4 49.14 29.48 15.71 12.28 0.461 0.277 0.147 0.115
26 0.5 65.10 36.80 16.05 12.70 0.498 0.282 0.123 0.097

31.2 0.6 59.81 32.46 13.38 11.89 0.509 0.276 0.114 0.101
36.4 0.7 33.12 18.66 9.63 9.41 0.468 0.263 0.136 0.133
41.6 0.8 15.55 8.72 5.77 9.16 0.397 0.222 0.147 0.234
46.8 0.9 3.08 1.41 0.93 3.87 0.331 0.152 0.100 0.417
52 1 0 0 0 0 --- --- --- ---

0.443 0.261 0.139 0.158
0.055 0.047 0.024 0.106

Truck Run 1, Distribution Factors (Experimental)
Panel Points Averages

Average
St. Dev.

Distribution Factors

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 16.48 12.99 9.36 7.27 0.357 0.282 0.203 0.158
10.4 0.2 31.44 25.97 14.85 11.02 0.378 0.312 0.178 0.132
15.6 0.3 37.33 29.02 18.12 12.22 0.386 0.300 0.187 0.126
20.8 0.4 43.56 34.07 21.25 13.86 0.386 0.302 0.188 0.123
26 0.5 56.68 45.54 21.16 13.93 0.413 0.332 0.154 0.101

31.2 0.6 52.10 40.47 18.52 12.39 0.422 0.328 0.150 0.100
36.4 0.7 30.64 23.08 13.81 8.56 0.403 0.303 0.182 0.113
41.6 0.8 15.95 11.90 8.68 6.69 0.369 0.275 0.201 0.155
46.8 0.9 7.06 5.97 4.81 4.38 0.318 0.269 0.216 0.197
52 1 0 0 0 0 --- --- --- ---

0.381 0.300 0.184 0.134
0.031 0.022 0.022 0.031

Average
St. Dev.

Truck Run 2, Distribution Factors (Experimental)
Panel Points Averages Distribution Factors
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 11.50 12.88 12.69 9.95 0.245 0.274 0.270 0.212
10.4 0.2 16.95 24.16 24.59 15.61 0.208 0.297 0.302 0.192
15.6 0.3 21.85 27.11 27.14 20.67 0.226 0.280 0.280 0.214
20.8 0.4 25.67 33.46 32.26 24.15 0.222 0.290 0.279 0.209
26 0.5 26.37 45.65 42.93 26.31 0.187 0.323 0.304 0.186

31.2 0.6 22.54 41.11 37.84 22.85 0.181 0.331 0.304 0.184
36.4 0.7 15.79 21.22 20.05 15.41 0.218 0.293 0.277 0.213
41.6 0.8 8.81 9.57 9.43 10.89 0.228 0.247 0.244 0.281
46.8 0.9 4.13 4.49 4.60 6.74 0.207 0.225 0.230 0.338
52 1 0 0 0 0 --- --- --- ---

0.213 0.284 0.277 0.225
0.020 0.033 0.026 0.051

Truck Run 3, Distribution Factors (Experimental)
Panel Points Averages Distribution Factors

Average
St. Dev.

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 6.88 9.32 11.47 11.32 0.176 0.239 0.294 0.290
10.4 0.2 12.29 20.79 25.43 19.99 0.157 0.265 0.324 0.255
15.6 0.3 17.29 24.62 29.00 27.59 0.176 0.250 0.294 0.280
20.8 0.4 19.38 28.11 34.93 31.62 0.170 0.247 0.306 0.277
26 0.5 19.06 35.56 49.00 32.68 0.140 0.261 0.360 0.240

31.2 0.6 15.37 30.77 42.23 27.69 0.132 0.265 0.364 0.239
36.4 0.7 11.69 18.23 22.24 18.97 0.164 0.256 0.313 0.267
41.6 0.8 6.65 8.68 9.59 10.74 0.186 0.243 0.269 0.301
46.8 0.9 -0.23 0.24 1.16 3.45 -0.051 0.052 0.252 0.747
52 1 0 0 0 0 --- --- --- ---

0.139 0.231 0.308 0.322
0.073 0.068 0.037 0.161

Truck Run 4, Distribution Factors (Experimental)
Panel Points Averages Distribution Factors

Average
St. Dev.
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 9.55 12.74 16.28 19.40 0.165 0.220 0.281 0.335
10.4 0.2 7.41 14.20 26.91 31.41 0.093 0.178 0.337 0.393
15.6 0.3 11.95 20.02 29.51 32.93 0.127 0.212 0.313 0.349
20.8 0.4 14.23 24.62 36.73 37.21 0.126 0.218 0.326 0.330
26 0.5 15.64 28.97 53.33 42.69 0.111 0.206 0.379 0.304

31.2 0.6 14.93 26.96 48.64 40.32 0.114 0.206 0.372 0.308
36.4 0.7 13.06 20.31 29.41 30.72 0.140 0.217 0.315 0.329
41.6 0.8 7.94 10.15 14.18 20.08 0.152 0.194 0.271 0.384
46.8 0.9 4.12 4.13 6.97 13.35 0.144 0.145 0.244 0.467
52 1 0 0 0 0 --- --- --- ---

0.130 0.200 0.315 0.355
0.022 0.025 0.045 0.052

Panel Points Averages Distribution Factors
Truck Run 5, Distribution Factors (Experimental)

Average
St. Dev.

x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 26.66 22.86 19.92 17.07 0.616 0.529 0.461 0.395
10.4 0.2 48.62 45.12 37.55 27.31 0.613 0.569 0.474 0.344
15.6 0.3 59.58 51.53 43.46 37.83 0.619 0.536 0.452 0.393
20.8 0.4 68.52 57.59 50.64 43.90 0.621 0.522 0.459 0.398
26 0.5 84.16 72.37 65.05 45.38 0.630 0.542 0.487 0.340

31.2 0.6 75.19 63.23 55.61 39.58 0.644 0.541 0.476 0.339
36.4 0.7 44.81 36.88 31.86 28.37 0.631 0.520 0.449 0.400
41.6 0.8 22.19 17.40 15.36 19.90 0.593 0.465 0.410 0.532
46.8 0.9 2.84 1.65 2.09 7.32 0.409 0.238 0.301 1.053
52 1 0 0 0 0 --- --- --- ---

0.597 0.496 0.441 0.466
0.072 0.101 0.057 0.228

Truck Runs 1 & 4, Distribution Factors (Experimental)
Panel Points Averages Distribution Factors

Average
St. Dev.
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x (ft) x/L G1 G2 G3 G4 G1 G2 G3 G4
0 0 0 0 0 0 --- --- --- ---

5.2 0.1 26.03 25.73 25.64 26.67 0.500 0.494 0.493 0.513
10.4 0.2 38.85 40.17 41.76 42.42 0.476 0.492 0.512 0.520
15.6 0.3 49.28 49.05 47.63 45.14 0.516 0.513 0.499 0.472
20.8 0.4 57.78 58.69 57.98 51.07 0.512 0.520 0.514 0.453
26 0.5 72.32 74.52 74.48 56.62 0.520 0.536 0.536 0.407

31.2 0.6 67.03 67.43 67.16 52.72 0.527 0.530 0.528 0.415
36.4 0.7 43.70 43.39 43.23 39.29 0.515 0.512 0.510 0.463
41.6 0.8 23.89 22.05 22.86 26.77 0.500 0.461 0.478 0.560
46.8 0.9 11.18 10.11 11.78 17.73 0.440 0.398 0.464 0.698
52 1 0 0 0 0 --- --- --- ---

0.501 0.495 0.504 0.500
0.027 0.043 0.023 0.089

Average
St. Dev.

Panel Points Averages
Truck Runs 2 & 5, Distribution Factors (Experimental)

Distribution Factors

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.57 0.39 0.25 0.17
10.4 0.2 1.05 0.71 0.35 0.21
15.6 0.3 1.23 0.78 0.42 0.30
20.8 0.4 1.43 0.85 0.46 0.36
26 0.5 1.89 1.07 0.47 0.37

31.2 0.6 1.73 0.94 0.39 0.34
36.4 0.7 0.96 0.54 0.28 0.27
41.6 0.8 0.45 0.25 0.17 0.27
46.8 0.9 0.09 0.04 0.03 0.11
52 1 0 0 0 0

Truck Run 1, Bending Stress (Exp)
Panel Points Average Stress (ksi)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.48 0.38 0.27 0.21
10.4 0.2 0.91 0.75 0.43 0.32
15.6 0.3 1.08 0.84 0.53 0.35
20.8 0.4 1.26 0.99 0.62 0.40
26 0.5 1.64 1.32 0.61 0.40

31.2 0.6 1.51 1.17 0.54 0.36
36.4 0.7 0.89 0.67 0.40 0.25
41.6 0.8 0.46 0.35 0.25 0.19
46.8 0.9 0.20 0.17 0.14 0.13
52 1 0 0 0 0

Truck Run 2, Bending Stress (Exp)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.33 0.37 0.37 0.29
10.4 0.2 0.49 0.70 0.71 0.45
15.6 0.3 0.63 0.79 0.79 0.60
20.8 0.4 0.74 0.97 0.94 0.70
26 0.5 0.76 1.32 1.25 0.76

31.2 0.6 0.65 1.19 1.10 0.66
36.4 0.7 0.46 0.62 0.58 0.45
41.6 0.8 0.26 0.28 0.27 0.32
46.8 0.9 0.12 0.13 0.13 0.20
52 1 0 0 0 0

Panel Points Average Stress (ksi)
Truck Run 3, Bending Stress (Exp)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.20 0.27 0.33 0.33
10.4 0.2 0.36 0.60 0.74 0.58
15.6 0.3 0.50 0.71 0.84 0.80
20.8 0.4 0.56 0.82 1.01 0.92
26 0.5 0.55 1.03 1.42 0.95

31.2 0.6 0.45 0.89 1.22 0.80
36.4 0.7 0.34 0.53 0.64 0.55
41.6 0.8 0.19 0.25 0.28 0.31
46.8 0.9 -0.01 0.01 0.03 0.10
52 1 0 0 0 0

Truck Run 4, Bending Stress (Exp)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.28 0.37 0.47 0.56
10.4 0.2 0.21 0.41 0.78 0.91
15.6 0.3 0.35 0.58 0.86 0.95
20.8 0.4 0.41 0.71 1.07 1.08
26 0.5 0.45 0.84 1.55 1.24

31.2 0.6 0.43 0.78 1.41 1.17
36.4 0.7 0.38 0.59 0.85 0.89
41.6 0.8 0.23 0.29 0.41 0.58
46.8 0.9 0.12 0.12 0.20 0.39
52 1 0 0 0 0

Truck Run 5, Bending Stress (Exp)
Panel Points Average Stress (ksi)
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x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.77 0.66 0.58 0.50
10.4 0.2 1.41 1.31 1.09 0.79
15.6 0.3 1.73 1.49 1.26 1.10
20.8 0.4 1.99 1.67 1.47 1.27
26 0.5 2.44 2.10 1.89 1.32

31.2 0.6 2.18 1.83 1.61 1.15
36.4 0.7 1.30 1.07 0.92 0.82
41.6 0.8 0.64 0.50 0.45 0.58
46.8 0.9 0.08 0.05 0.06 0.21
52 1 0 0 0 0

Truck Runs 1 & 4, Bending Stress (Exp)
Panel Points Average Stress (ksi)

x (ft) x/L G1 G2 G3 G4
0 0 0 0 0 0

5.2 0.1 0.75 0.75 0.74 0.77
10.4 0.2 1.13 1.16 1.21 1.23
15.6 0.3 1.43 1.42 1.38 1.31
20.8 0.4 1.68 1.70 1.68 1.48
26 0.5 2.10 2.16 2.16 1.64

31.2 0.6 1.94 1.96 1.95 1.53
36.4 0.7 1.27 1.26 1.25 1.14
41.6 0.8 0.69 0.64 0.66 0.78
46.8 0.9 0.32 0.29 0.34 0.51
52 1 0 0 0 0

Panel Points
Truck Runs 2 & 5, Bending Stress (Exp)

Average Stress (ksi)
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APPENDIX C: RESULTS OF PARAMETRIC ASSESSMENTS 

This appendix contains the complete collection of tabulated data, graphs and diagrams 

utilized for the parametric assessments. 
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