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ABSTRACT  1 

Learning to control forces is known to reduce the amount of movement variability (e.g. standard 2 

deviation; SD) while also altering the temporal structure of movement variability (e.g., 3 

approximate entropy; ApEn). Such variability control has not been explored in stroke survivors 4 

during reaching movements in dynamic environments. Whether augmented feedback affects 5 

such variability control, is also unknown. Chronic stroke survivors, assigned randomly to a 6 

control/experimental group, learned reaching movements in a dynamically changing 7 

environment while receiving either true feedback of their movement (control) or augmented 8 

visual feedback (experimental). Hand movement variability was analyzed using SD and ApEn. A 9 

significant change in variability was determined for both SD and ApEn. Post-hoc tests revealed 10 

that the significant decrease in SD was not retained after a week. However, the significant 11 

increase in ApEn, determined on both days of training, showed significant retention effects. In 12 

dynamically changing environments, chronic stroke survivors reduced the amount of movement 13 

variability and made their movement patterns less repeatable and possibly more flexible. These 14 

changes were not affected by augmented visual feedback. Moreover, the learning patterns 15 

characteristically involved the control of the nonlinear dynamics rather than the amount of hand 16 

movement variability. The absence of transfer effects demonstrated that variability control of 17 

hand movement after a stroke is specific to the task and the environment. 18 

 19 

Keywords: augmented feedback, approximate entropy, upper extremity, nonlinear dynamics, 20 

force fields, robotics  21 
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INTRODUCTION 1 

As people age, there is a loss of sensorimotor ability. It is known that decrement in 2 

sensorimotor performance with aging is associated with a significant increase in the amount of 3 

variability (Enoka et al., 2003; Sosnoff and Newell, 2006). In diseases like stroke in which the 4 

sensorimotor status of the individual is further compromised, such a decrement in performance is 5 

even more pronounced. Stroke is a leading cause of disability (CDC, 2009) and may result in 6 

severe impairment of the affected upper extremity despite intensive rehabilitation (Nakayama et 7 

al., 1994). This limits the ability to regain functional independence in the activities of daily 8 

living. Therefore, the requirement of more effective rehabilitation strategies is strongly desired 9 

both by the patients and their caregivers.  10 

Robot-aided therapy has been studied in recent times as a promising tool in stroke 11 

rehabilitation (Volpe et al., 2005). The advantages of robot-aided therapy include accuracy, 12 

repetitiveness and consistency of movement training; the ability to customize according to 13 

individual requirements; and a reduction in the time for clinical supervision. Robot-aided therapy 14 

can be customized to provide either assistive or resistive forces according to the individual 15 

requirement of the subjects. In addition to creating different types of force fields for improving 16 

outcome, robot aided therapy can be customized for the upper limb or the lower limb, as well as 17 

programmed to overcome different levels of weakness, stiffness or spasticity for practicing 18 

movement. It can also be programmed to provide directional force fields depending on the 19 

patient’s directional limitations.  20 

It is known that with practice elderly subjects can improve sensorimotor performance 21 

(Bock and Schneider, 2002; Seidler, 2007), and change both the associated amount (i.e. standard 22 

deviation; Christou et al., 2007; Kornatz et al., 2005) and the temporal structure of variability 23 
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(i.e. approximate entropy; Sosnoff and Voudrie, 2009). With practice, elderly subjects 1 

demonstrate a decrease in the amount of variability irrespective of the task whereas the change in 2 

the temporal structure of variability is task-dependent (Sosnoff and Voudrie, 2009). This raises 3 

the question – do such characteristic changes also occur in chronic stroke survivors? In 4 

particular, what would happen to the amount and the temporal structure of variability as chronic 5 

stroke survivors learn to perform reaching movements in a novel dynamically changing 6 

environment?     7 

Robot-aided therapy can provide adaptive training to stroke survivors. During adaptive 8 

training the subject encounters novel force fields or altered visual feedback and is required to 9 

make error corrections during goal directed movements. Recent studies (Mukherjee et al., 2012; 10 

Patton et al., 2005) have shown that manipulating the environment to enhance reaching errors in 11 

stroke survivors may have potential benefit in stroke rehabilitation. These studies utilized the 12 

manipulation of haptic and proprioceptive feedback through the use of velocity dependent 13 

(Mukherjee and Liu, 2012; Patton et al., 2005) force fields to show that stroke survivors can 14 

learn and improve reaching movements in dynamic environments. However, it is not known how 15 

such learning will affect the variability of reaching movements. Augmented feedback, 16 

comprising of the utilization of extrinsic information that supplements the subject’s internal 17 

feedback, has led to promising results in the past in stroke survivors (Frasinetti et al., 2002; 18 

Rossetti et al., 1998). However, it is not known whether augmented feedback has an effect on 19 

variability during motor learning in stroke survivors. 20 

Motor behavior in humans can be explained in terms of the entropy conservation 21 

principle (Hong and Newell, 2008). In this principle, within the task-organism-environment 22 

framework, entropy is a conserved quantity. During motor task performance, as the task becomes 23 
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difficult to perform (increased task entropy) and/or when the information from the environment 1 

(e.g. visual feedback) is reduced (increased environmental entropy), healthy human subjects 2 

show reduced entropy (organism entropy). This reduced entropy is indicative of a constricted 3 

approach in which the degrees of freedom of the system are reduced. However, with learning and 4 

practice, as the likelihood of meeting the demands of the task are increased due to an improved 5 

capacity to utilize available information, the organism entropy increases. Our objective was to 6 

determine how the presence of a dynamic task and environmental information could affect the 7 

approximate entropy of reaching movements in chronic stroke survivors. This is not only 8 

innovative but also clinically important because understanding the interactions between the task, 9 

the environment and the chronic stroke survivor is critical from both a mechanistic as well as a 10 

rehabilitation standpoint.  11 

In this study, we recruited chronic stroke survivors to learn reaching movements with a 12 

robotic manipulandum in a velocity-dependent force field. Our first goal was to determine if the 13 

training of reaching movements in the novel dynamically changing environment in chronic 14 

stroke survivors affected the amount and the temporal structure of hand movement variability. 15 

Our second goal was to test if augmented visual feedback affected the amount and the temporal 16 

structure of hand movement variability in chronic stroke survivors.  17 
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METHODOLOGY 1 

Study subjects: Twelve chronic stroke survivors were selected from the local community 2 

who attended the stroke clinic of our Medical Center. Before participating in the experiment, all 3 

subjects signed an informed consent approved by the Institutional Review Board of our Medical 4 

Center. The mean age of the subjects was 62.92±8.07 years and the mean duration of stroke was 5 

18.58±12.47 months (table 2). The Fugl-Meyer Assessment23, which is a stroke-specific and 6 

performance-based clinical evaluation and is used to assess motor functioning, sensation and 7 

joint proprioception, was performed prior to the experiment (table 2). All subjects were right-8 

hand dominant and four of the subjects were affected on the right side. Inclusion criteria: The 9 

inclusion criteria included first time diagnosed carotid distribution ischemic, hemorrhagic, or 10 

brainstem stroke, at least three months after the incidence, age between 50 and 75 years, a 11 

Folstein Mini-Mental score greater than 25 (Folstein et al., 1975) and free of major post-stroke 12 

complications (e.g. recurrent stroke, upper limb dislocation or fracture, myocardial infarction). 13 

Subjects were screened to select those who had a unilateral lesion and who had at least 20/40 14 

corrected vision. Exclusion criteria: These included subjects who had subarachnoid hemorrhage, 15 

asomatognosia/unilateral neglect, obtunded or comatose, history of fractures or injuries in the 16 

upper limb of less than 6 months duration, undergoing botox treatment, a Florida apraxia score 17 

less than 27, more than one stroke episode, pain at the time of screening, poorly controlled 18 

diabetes, progressive neurological diseases (e.g. Parkinson’s disease), peripheral nerve pathology 19 

and lived more than 60 miles from our Medical Center.  20 

Study protocol: The subjects were randomly placed in either an experimental or a control 21 

group so that each group had six subjects. Subjects in the experimental group received 22 

augmented visual feedback during performance of the motor task but not the subjects in the 23 
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control group. The subjects were blinded to which group they were randomly assigned. Each 1 

subject made two visits to the laboratory on consecutive days followed by a follow up visit 2 

within a week of the second visit. Subjects performed target-reaching tasks with the affected 3 

hand on all three visiting days. During the experiment, the subject was seated on a chair (figure 4 

1) while holding the InMotion2 robotic manipulandum (Interactive Motion Technology, Inc., 5 

Cambridge, MA) with the affected hand. The subject was strapped onto the chair to prevent 6 

motion of the trunk while performing the reaching movements. During the experiment, the room 7 

was darkened to prevent the subject from viewing the arm position. The subject rested the 8 

forearm on a plastic piece that was connected to the manipulandum. This allowed motion only at 9 

the shoulder and elbow on a 2-D plane. A computer monitor was placed in front of the subject at 10 

a distance of approximately one meter. The subject saw the start position at the center of the 11 

screen, 8 target positions (figure 1B) located peripherally and the instantaneous hand position 12 

(manipulandum position). Each of these positions was represented by 12mm diameter circles 13 

displayed on the computer monitor. On day one, the subject performed the following trials (table 14 

1): familiarization, practice, baseline and experimental trials. During the familiarization trials, 15 

the subject was familiarized with the surroundings and the feel of the robotic manipulandum. 16 

Practice trials were performed so that the subject could make the reaching movement in the 17 

desired time of one second. During the baseline trials the subject performed reaching movements 18 

without any visual/force manipulation of the task. On the second day, the subject performed only 19 

the experimental trials. Within five days of the second visit, the subject performed normal 20 

reaching trials, which were similar to the baseline trials, as well as dynamic retention trials, 21 

which tested the retention of motor learning of the reaching movements in the dynamic 22 

environment. 23 
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INSERT FIGURE 1 HERE 1 

The subject made center out reaching movements to 8 radial targets 15 cm from the start 2 

position (figure 1b). Targets were presented one at a time, in a counterclockwise sequence in 3 

increments of 45° starting from 0° (target 1) to form a cycle of target reaching movements. In 4 

this study, a cycle is defined as a set of 8 target reaching movements or trials, once toward each 5 

target in a counterclockwise order of target appearance. Baseline trials: The subject performed 5 6 

cycles of reaching movements for a total of 40 baseline trials. Movements were made without 7 

any visual or dynamic transformation of the motor task. Experimental trials: After the 8 

manipulandum was brought to the start position by the robot, an auditory cue “ready” was given 9 

to the subject. After 3 seconds the target changed color from red to blue and that was the cue to 10 

start the movement. After a period of 1 second the target reverted back to the original color (red). 11 

The instruction to the subject was to make a single quick movement to the target. The subject 12 

was instructed to finish the movement before the target changed color back to red. Practice trials 13 

were performed to achieve the required movement in a time of 1 second. Feedback was provided 14 

to the subject to indicate whether the movement was successful, ‘too fast’ (<0.75s) or ‘too slow’ 15 

(>1s). After each trial, the robot automatically returned the manipulandum to the start position 16 

during which the cursor feedback was absent. This was meant to prevent reinforcing the 17 

subject’s internal feedback. There were 30 cycles for a total of 240 experimental trials. Normal 18 

reaching trials: On the third day, the subject performed 5 cycles of reaching movements for a 19 

total of 40 trials similar to the baseline trials, without any visual or dynamic transformation of 20 

the motor task. Dynamic Retention trials: Also on the third day, the subject performed 5 cycles 21 

of reaching movements for a total of 40 trials with the force fields. The force field: Subjects in 22 

both experimental and control groups performed reaching tasks in velocity dependent viscous 23 
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curl field (Patton et al., 2005). The force field was always orthogonal to the hand velocity and 1 

formed a counterclockwise circulating pattern. Forces applied at the hand during the reaching 2 

movement are given by the following equation:  3 

 4 

where x, y are the two components of the hand velocity along the medial/lateral (x) and 5 

proximal/distal (y) directions, Fx and Fy are the x and y components of the force applied by the 6 

robot, and λ is a constant whose value is 20 Ns/m (Mukherjee and Liu, 2012). 7 

The augmented visual sensory feedback of movement error: Only subjects in the 8 

experimental group received augmented visual feedback during performance of the reaching task 9 

in the velocity dependent force field. The visual feedback augmentation was designed to cause 10 

an enhancement of the visual feedback of movement errors. As the subject made the reaching 11 

movement in a given trial, the 2-dimensional instantaneous hand position (x and y-axes) was 12 

sensed by position sensors in the robot handle. The instantaneous perpendicular deviation from 13 

the straight-line path to the target was doubled to create the augmented feedback. In the 14 

augmented feedback group, the hand position value in the direction of the target remained the 15 

same. The augmented instantaneous hand position was shown to the subject on the visual display 16 

monitor. 17 

Data recording: The manipulandum position in a two-dimensional horizontal plane was 18 

recorded at 200 Hz. Data recording started when the visual cue for movement was provided to 19 

the subject. Data processing and analysis: Raw data was processed using MATLAB 20 

(MathWorks, Natick, MA) code developed in our laboratory and statistically analyzed using the 21 

SPSS statistical software (SPSS Inc.). The amount of movement variability was analyzed using 22 
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the standard deviation (SD) of deviation, perpendicular to the direction of movement in each trial 1 

(figure 1C). In addition to analyzing the amount of variability, the temporal structure of 2 

variability was also explored using nonlinear analysis (Stergiou et al., 2004). The temporal 3 

structure of variability was investigated using the nonlinear measure of Approximate Entropy 4 

(ApEn).  5 

ApEn is a measure of quantifying the predictability or regularity of a time series (Pincus 6 

and Goldberger, 1994). The term entropy is defined as the loss of information in a time series or 7 

a signal. Over several years, the use of entropy methods to characterize periodicity or regularity 8 

in biological data has become popular. In brief, given a time series f(n) = f(1), f(2), … f(N), 9 

where N is the total number of data points equally spaced in time, a sequence of m-length vectors 10 

(a data segment of length m) is formed. Each m-length vector within the time series is then 11 

compared. If the tail and head of the vector fall within a set tolerance, r, or noise filter, the 12 

vectors are considered alike. The next procedure is to divide the sum of the logarithm of the total 13 

number of like vectors by N-m+1. This process is repeated by increasing m by 1(m+1). 14 

Subtracting the conditional probabilities of m+1 from m then gives us the ApEn value. 15 

Practically, ApEn calculates the logarithmic probability that a series of data points, a certain 16 

distance apart, exhibit similar relative characteristics on the next incremental comparison within 17 

the state space (Pincus and Goldberger, 1994). A time series with similar distances between data 18 

points results in lower ApEn values, while large differences in distances between data points 19 

results in higher ApEn values. Thus, completely random data will exhibit a value close to two, 20 

while completely periodic data (i.e. sine wave) will exhibit a value of zero. Behaviorally, values 21 

close to zero represent a behavior that is inflexible and with reduced capacity to adapt 22 

characterized by extremely regular movement patterns over time. On the other hand, larger 23 
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values represent a behavior that is less repeatable and possibly more flexible. The ApEn 1 

algorithm was implemented in MatLab where all time series were analyzed (with m, the number 2 

of observation windows to be compared = 2 and r, the tolerance factor = 0.2 and N, the number 3 

of data points = 200). The perpendicular deviation time series in each trial was used to calculate 4 

the ApEn for that trial. Although there are several analytical tools to evaluate the temporal 5 

structure of variability like the Lyapunov Exponent (LyE) and Detrended Fluctuation Analysis 6 

(DFA), these tools generally require large amounts of data to provide stable results. For example, 7 

the number of data points required for LyE calculations vary between 1000 and 10000 and 8 

sometimes even higher numbers have been used (Timmer et al., 2000). The number of data 9 

points required for ApEn calculation, on the other hand, is much smaller varying between 50 and 10 

5000 (Pincus, 2000). This is advantageous when data sets are small like those in the present 11 

study.    12 

For statistical analysis, the independent variables were the subject group [2 levels – with 13 

(experimental group) or without augmented feedback (control group)] and trial type [8 levels – 14 

baseline (no forces), early and late trials on day one (with forces), early and late trials on day two 15 

(with forces), washout effect on day two (no forces), transfer effect to normal reaching on day 16 

three (no forces), retention effect of dynamic control on day three (with forces)]. In each case, 17 

the mean of 16 experimental trials was calculated for further analysis. The two dependent 18 

variables were the normalized SD and ApEn of deviation perpendicular to direction of 19 

movement in each trial. Each subject’s data was normalized from the baseline performance of 20 

that subject. A 2X8 mixed factor ANOVA (group – between subject factor; trial type – within 21 

subject factor) was used to identify overall significant differences followed by post-hoc least 22 

squared difference tests for determining specific differences. The alpha level was set at 0.05.  23 
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Due to the small size of our time series we also explored whether the source of variations 1 

present in the time series data used for analysis, was deterministic in nature. Surrogation was 2 

performed for this purpose (Theiler et al., 1992; Stergiou et al., 2004). In this technique, 3 

surrogate data was generated which preserved the structure of the original data set having the 4 

same mean, variance and power spectra. Theiler’s algorithm was used to generate surrogate data 5 

series. Algorithm 0 generated a randomly shuffled data series, Algorithm 1 generated a Fourier 6 

transform surrogate and Algorithm 2 generated an amplitude adjusted Fourier transform 7 

surrogate. Subsequently ApEn of the original data series was compared with each of the 8 

surrogate data series. Significant differences would indicate that the original time series was not 9 

randomly derived and therefore was deterministic in nature despite their relatively small length.   10 
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RESULTS 1 

There was no significant difference (p=0.868) between the mean age of the subjects in 2 

the experimental group (62.5±7.79 years) and the control group (63.33±9.07 years). In addition, 3 

there was no significant difference (p=0.529) between the mean duration of stroke in the 4 

experimental group (16.17±9.70 months) and in the control group (21.00±15.32 months). The 5 

mean Fugl-Mayer score for the upper limb was 60.50±18.37 (sensory and motor) in the 6 

experimental group and 61.83±16.47 in the control group. These scores were not significantly 7 

different (p=0.885). In order to determine if movement time was affected by subject groups or 8 

trial type, a 2X8 mixed factor ANOVA revealed that there was no main affect of trial type 9 

(p=0.075) or group (p=0.603) and there was no interaction affect (p=0.351). The overall 10 

movement time at baseline was 0.92±0.32s, at early training on day one, 0.98±0.02s, at late 11 

training on day two, 0.93±0.04s and at retention was 0.90±0.08s. 12 

The raw data representing perpendicular distance (in meters) from the straight line path to 13 

the target for a set of 240 trials in one stroke subject (figure 2A) reveal a reducing trend in 14 

amplitude over time. The amount of variability in the system shown by the SD of the data series 15 

in figure 2A, also shows a reducing trend over time (figure 2B). However, the temporal structure 16 

of movement variability, shown by calculating the ApEn of the data series in figure 2A, shows 17 

an increasing trend over time (figure 2C), demonstrating the two different aspects of variability 18 

and how important is to study both since they behave in strikingly different manners.        19 

INSERT FIGURE 2 HERE 20 

A significant main effect of trial type was shown (F7,35=3.911; p=0.001) for normalized 21 

SD; however, there was no group or interaction effect. A significant main effect of trial type was 22 

also shown (F7,35=4.889; p=0.000) for ApEn; however, there was no group or interaction effect. 23 
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Post-hoc tests (Figure 4) revealed that there was a borderline increase in the normalized ApEn 1 

from baseline to the late trials of day one (p=0.052) and the early trials of day two (p=0.052), 2 

from the early to late trials of day one (p=0.015), from early trials of day one to that of day two 3 

(p=0.001) and from early trials of day one to late trials of day two (p=0.024). An increase in 4 

ApEn means that movement patterns became less repeatable or more predictable with time. 5 

There was a significant washout, i.e., a decrease in normalized ApEn from late trials of day two 6 

to washout trials (p=0.008) and retention, i.e., an increase in normalized ApEn from the early 7 

trials of day one to the retention trials (p=0.039). There was no significant transfer effect i.e., an 8 

increase in normalized ApEn from baseline to the normal reaching trials. 9 

Tests of normality were done for the processed SD and ApEn values. Normality was 10 

rejected for SD but not ApEn. Therefore nonparametric statistical analysis was done for the SD 11 

values. Friedman’s test was performed to determine a significant effect of the trial type. A 12 

significant effect of the trial type was determined (χ2
 [7]=31.500, p=0.000).  A post-hoc analysis 13 

with Wilcoxon Signed-Rank Tests was conducted (Figure 3). Post-hoc tests revealed that there 14 

was an increase in normalized SD from baseline to the early trials of day one (p=0.003) and day 15 

two (p=0.032). There was a decrease in normalized SD from the early to late trials of day one 16 

(p=0.012), from the early trials of day one to that of day two (p=0.016), and from the early trials 17 

of day one to the late trials of day two (p=0.038). A reduction in normalized SD means that the 18 

amount of variability reduced over time. There was a significant washout effect i.e., an increase 19 

in normalized SD from late trials of day two to washout trials (p=0.026). There were no 20 

significant retention or transfer effects. In fact the retention trials showed a significant increase 21 

from the late trials of day two to the retention trials (p=0.006), which meant that the significant 22 

reduction in normalized ApEn attained at the end of day two was not retained after one week. 23 
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INSERT FIGURES 3 AND 4 HERE 1 

Surrogate data were obtained by Applying Theiler’s algorithm to the dependent variable - 2 

perpendicular distance (in meters) from the straight line path to the target (figure 5). After 3 

obtaining the surrogate data sets for each trial, ApEn values were calculated for the raw and 4 

Algorithm 0, Algorithm 1 and Algorithm 2 generated surrogate data. A comparison of the mean 5 

ApEn values for the raw and surrogate data of all the subjects revealed that the ApEn values 6 

derived from the original data were significantly smaller (p<0.001) than the ApEn values 7 

calculated for the surrogated data sets (figure 6). This was evident in all comparisons. This result 8 

demonstrates that the original data are deterministic in nature and justified the exploration of the 9 

temporal structure of variability. 10 

INSERT FIGURES 5 AND 6 HERE  11 
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DISCUSSION 1 

Our first goal was to determine if motor training of reaching movements in the novel 2 

dynamic environment in chronic stroke survivors affected the amount and structure of hand 3 

movement variability. Our second goal was to test if augmented visual feedback affected the 4 

amount and the temporal structure of hand movement variability in chronic stroke survivors. 5 

Changes in the amount of hand movement variability: In terms of changes in the amount 6 

of variability with motor training, the chronic stroke survivors demonstrated reduction in 7 

variability on the first day and were able to retain this reduction on the second day. However, 8 

they did not show retention of the reduction in the amount of variability on the third visit or its 9 

transfer to a task without the force field. In fact the retention trials were significantly increased in 10 

comparison to the reduction in normalized SD achieved after two days of training. These results 11 

demonstrate that for this specific task, motor training does not lead to a reduction in the amount 12 

of variability. However, this could also mean that the affected arm of the stroke subject made 13 

controlling the amount of variability difficult. Chronic stroke survivors demonstrate significantly 14 

high amounts of variability during upper limb motor tasks (Scheidt and Stoekmann, 2007; 15 

Reinkensmeyer et al., 2003). One of the reasons why the amount of force variability is high is 16 

because of enhanced motor unit firing rate variability (Laidlaw et al., 2000; Moritz et al., 2005). 17 

Moreover, practice/training of an upper limb task has been shown to reduce the motor unit firing 18 

rate variability in older adults (Griffin et al., 2009). However, the specific task of target reaching 19 

by overcoming a deviating force field in chronic stroke survivors may depend on a control 20 

mechanism that requires more than a mere reduction of the amount of variability. We believe 21 

that this information may arise from investigating the temporal structure of motor variability and 22 
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the nonlinear dynamics of these movement patterns which has been known to provide important 1 

information about the function of the neuromuscular system (Stergiou et al., 2004). 2 

  Changes in the temporal structure of hand movement variability: Significant changes in 3 

the repeatability of hand movement patterns were demonstrated not only for the individual days 4 

but in addition, retention effects were also shown. This shows that the temporal structure (instead 5 

of the amount) of hand movement variability is a more sensitive indicator in chronic stroke 6 

survivors of motor training of reaching movements in dynamic environments. However, these 7 

observations may also be specific to the type of task given to the chronic stroke survivors. 8 

Specifically because transfer effects were absent for both variability measures. It has been shown 9 

previously that the temporal structure of variability during an upper limb motor task may follow 10 

separate tendencies depending upon the task (Sosnoff and Voudrie, 2009). In that study, it was 11 

shown that if the task comprised of maintaining a constant force, the temporal structure of 12 

variability changed as revealed by an increase in ApEn (the motor output became less repeatable) 13 

whereas, if the task was cyclic or rhythmic, it lead to a decrease in ApEn (the motor output 14 

became more repeatable). The reasoning behind these observations is that each specific task has 15 

its inherent degrees of freedom (Newell and Vaillancourt, 2001) and to perform each task 16 

successfully, the motor output needs to be specific for the given task. Tasks that require a 17 

constant motor output need lower levels of dynamics than those tasks that are cyclic (Newell, 18 

Broderick, Deutsch, and Slifkin, 2003; Sosnoff and Voudrie, 2009). Although our task did not 19 

require a constant motor output (e.g., constant force) to perform the task successfully, it was not 20 

a cyclic task either. This was because the subject had to reach a different target on each trial. 21 

However, before starting the experiment, the subject had been given practice to complete the 22 

reaching movement in a constant time (not too fast/slow). This meant that the subject maintained 23 
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the same velocity profile on each trial. Since the force field was velocity-dependent, this meant 1 

that in each trial, the subject encountered similar force field patterns. This may be the reason why 2 

the stroke survivors in our study demonstrated similar temporal structure of movement 3 

variability to the static force and not the sinusoidal force experiments of Sosnoff and Voudrie 4 

(2009). With aging the patterns of physiological functions become more repeatable (Lipsitz and 5 

Goldberger, 1992). However, with practice, motor output patterns can be made less repeatable 6 

and this effect depends on the type of task performed (Sosnoff and Voudrie, 2009). Our data 7 

demonstrates that even chronic stroke survivors, with practice, can learn to make movement 8 

patterns less repeatable and possibly more flexible.   9 

The effect of augmented feedback on the amount and temporal structure of hand 10 

movement variability: When extrinsic information is provided to a subject, motor output patterns 11 

become less repeatable (Hong and Newell, 2008). Conversely, when less information is available 12 

or when the resolution of this external/augmented information is low, movement patterns 13 

become more repeatable and regular (Kuznetsov and Riley, 2010). In our study, there was no 14 

effect of augmented feedback on either the amount or the temporal structure of hand movement 15 

variability. The reason for this could be the nature of the available information. In the three cited 16 

studies (Hong and Newell, 2008; Kuznetsov and Riley, 2010), the environmental information 17 

was specific to the magnitude of isometric force. As the subject increased or reduced the 18 

isometric force, the feedback shifted proportionately. The feedback was specific to the task, 19 

which was to maintain a constant force. Our feedback was instead an indirect effect of force 20 

perturbation. What the subject visualized was the hand deviation during the reaching task as a 21 

result of the force perturbation. Although the visual feedback of hand position was manipulated 22 
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between the groups, the magnitude of information was not manipulated. Moreover, our task was 1 

dynamic as opposed to those studies, which had static tasks.  2 

Human motor behavior has been shown to conserve entropy within the task-organism-3 

environment framework (Hong and Newell, 2008). In those studies it was shown when healthy 4 

human subjects performed isometric contractions matched to a target force with their index 5 

finger, the approximate entropy of their force output was related to the entropy of the 6 

environmental feedback and the entropy of the task. When the task became difficult to perform 7 

as in matching variable forces (increased task entropy) or when the information from the 8 

environment (e.g. frequency of visual feedback) was reduced (increased environmental entropy), 9 

healthy human subjects showed reduced entropy. This reduced entropy is demonstrative of the 10 

subjects employing limited coordination patterns or reduced degrees of freedom for performing 11 

the specific task. However, with learning and practice, the same task with the same 12 

environmental information can lead to increased entropy. This is because as the likelihood of 13 

meeting the demands of the task are increased due to an improved capacity to utilize available 14 

information.    15 

During the training paradigm, as the context of the environment changes, e.g., from 16 

dynamic to non-dynamic and vice versa, we observe changes in both the amount and structure of 17 

variability. Specifically for patient populations, as they try to learn “new” movement patterns, 18 

they must move from the present state of abnormal movements to a different state where 19 

movement is performed more normally. It has been proposed that in rehabilitation, for new stable 20 

movements to emerge from learned abnormal movements, it must pass through a critical 21 

threshold where instability is high (Harbourne and Stergiou, 2009). It is at this critical threshold 22 

where “new” sensorimotor relationships are being learned for the novel dynamic environment, a 23 
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highly unstable region, that variability control may play a crucial role. In addition, it is also 1 

proposed that normal human movements require an optimal level of variability (Harbourne and 2 

Stergiou, 2009). Patient populations, in order to get rehabilitated, need to strive towards their 3 

optimal level of variability.  4 

In summary, we have shown that chronic stroke survivors use similar control strategies as 5 

healthy individuals for learning reaching tasks in dynamically changing environments by 6 

reducing the amount of movement variability and making the hand movement patterns less 7 

repeatable during dynamic tasks. We also demonstrated that the control of hand movement as it 8 

is revealed by the variability analysis may not be affected by augmented visual feedback. 9 

Moreover, the learning of reaching tasks in dynamically changing environments for chronic 10 

stroke survivors may involve to a larger extent the control of the nonlinear dynamics of the 11 

movement patterns performed rather than simply the amount of hand movement variability. 12 

Finally, variability control of hand movement after a stroke is specific to the task and the 13 

environment. A limitation in this study is that healthy control data is absent for comparisons 14 

however, current studies are investigating this question. It would be interesting to investigate 15 

how the control of nonlinear dynamics of the movement patterns is affected in variable 16 

environments; however, this will be a future line of research. 17 

 18 

   19 
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Table 1. The description of trials performed in the study. 1 

 2 

S.No. TRIAL TYPE Description Number of trials 

1. Familiarization (Day 1) The subjects were familiarized with the feel of moving the 

manipulandum within the workspace and also interacting with the 

visual display. 

****** 

2. Practice Trials (Day 1) Training was provided to perform the reaching task within a 

specific time period. 

80 trials 

3. Baseline Trials (Day 1) Subjects performed target-reaching movements in an environment 

without any force fields. 

40 trials 

4. Experimental Trials (Day 1) Subjects performed target-reaching movements in an environment 

having a velocity-dependent force field. Those in the experimental 

group received augmented visual feedback. 

240 trials 

5. Experimental Trials (Day 2) ********************same as above********************* 240 trials 

6. Washout Trials (Day 2) The trials were similar to baseline trials (no force-fields) and were 

done to test de-adaptive/context switching ability. They were also 

done for the testing of reaching ability (1 week later) without any 

influence of the force fields. 

40 trials 

7. Normal Reaching Trials (Day 3) 

Transfer Effects 

The transfer effect tested any improvement in reaching ability in a 

non-dynamic environment (without any force fields) as a result of 

training in a dynamic environment. These trials were similar to the 

baseline trials and were performed a week after Day 2. 

40 trials 

8. Dynamic Retention (Day 3) This was any improvement in reaching ability in the dynamic 

environment determined a week after Day 2. 

40 trials 

  3 
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Table 2. Demographics of the chronic stroke survivors in the study. The study groups are Control and Augmented Feedback (Aug-1 

Fdbk). The last column indicates the Fugl-Mayer score for the upper limb. The maximum possible sensory + motor score for the upper 2 

limb is 78.  3 

 4 

Subject No. 
Age 
(yrs) Sex 

Stroke duration 
(months) Type of stroke 

Side 
Affected Study Group 

FM 
Score 

s1001 51 M 43 Ischaemic L Control 31 

s1002 53 M 28 Haemorrhagic L Aug-Fdbk 43 

s1003 53 M 9 Ischaemic R Aug-Fdbk 69 

s1004 68 M 21 Ischaemic L Control 59 

s1005 65 F 13 Ischaemic L Aug-Fdbk 77 

s1006 60 M 8 Ischaemic L Control 62 

s1007 71 M 35 Ischaemic L Control 75 

s1008 74 M 15 Ischaemic R Control 69 

s1009 71 M 29 Ischaemic R Aug-Fdbk 32 

s1010 64 M 10 Ischaemic R Aug-Fdbk 67 

s1011 69 F 8 Ischaemic L Aug-Fdbk 74 

s1012 56 M 4 Ischaemic R Control 75 
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Figure Captions 1 

 2 
Figure 1. A) A schematic view from the top of the subject showing the orientation of the arm and 3 

forearm segments, the trunk strapped on to the chair, and the hand holding the manipulandum 4 

which is connected to the robot. B) A grid of 8 targets for center-out reaching movements in 5 

counterclockwise order from 1 to 8 (increments of 45˚) holding the 2-joint robotic 6 

manipulandum. C) Top view of a subject holding the manipulandum. D) Side view of a subject 7 

holding the manipulandum and viewing the display monitor. E) The perpendicular deviation 8 

from the straight line path to the actual trajectory of the trial is used to calculate the dependent 9 

variables – standard deviation and approximate entropy. F) Trajectory Figures of one stroke 10 

subject in the Baseline, Early Training and Late Training Conditions. 11 

Figure 2. A single stroke subjects data. A) Raw Data: Perpendicular distance (in meters) from 12 

the straight line path to the target for a set of 240 trials. Each trial consisted of 200 data points. 13 

48000 data points are shown for a single subject on one day of the experiment. B) Standard 14 

Deviation: Each circle represents the standard deviation of the perpendicular distance data series 15 

for each trial. C) Approximate Entropy: Each circle represents the Approximate Entropy of the 16 

perpendicular distance data series for each trial.       17 

Figure 3. Bar chart showing the mean of the normalized standard deviation values of all the 18 

subjects (both groups combined) for all the experimental conditions:  early and late  trials on day 19 

one and two, washout effect on day two, transfer effect to normal reaching and dynamic 20 

retention on day three. Error bars are standard deviation. *In comparison to the baseline, #In 21 

comparison to the early trials of day one, ϕIn comparison to the late trials of day two, single 22 

symbols indicate p<0.05, double symbols indicate p<0.005. 23 
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Figure 4. Bar chart showing the mean of the normalized Approximate Entropy values of all the 1 

subjects (both groups combined) for all the experimental conditions:  early and late trials on day 2 

one and two, washout effect on day two, transfer effect to normal reaching and dynamic 3 

retention on day three. Error bars are standard deviation. *In comparison to the baseline, #In 4 

comparison to the early trials of day one, ϕIn comparison to the late trials of day two, single 5 

symbols indicate p<0.05, double symbols indicate p<0.005, triple symbols indicate p<0.001.  6 

Figure 5. A single stroke subjects data. A) Raw Data: Perpendicular distance (in meters) from 7 

the straight-line path to the target for a set of 240 trials. Each trial consisted of 200 data points. 8 

48000 data points are shown for a single subject on one day of the experiment. B) Theiler’s 9 

Surrogation: The A0 surrogate data series obtained from the raw data shown in A. C) Theiler’s 10 

Surrogation: The A1 surrogate data series obtained from the raw data shown in A. D) Theiler’s 11 

Surrogation: The A2 surrogate data series obtained from the raw data shown in A.  12 

Figure 6. Mean Approximate Entropy values for the raw and surrogate data of all the subjects. 13 

The perpendicular distance (in meters) of hand location from the straight line path to the target 14 

for a set of 240 trials on day one was used for analysis. The surrogate data were obtained using 15 

Theiler’s algorithm. Approximate Entropy values were calculated for the raw and A0, A1 and 16 

A2 surrogate data. The figure shows significant differences at p<0.001 for comparisons between 17 

raw ApEn and ApEn for each of the surrogate data.  18 

 19 
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Figure 2. 12 
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Figure 3. 15 
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Figure 4. 8 
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Figure 5. 17 
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Figure 6. 4 
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