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The Effect of Virtual Reality on Gait Variability 
 
Dimitrios Katsavelis, University of Nebraska at Omaha, Omaha, NE 
Mukul Mukherjee, University of Nebraska at Omaha, Omaha, NE  
Leslie Decker, University of Nebraska at Omaha, Omaha, NE 
Nicholas Stergiou1

 
, University of Nebraska at Omaha, Omaha, NE 

Abstract: Optic Flow (OF) plays an important role in human locomotion and 
manipulation of OF characteristics can cause changes in locomotion patterns. 
The purpose of the study was to investigate the effect of the velocity of optic 
flow on the amount and structure of gait variability. Each subject underwent 
four conditions of treadmill walking at their self-selected pace. In three 
conditions the subjects walked in an endless virtual corridor, while a fourth 
control condition was also included. The three virtual conditions differed in the 
speed of the optic flow displayed as follows – same speed (OFn), faster (OFf), 
and slower (OFs) than that of the treadmill. Gait kinematics were tracked with 
an optical motion capture system. Gait variability measures of the hip, knee and 
ankle range of motion and stride interval were analyzed. Amount of variability 
was evaluated with linear measures of variability - coefficient of variation, while 
structure of variability i.e., its organization over time, were measured with 
nonlinear measures - approximate entropy and detrended fluctuation analysis. 
The linear measures of variability, CV, did not show significant differences 
between Non-VR and VR conditions while nonlinear measures of variability 
identified significant differences at the hip, ankle, and in stride interval. In 
response to manipulation of the optic flow, significant differences were 
observed between the three virtual conditions in the following order: OFn > OFf 
> OFs. Measures of structure of variability are more sensitive to changes in gait 
due to manipulation of visual cues, whereas measures of the amount of 
variability may be concealed by adaptive mechanisms. Visual cues increase the 
complexity of gait variability and may increase the degrees of freedom available 
to the subject. Further exploration of the effects of optic flow manipulation on 
locomotion may provide us with an effective tool for rehabilitation of subjects 
with sensorimotor issues.  

Key Words: virtual reality, detrended fluctuation analysis, locomotion, vision, 
optic flow, approximate entropy. 
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INRODUCTION 

The importance of Optic Flow (OF) on locomotion has received 
considerable attention in the last fifty years. It began with Gibson’s (1958) 
pioneering work when the ecological theory of visual perception was proposed. 
According to the theory, visual perception is a direct and non-inferential 
process. The pattern of the visual motion perceived at the moving eye, i.e., the 
OF, provides important information about the speed and direction of self-
motion. This information is important during goal-directed locomotion to 
control the heading direction (van den Berg, 1992; Warren, Young, & Lee, 
2001) and the speed of locomotion (Pailhous, Ferrandez, Fluckinger, & 
Baumberger, 1990; Prokop, Schubert, & Berger, 1997).  

Manipulation of OF has been shown to alter both kinematic gait 
parameters which are descriptors of motion as well as the gait kinetics, which 
are the descriptors of the causes of the motion. In a recent study, it was shown 
that gait kinematics like walking speed, stride length, stride frequency and drift 
were affected in both healthy young and older subjects when OF was manipu-
lated (Chou et al., 2009). Walking trajectory was shown to be affected when 
healthy young subjects were exposed to rotational, translational or a combina-
tion of the two types of OF, demonstrating the importance of OF on steering 
behavior during locomotion (Sarre, Berard, Fung, & Lagmontage, 2008). During 
treadmill walking, OF was shown to impact kinematic parameters like step time 
(Warren, Kay, Zosh, Duchon, & Sahuc, 1986). In a study investigating the 
interaction between somatosensory and optic input for controlling locomotion, 
OF was shown to regulate the kinematic parameters of locomotion whereas 
somatosensory input, although regulated by vision, was involved mainly in the 
control of gait kinetics (Varraine, Bonnard, & Pailhaus, 2002).    

Since OF plays an important role in human locomotion and manipula-
tion of OF characteristics causes changes in locomotion patterns, it is intuitive to 
expect that manipulating the velocity of the OF would also cause a change in 
locomotion patterns. Indeed when healthy human subjects, while walking on a 
treadmill at self selected pace, were exposed to different directions and veloci-
ties of optical flow, characteristic locomotion patterns were observed (Prokop et 
al., 1997). Particularly, it was shown that kinematic parameters of locomotion 
like walking velocity and stride length had negative correlations with OF such 
that faster OF induced slower walking velocity and reduced stride length while 
slower OF induced the opposite effect. Similar observations have also been 
made in other studies with healthy subjects (Prokop et al., 1997; Verraine, Bon-
nard & Pailhous, 2002) and patients with stroke (Lamontagne, Fung, McFadyen, 
& Faubert, 2007). These effects have also been attenuated over time due to 
adaptation (Prokop et al., 1997). Therefore, locomotion patterns demonstrate 
different characteristics when the OF is manipulated for longer periods of time.        

The variability of the locomotor pattern can also be impacted when the 
OF is manipulated. Indeed, in comparison to the study by Prokop et al. (1997), 
much lower stride cycle variability was observed when treadmill walking was 



performed at comparable walking velocities without OF input (Zijlstra & Dietz, 
1995). Variability of both kinetic (Hollman, Brey, Bang, & Kaufman, 2007) and 
kinematic (Hollman, Brey, Robb, Bang, & Kaufman, 2006) locomotion patterns 
was reduced when healthy subjects were exposed to different velocities of the 
OF while walking on a treadmill. However in these studies by Hollman and 
colleagues, the treadmill speed always matched the OF velocity and therefore 
the true effect of OF on the locomotion patterns of the subject’s comfortable 
walking speed could not be gauged. Specifically, gait variability measurements 
are speed-dependent (Jordan, Challis, & Newell, 2007). In other words, varia-
tions in walking velocity affect the amount of variability present in the locomo-
tion patterns. Thus, the application of a constant-driven treadmill can facilitate 
the measure of movement variability by controlling for speed variations. In 
addition, the variability measures in all these studies were restricted to linear 
measures like standard deviation and coefficient of variation which at best can 
only provide information on the amount of variability and not its organization 
over time, i.e., structure (Herman et al., 2005; Sosnoff et al., 2005). Nonlinear 
measures like approximate entropy (ApEn) and detrended fluctuation analysis 
(DFA) may provide such answers and reveal hidden structures like the presence 
of long range correlations (Hausdorff et al., 1996; Herman et al., 2005; Jordan et 
al., 2007; Slifkin & Newell, 2000; Sosnoff et al., 2005; Stergiou, Buzzi, Kurz, & 
Heidel, 2004).  

Therefore, the purpose of this study was to investigate the effect of the 
velocity of OF on gait variability using both linear and nonlinear measures. This 
two-pronged approach would clarify not only changes in the amount of 
variability of the locomotor patterns but also changes in the structure of 
variability that occur as a result of manipulation of the OF. This approach may 
lead to more conclusive results. In this study OF was induced by means of a 
virtual reality (VR) system, and healthy human subjects were exposed to it while 
walking on a treadmill at a self-selected pace. In contrast to past studies, this 
study incorporated longer durations of walking trials (15 minutes) to get a more 
accurate effect of the OF manipulation on locomotor patterns. It was 
hypothesized that gait variability during treadmill walking for VR and Non-VR 
conditions would be significantly different. The second hypothesis was that as 
the velocity of the OF becomes asynchronous with respect to the speed of the 
treadmill, gait variability would be significantly affected. 

 
METHOD 

Subjects 

Ten healthy adults (6 males, 4 females) participated in the study (age, 
28.4 ±7 yr; height, 171.8 ±9 cm; weight, 68.1 ±11 kg). Subjects were free from 
any musculoskeletal problems and had no recent or remote history of significant 
lower extremity injuries that might have affected their gait. In addition, subjects 
were excluded from the study in case of any type of visual or vestibular 



deficiency. Prior to testing, each subject signed an informed consent approved 
by the Institutional Review Board of the university’s Medical Center.  

 
Fig. 1. Experimental set up consisting of the treadmill and the body weight 
support system and the six-camera motion capture system. The projector was 
located right behind and above the subject’s head and three meters away from 
the screen to ensure a wide field of view for the subject. On the right side, the 
virtual reality (VR) environment is shown as it appeared to the subject without the 
red-blue stereo glasses. The use of a stereo graphics card (nVidia Corporation, 
Santa Clara, CA) renders not one but two separate images on the screen. On 
viewing them with the stereo glasses, the two scenes merge and there is a 
feeling of depth of the rendered scene. 

Instrumentation 

 A custom VR environment, written in C++ using the open graphics 
library (OpenGL; Silicon Graphics Inc., Sunnyvale, CA) and the graphics 
library utility toolkit was created and  was projected by a commercial projection 
system (NEC Display Solutions, Itasca, IL) on an 80-inch (diagonal) flat screen 
that was positioned 3 meters away from the plane of motion. This created a 
vertical and horizontal field of view of 51.28 degrees. For the VR conditions, an 
endless virtual corridor with realistic side walls was projected onto the screen to 
create the VR environment (Fig. 1). The virtual walls of the VR environment 
extended about 10 meters in front of the subject and did not extend behind the 
subject. The velocity of motion of the projected environment was synchronized 
to match the treadmill speed. Once the subject determined the preferred walking 
speed (the subject’s average and not instantaneous speed), the speed of the VR 
environment was synchronized to the treadmill manually by entering it into the 
program using a keyboard function. Thus, the OF of the corridor was 
perceptually equivalent to the speed of the treadmill. The VR environment 
consisted of two separate images projected on the screen.  By viewing them 
through red-blue stereo glasses that the subjects wore throughout the 
experiment, the two images merged into a single scene providing the subject 



with a feeling of depth of the rendered scene. Based on preliminary data from 
the lab, subjective measures show that the subjects were immersed in the VR 
environment.  

A Motion Analysis (Motion Analysis Corp, Santa Rosa, CA) camera 
system was used to capture kinematics at 60 Hz, while subjects walked on a 
motorized treadmill (312-C, Bodyguard, Canada; Fig. 1). Six optoelectric 
cameras were positioned around the treadmill to collect the three-dimensional 
trajectories from the markers that were placed on the subjects prior to data 
collection. Reflective markers were placed on specific anatomical landmarks to 
track the motion of the hip, knee and ankle joints (Nigg, Cole, & Nachbauer, 
1993). To ensure safety, each subject wore a safety vest suspended overhead 
throughout the course of the experiment (Fig. 1). 

Experimental Design 

Each subject underwent four conditions of treadmill walking at their 
self-selected pace, with each condition being 15 minutes long. Prior to testing, 
all subjects were given enough time to warm up and familiarize themselves with 
treadmill walking. For this purpose all subjects were instructed to walk at a 
comfortable pace that could be easily maintained for a long time. When the 
subject informed the investigator who had identified such a speed, the value was 
recorded. This value of the velocity was used for all testing conditions. By using 
a self-selected pace, any variability changes detected were due to the 
independent variable and not due to probable discomfort that may be associated 
with using a pre-determined speed for all subjects (Jordan et al., 2007). The 
familiarization period was approximately six minutes, which was considered 
sufficient for the achievement of reliable kinematic measurements during 
treadmill locomotion (Matsas, Taylor & McBurney, 2000).  

All subjects performed the control condition (Non-VR) before walking 
for fifteen minutes at each of the following VR conditions that were presented in 
a random order: OF that matched the speed of the treadmill (OFn); OF that was 
50% faster than the self-selected pace (OFf); and OF that was 50% slower than 
the self-selected pace (OFs). Since the subjects were healthy young adults 
walking at their self selected speeds, the effect of fatigue was minimal. 
However, all the conditions were randomized and a rest period was provided 
between conditions which was kept constant for all subjects. 

Data Analysis 

Fifteen minutes of continuous unfiltered data were analyzed so as to get 
a more accurate representation of the variations within the system (Mees & 
Judd, 1993; Rapp, 1994). Furthermore, since the same instrumentation was used 
for all subjects, it was assumed that the level of measurement noise would be 
consistent for all subjects and that any differences could be attributed to changes 
within the system itself. Filtering the data might have eliminated important 
information and provided a skewed view of the system’s inherent variability.  



The unfiltered time series of the marker position data were acquired by 
EVART software (Motion Analysis Corp., Santa Rosa, CA). The three dimen-
sional angular displacements of the hip, knee and ankle joints were calculated 
using laboratory software developed in Matlab (Mathworks Inc., MA, USA) and 
according to the algorithms described by Vaughn, Davis, & O’Connor (1999). 
However, we only examined the sagittal angular displacement because data 
from the other planes collected via skin markers are associated with increased 
error (Capozzo, Catani, Leardini, Benedetti, & Della Croce, 1996). We collected 
three-dimensional data instead of two-dimensional to increase accuracy by 
minimizing perspective error. After identifying the minimum and maximum 
joint angles for each gait cycle and for each condition, the range of motion 
(ROM) was calculated by subtracting the maximum and minimum values for 
each gait cycle. Joint kinematic variability was examined in addition to varia-
bility of the stride interval, because it has been shown that variability of joint 
kinematics offers a more sensitive measure of differences between groups than 
the variability of the stride characteristics (Barrett, Noordegraaf, & Morrison, 
2008). However, it has also been shown that the distribution of the stride 
interval may be a fractal process (Goldberger, Peng, & Lipsitz, 2002; Griffin & 
West, 2000; Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995; Hausdorff et al., 
1996; Terrier, Turner, & Schutz, 2005; West & Griffin, 1998, 1999). Therefore, 
variability of joint kinematics was analyzed in addition to variability of the 
stride interval. 

Stride interval was defined as the time duration between two consecu-
tive maximum angular positions of the knee joint. All variables were unidimen-
sional, since they were measured once per gait cycle. Subsequently, means and 
the coefficients of variation (CV) were calculated from 704 consecutive gait 
cycles for each dependent variable in each testing condition and from each 
subject. The CV was calculated as standard deviation divided by the mean value. 
Fifteen minutes of continuous walking in each condition allowed the examina-
tion of an average of 800 data points, which corresponded to an equal number of 
gait cycles. However, the final number of all the data series was truncated to 
704, which was the least number of gait cycles performed in any of the tested 
conditions by a subject. This process ensured that all time series were of the 
same length.  

A measure of quantifying the predictability or regularity of a time 
series is ApEn (Pincus & Goldberger, 1994; Ryan, Goldberger, Pincus, Mietus, 
& Lipsitz, 1994). A time series that is predictable and regular is also less 
complex. If there is a change in complexity of the time series, it may indicate 
reorganization of the available degrees of freedom (Newell, 1997; Vaillancourt 
& Newell, 2000). ApEn is a measure of the logarithmic probability that a series 
of data points a certain distance apart exhibit similar relative characteristics on 
the next incremental comparison within the state space (Pincus & Goldberger, 
1994). A time series with similar distances between data points results in lower 
ApEn values, while large differences in distances between data points results in 
higher ApEn values. The ApEn algorithm was implemented in MatLab 



(Mathworks, Inc., Natick, MA). All time series were analyzed using ApEn with 
m, the number of observation windows to be compared = 2 and r, the tolerance 
factor = 0.2). 

 
Fig. 2. Comparison of linear and nonlinear measures of several signals. Four 
signals are displayed, with the respective values for range and approximate 
entropy (ApEn). 

Figure 2 illustrates the concept of ApEn in comparison to a linear 
measure of variability. Four different time series are shown in the figure with the 
linear measure of range and the nonlinear measure of ApEn. The signals in the 
first and third rows seem to be random, with one signal larger in amplitude than 
the other which is reflected in their range values. However, the ApEn values of 
these two signals are equivalent. This shows that in these two time series only 
the amplitude varies but not the structure of the time series. The second and 
fourth rows also depict time series that differ in amplitude (range differences) 
but not in structure (same ApEn value). However, comparison of the first signal 
with the second signal (and the third signal with the fourth signal) shows that the 
amplitude, quantified by the range, is the same (and the standard deviation, a 
linear measure of variability, would also be the same) but that the structure of 
the series, described by ApEn, is different. Therefore, the characteristics of 
variability measured by linear and nonlinear measures are different. These 
different measures of variability can reveal important information about normal 
and abnormal human movements that can significantly impact clinical decisions 
(Harbourne & Stergiou, 2009) and improve upon the current knowledge about 
the motor control of human movements. 

Lastly, to determine the extent of long-range correlations in the time 
series, DFA was used (Hausdorff et al., 1996; Jordan et al., 2007; Peng et al., 



1995). One of the main advantages of using this method over other analytical 
methods is that it is robust with respect to non-stationarities in the time series 
(Chen, Ivanov, Hu, & Stanley, 2002). Briefly, this method first forms an 
accumulated sum of the time series sectioning it into windows ranging in length 
from 4 to N/4 data points (where N is the total number of data points in the time 
series). The log of the average size of fluctuation for a given window size is 
plotted against the log of the window size and α, the slope of this line, is the 
value returned by the DFA algorithm. The DFA algorithm was also 
implemented in MatLab. For an example of how DFA is sensitive to gait 
biomechanics, it was shown that young healthy human subjects walking at 
different speeds demonstrated long range correlations of their stride intervals 
(Hausdorff et al., 2007). The α values were 0.9 for slow walking, 0.84 for 
normal walking and 1.0 for fast walking. Such fractal-like fluctuations have also 
been demonstrated for running (Jordan et al., 2006). 

Statistical Analysis 

 Group means for all dependent variables were calculated for each 
condition. A three way repeated measures ANOVA was performed using SPSS 
(14.0, Chicago, IL, USA) to determine significant overall effects of the 
following factors: VR condition (4 levels: Non-VR, OFn, OFf, and OFs), type of 
measurement (4 levels: Mean, CV, ApEn, and DFA) and biomechanical variable 
(4 levels: ROM of the hip, knee and ankle joints and stride interval). Pairwise 
comparisons with least squared differences were performed to determine 
specific differences between the four VR conditions. However since very 
different types of measurements (mean and variability, linear and non-linear 
variables) formed part of the analysis, separate repeated measures ANOVAs 
were performed on the group means for each of the four biomechanical variables 
(ROM of the hip, knee and ankle joints and stride interval) and for each of the 
four measurements (Mean, CV, ApEn, and DFA) to determine the effect of the 
repeated factor – VR condition (4 levels: Non-VR, OFn, OFf, and OFs).  Post-
hoc analysis using least square differences was performed to identify significant 
differences among groups. The level of significance was set at α = 0.05.  

RESULTS 

The effect of the four different conditions (nonVR, OFn, OFf and OFs) 
on the range of motion of the ankle, knee and hip joints in one subject are shown 
in one subject in Fig. 3. As is evident, it is very difficult to discern the properties 
of the data structure with a simple viewing of the raw data.   

The three-way repeated measures ANOVA revealed an overall effect of 
the VR condition (F3,27 = 15.465, p = 0.000). This means that the different VR 
conditions brought about a significant change in the biomechanical variables 
tested. There was a significant interaction between the VR condition and the 
type of measurement (F9,81 =7.361, p = 0.000). This means that the VR effect 
was different for different types of measurements. The interaction between the 



VR condition with type of biomechanical variable – ROM of the hip, knee, 
ankle joint and stride interval was also significant  (F9,81 = 5.772,  p = 0.000). 
This means that effect of the VR conditions was different across the 
biomechanical variables tested. Pair wise comparisons to determine which VR 
conditions were significantly different overall revealed the following: Non-VR 
and OFn was not significantly different (p = 0.097); OFn was significantly 
different from both OFf (p = 0.030) and OFs (p = 0.000), and OFf was 
significantly different from OFs (p = 0.000). Specifically the overall trend was 
OFn > OFf > OFs. 

 
Fig. 3. Raw time series from one subject for the effect of the four different 
conditions on the range of motion of the ankle, knee and hip joints. 

To determine the specific locations of the differences in the VR 
conditions, separate repeated measures ANOVAs followed by post-hoc analysis 
were carried out for each type of biomechanical variable (ROM of the hip, knee, 
ankle joint and stride interval) across the types of measurements  (Mean, CV, 
ApEn and DFA). The significant differences are shown in Figs. 4 and 5.  

Differences Between Non-VR and VR Conditions 

Significant differences were obtained between the Non-VR and VR 
conditions for each biomechanical variable albeit through different 
measurements. At the ankle, the Non-VR condition was different from each of 
the three VR conditions as measured by ApEn (F3,27 = 3.9, p = 0.019).  



 
Fig. 4. Group means from 704 consecutive strides for mean, coefficient of 
variation (CV), ApEn, and DFA values for ROM of the ankle and the knee at each 
condition (nonVR = walking on a treadmill; OFn = walking in VR environment with 
normal optic flow; OFf = walking in VR environment with fast optic flow; and OFs: 
walking in VR environment with slow optic flow). *indicates significant differences 
in comparison to nonVR at p<0.05. † indicates significant differences between 
the OFn and OFs conditions at p<0.05.  

Specifically, the Non-VR condition elicited significantly lower ApEn 
values than all three VR conditions (p= 0.026 between Non-VR and OFn, p = 
0.049 between Non-VR and OFf, and p = 0.016 between Non-VR and OFs). At 
the knee, the mean results showed significant differences between the Non-VR 
and all three VR conditions (F3,27 = 6.698, p = 0.002). Specifically, the Non-VR 
condition elicited significantly lower mean values than all three VR conditions 
(p = 0.003 between Non-VR and OFn, p = 0.044 between Non-VR and OFf, and 
p = 0.024 between Non-VR and OFs). At the hip joint, the Non-VR and VR 
conditions were significantly different as elicited by the mean values (F3,27 = 
3.383, p = 0.033) and also by DFA values (F3,27 = 3.252, p = 0.037). Specifically 
the mean hip joint ROM was significantly lower for the Non-VR than the OFn 
(p = 0.003), while the DFA value for the hip joint ROM was significantly higher 
for the Non-VR than the OFs (p = 0.015). Finally, for the stride interval, the 
Non-VR condition exhibited significantly lower values for the ApEn when 
compared to all the VR conditions (F3,27 = 9.609, p = 0.000). Specifically the 
values for Non-VR were lower than OFn (p = 0.015), OFf (p = 0.013) and OFs 
(p = 0.016). All other comparisons between Non-VR and VR conditions were 
not significant. Regarding the amount of variability, the linear measure (CV) did 
not reveal significant differences between the Non-VR and the VR conditions 
for any of the parameters investigated. Regarding the structure of variability and 
as indicated above, the nonlinear measures identified significant differences for 
the hip (DFA), ankle (ApEn) and the stride interval (ApEn).   



 
Fig. 5. Group means from 704 consecutive strides for mean, coefficient of 
variation (CV), ApEn, and DFA values for the ROM of the hip joint and for stride 
interval at each condition (nonVR = walking on a treadmill; OFn = walking in VR 
environment with normal optic flow; OFf = walking in VR environment with fast 
optic flow; and OFs: walking in VR environment with slow optic flow). * Indicates 
significant differences in comparison to nonVR at p<0.05. ! indicates significant 
differences between the nonVR and OFn conditions at p<0.05. ‡ Indicates 
significant differences between the nonVR and OFs conditions at p<0.05.  

Effect of Asynchronous OF on Locomotion Patterns 

Mean values of the knee joint ROM was significantly different between 
OFn and OFs. Specifically, the OFn condition produced higher values when 
compared to OFs (p = 0.038). Regarding the amount and the structure of 
variability, neither linear nor nonlinear measures revealed any significant 
differences. Since there was an overall significant difference between OFn and 
both OFf and OFs as mentioned before, we examined our analysis more closely 
to identify comparisons that might have influenced the overall result.  Hip ROM 
mean between OFn and OFs was not significant but was a borderline case (p = 
0.051). The repeated measures ANOVA for Hip ROM CV revealed a similar 
case (F3,27 = 2.908, p = 0.053) with there being significant differences between 
OFn and OFs (p = 0.009), and between OFf and OFs (p = 0.018). Moreover the 
overall direction of OFn values being the largest followed by OFf and OFs in 
that order was reflected through individual comparisons where OFn was largest 
in 10 of the 16 comparisons and OFs was the smallest in 10 of the 16 
comparisons. 

DISCUSSION 

 The aims of this study were twofold: first, to determine if there were 
differences in gait variability between the Non-VR and the VR conditions 



during walking at a preferred walking pace and second, to determine if gait 
variability was affected when OF became asynchronous with gait velocity.  

Differences Between Non-VR and VR Conditions 

It was hypothesized that gait variability during treadmill walking for 
Non-VR and VR conditions would be significantly different. The linear 
measures of variability, CV, did not show significant differences between Non-
VR and VR conditions while nonlinear measures of variability identified 
significant differences at the hip, ankle, and in stride interval.  

Variability as measured by CV was not significantly different across 
the OFn and the Non-VR conditions. Young healthy adults who walked on a 
treadmill at a self-selected pace elicited increased variability in stride velocity 
and step width (Hollman et al., 2006), and increased variability in weight 
acceptance rates and peak forces in a VR environment when compared with a 
Non-VR condition (Hollman et al., 2007). Although our findings are different 
from these studies, there may be several explanations for this result. First, lack 
of significant findings of the linear measures in the present study can be 
attributed to the longer duration of the walking trial. In a previous study, 
variability changes in walking velocity and stride length due to OF was shown 
to be attenuated over a period of 600 strides (Prokop et al., 1997). As mentioned 
before, our study had more strides and therefore the effect of attenuation was 
presumably more. Since the subjects of the present study were healthy 
individuals, the adaptation time to external visual stimuli was much shorter. It 
might be interesting to test how gait parameters are affected during the first 
minute of each condition. However, this analysis cannot be carried out with 
nonlinear measures due to the small number of data points. A second 
explanation of our findings was that they were a true measure of the quantitative 
nature of the locomotor variability. Studies in the past which have shown 
variability in stride length and step width (Hollman et al., 2006; Hollman et al., 
2007) were expressed by a linear analysis of only 20-30 data points (strides), 
which is considered insufficient even for traditional measures of stride-to-stride 
variability (Owings & Grabiner, 2003). Experimental trials in this study were 
considerably longer and generated over 700 strides in each trial. Moreover, the 
measures of interest in this study (variability of joint ROM and stride interval) 
were different from the other studies (variability of step width and step velocity; 
Hollman et al., 2006; Hollman et al., 2007). A third explanation for the findings 
could be that the level of complexity across the two conditions (as evidenced by 
the closeness of the variability values between the Non-VR and VR conditions) 
was quite low and therefore there were no significant differences among 
conditions. Indeed, walking at self-selected pace is considered a low energy-cost 
activity. These explanations, however, are limited to the amount of variability 
because when we consider the structure of variability, the findings are quite 
different. 

To our knowledge, this is the first time that nonlinear measures of 
variability have been used to identify significant effects on the structure of the 



variability of the gait pattern as a result of VR although the importance of such 
measures in normal and pathological locomotion has been revealed in the past 
(Dingwell & Casumano, 2000; Hausdorff et al., 1996; Slifkin & Newell, 2000; 
Stergiou et al., 2004). These differences between the Non-VR and VR 
conditions were identified at the hip, ankle, and in the stride interval and were 
the result of utilizing specific nonlinear techniques. The different techniques 
revealed the unique abilities of the nonlinear measures to extract pertinent 
information from the same data set.  

Approximate Entropy demonstrated significant differences between 
Non-VR and VR conditions in stride interval and in ROM at the ankle although 
linear measure of variability did not show significant differences. Several human 
movement studies have demonstrated the differences between ApEn and linear 
measures of variability (Slifkin & Newell, 2000; Vaillancourt, Slifkin & Newell, 
2001). These studies showed that linear measures of variability do not follow the 
same patterns of nonlinear measures to the extent that they may not be sensitive 
in measuring variability differences between healthy and pathological 
populations (Vaillancourt et al., 2001) or they may show differing trends than 
non-linear measures of variability (Slifkin & Newell, 2000).  

The ApEn values were lower for the Non-VR condition than the VR 
condition. This means that introduction of VR introduced irregularity into the 
system. However this increase in irregularity does not necessarily demonstrate 
an abnormal status. In fact several studies have shown that abnormal human 
physiology is associated with regularity and periodicity in the time series while 
the opposite is true for normal human physiology - greater irregularity and 
complexity (Fleisher, Pincus & Rosenbaum, 1993; Pincus, 2000; Vaillancourt & 
Newell, 2000; Veldhuis & Pincus, 1998).  

Lower values for DFA were revealed for the hip joint ROM during OFs 
in comparison to the Non-VR condition. DFA for OFn and OFf also showed 
lower values for the hip joint ROM than the Non-VR condition but they did not 
reach statistical significance. Values closer to 0.5 are indicative of uncorrelated 
randomness while values closer to 1 are characterized by strong long range 
correlation (Jordan et al., 2007). Thus, DFA revealed that introduction of VR 
might reduce long range correlations that are observed at the hip joint during 
normal treadmill locomotion. Reduced long range correlations are not indicative 
of instability. This has been shown in the past with preferred walking speeds 
having low DFA values while higher and lower walking speeds resulting in 
higher DFA values (Jordan et al., 2007). Reduced long range correlations may 
be considered to be indicative of large numbers of independently controllable 
systems or degrees of freedom that are available to the subject in the novel 
environment (Slifkin & Newell, 1999). The subject might be making use of 
these available degrees of freedom to get better at the walking task with novel 
sensory cues. Alternatively strong long range correlations while walking without 
visual cues may indicate a constriction on locomotion patterns due to the 
unavailability of the visual feedback. This may be happening when we walk on a 



treadmill in closed surroundings without OF and therefore, we prefer to walk 
outside where the OF gives us a perception of self-motion.  

In general, the DFA values in this study were found to hover around 0.8 
to 1. This region has been associated with Pink noise or 1/f noise in several 
studies (Lauk, Chow, Pavlik, & Collins, 1998; Gilden, Thornton & Mallon, 
1995; White, Rubinstein & Kay, 2000). Pink noise makes its appearance in both 
living and non-living systems and it is believed to provide a sort of “connecting 
link” between the two systems (Ward, 2001). 

Regarding the mean values of ROM, significant differences were 
obtained for the hip and knee joints. Although stride interval and ankle ROM 
were not different between the Non-VR and VR conditions, all four parameters 
(stride interval and ROM of hip, knee, and ankle) had a common characteristic: 
Non-VR mean values were lower than VR values. The lack of OF during 
treadmill walking in the Non-VR condition might have made the task more 
constricted in terms of joint ROMs and stride intervals. These differences, being 
small, may not mean much for the healthy young adults who were the subjects 
of this study, however if we consider patient populations with gait 
abnormalities, these differences may be magnified to the point that walking on a 
treadmill without some form of OF maybe a stressful situation. Increase in these 
measures in the VR condition may also be attributed to the increased stride 
interval during the OFn condition. Longer stride intervals may have resulted 
from longer stride lengths since speed was held constant, causing the higher 
ROM values. These findings may be considered different from those reported in 
the past (Hollman et al., 2006) where VR environment caused a decrease in 
stride length and step width in comparison to the Non-VR condition. However, 
such a conclusion should be made with caution. First, the dependent variables of 
the two studies were different, stride intervals and joint ROM in this study 
versus stride length and step width in the study by Hollman et al. (2006). 
Second, the gait velocity in this study was the subject’s self selected pace or 
their preferred walking velocity unlike Hollman et al., where the gait velocities 
were fixed at 0.9, 1.1 and 1.3m/s. Third, the duration of the experimental trials 
was different (8 min in this study versus 3 min in Hollman et al.).  

Effect of Asynchronous OF on Locomotion Patterns 

The second hypothesis was that as the velocity of the OF became 
asynchronous with respect to the subject’s preferred walking speed, the 
variability of gait would become significantly different. There was an overall 
significant difference between OFn and both OFf and OFs. The overall direction 
was OFn > OFf > OFs and although the only significant difference was at the 
knee joint ROM, most comparisons exhibited the same direction as in the 
overall comparisons. 

Changes in the velocity of OF has been known to cause deviations in 
gait patterns. Walking velocity and stride length have been shown to have 
negative correlations with OF causing slower walking velocity and shorter stride 
length when OF was faster and vice versa (Prokop et al., 1997). Similar 



observations have also been made in other studies in healthy subjects (Verraine 
et al., 2002) and also in patients with stroke (Lamontagne et al., 2007). However 
in these studies kinematic parameters measured were the walking velocity, stride 
length and step width and not the joint angular changes during the VR 
conditions that caused these changes.  

Variability of gait was not significantly impacted by the OF. These 
findings are comparable to those of Prokop and colleagues (2007) who reported 
that stride cycle variability did not have a relation to the velocity of OF. 
However in that study the direction of VR variability values being higher than 
Non-VR conditions was opposite to the findings of this study. There may be 
several reasons for this. First, Prokop et al. used a paradigm where the velocity 
of the treadmill was related to the subjects walking velocity. Since velocity was 
not held constant, making inferences about stride cycle variability is difficult 
since gait variability measurements are known to be speed-dependent (Jordan et 
al., 2007). To reduce the effect of variations in walking velocity affecting the 
amount of variability present in the locomotion patterns, a constant-driven 
treadmill was used in this study to hold the velocity constant. Second, 
conclusions about stride cycle variability were made by Prokop and colleagues 
using data from another study (Zijlstra & Dietz, 1995). It is not clear whether the 
same subject pool was used for both studies. Last but not the least, the 
dependent variables for both studies were different.  

In summary, differences were observed using both linear and nonlinear 
tools, in the locomotor patterns of healthy human subjects while walking at 
constant velocity with the OF being manipulated at higher and lower velocities 
to the preferred walking speed. The findings demonstrate the sensitive nature of 
the analytical tools to specific anatomical areas and sensorimotor conditions. In 
addition, changes in the flow of these optical cues caused changes in both the 
amount of variability of the locomotor patterns and changes in the temporal 
organization of variability. Further exploration of the effects of OF 
manipulations is warranted to determine the specific combination of parameters 
that could eventually be most beneficial in the rehabilitation of subjects with 
sensorimotor issues. 
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