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ABSTRACT 

Elasmosauridae is a monophyletic group of plesiosaurs that evolved in the Early Cretaceous and 

radiated to achieve a cosmopolitan distribution by the end of the Cretaceous. They were a highly 

successful group of deep sea predators with long necks, small heads, and stout four flippered 

bodies. Here we describe four postcranial elasmosaurs skeletons that were collected from the  

shallow marine Lopez de Bertodano formation located on Seymour Island of the Antarctic 

Peninsula. One specimen is a small-bodied elasmosaurs. Despite its small size it has several 

advanced ontogenetic character states including the fusion of neural spines to the vertebral 

centra. The individual was considered to be sub-adult in age. Histological samples were taken of 

the right femur that showed a moderate amount of remodeling while still preserving much of the 

fiber lamellar bone associated with fast growing juveniles. Together these features confirm a late 

juvenile to sub-adult ontogenetic stage for the specimen. Two of the other specimens are 

moderate sized elasmosaurs with unusual characteristics sometimes attributed to the clade 

Aristonectinae. We use their characters along with other WBP (Weddelian Biogeographic 

Provinance) and Pacific elasmosaurs taxa to better understand the relationships among basal 

Aristonectine elasmosaurs and evaluate characters attributed to them. The final specimen is the 

post cranial material from the holotype for Mortuneria seymourensis. Using this taxa we can 

better understand potential apomorphic characters and its relationship to closely related 

aristonectines. This paper aims to better understand these unusual elasmosaurs and the 

relationships of WBP elasmosaurs.
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CHAPTER 1 

BACKGROUND 

Introduction 

 Sauropterygia is a clade of secondarily marine reptiles spanning from the Lower Triassic 

to the Cretaceous-Paleogene boundary. The clade is a result of the Late Permian- Early Triassic 

radiation of diapsid reptiles that has led to poorly resolved early relationships and controversy 

within stem diapsids (Schoch & Sues, 2015). Currently, sauroptergians are defined as a sister 

taxon to Pan-Testudines and Lepidosauriformes (Schoch & Sues, 2015). Sauroptergians are 

considered euryapsids and lack the lower temporal opening of their diapsid ancestors, 

maintaining only the upper temporal fenestra (Storrs, 1993). From their early diapsid precursers 

their evolution is marked by a trend to a deeper marine environment leading to an abandonment 

of terrestrial locomotion. Several main groups evolved from the diapsid ancestors; Placondontia, 

Nothosauroidea, Pistosauriodea, and Plesiosauria (Rieppel, 2000; Sato, Hasegawa, Manabe, 

2006). Sauropterygia is united by the synapomorphies: a single upper temporal fenestra, 

pterygoids cover the braincase creating a closed palate, and coracoid bones, a small ilium, and 

fenestra in the pectoral girdle (Ketchum & Benson, 2010). Each of the main groups showed 

adaptations towards a greater dependency on marine life. Placodonts were small and heavy-

bodied, and most likely exploited a shallow water environment. The term Eusauropterigia 

contains the forms more derived than Placodontia. Early lineages within Eusauropterigia, 

pachypleurosaurs, nothosaurs and pistosaurs, show some levels of hyperphalangy—increasing 

limb flexibility. Nothosaurs had several adaptations for a more aquatic life including possible 

viviparity (Griebeler & Klein, 2019) and decreased bone mass (Klein, Sander, Krahl, Scheyer & 

Houssaye, 2016). Later representatives of the clade evolved rigid trunks that inhibited undulation 
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and relied on para-axial movement through the water (Storrs, 1993). 

 By the late Triassic the plesiosaurs evolved. The group, the sister group to pistosaurs, was 

the most derived to an aquatic lifestyle (Sato et al., 2006; Wintrich, Hayashi, Houssaye, 

Nakajima, & Sander, 2017). Plesiosaurs inhabited fully aquatic deep marine environments 

permissible by the evolution of hydrofoil flippers and viviparity (O’Keefe & Chiappe, 2011). 

Within the crown group of plesiosaurs evolved short- necked and long-necked lineages. The 

family of elasmosaurs took this lengthening to an extreme; Albertonectes (Kubo, Mitchell, & 

Henderson, 2012) reached over 18m and had a neck length of 7m containing 75 cervical 

vertebrae. Elasmosauridae is a monophyletic group of plesiosaurs that evolved in the Early 

Cretaceous and radiated to achieve a cosmopolitan distribution by the end of the Cretaceous. 

Elasmosaurs were a highly successful group of deep sea predators with long necks, small heads, 

and a stout four-flippered body.  
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Evolution of Sauropterygia 

 

Figure 1. Early phylogenetic relationship within diapsida. Modified from Schoch and Sues 2015. 

Placodontia 

 Placodonts represent a very basal sauropterygian lineage. The group had wide skulls with 

a single supratemporal fenestra. The most basal placodont evolved in the Western Tethys and 

lacked lacrimal bones (Neenan & Scheyer, 2012). Other similarities that tie placodonts to 

sauroptergians are the clavicles are located medial to the scapula, and reduction  of the carpels 

(Motani, 2009). The palate was broad with short, squared pterygoids. Later evolutionary change 

saw elongate palates and specialized dentition for durphagy (Neenan, et al., 2014). Teeth 

occurred not only on the premaxilla, maxilla, and dentary, but also the palate. Two main lineages 



4 

evolved; placodontoids that lacked armor and Cymodontoidae which had dermal armor. The 

braincase was robust and the skull reinforced to withstand the crushing bite resulting from their 

specialized diet of hard shelled organisms (Neenan et al., 2014). Stout and heavy in body, 

placodonts were likely shallow water animals and inhabited the Tethys Ocean of the early 

Triassic. Post-cranially the group was fairly unspecialized for an aquatic lifestyle. The fingers 

were distinct and the limbs robust. Dermal amour in Cymodontoidia would have hindered axial 

swimming, but even the non-armored lineage had a robust thoracic region that may have helped 

the organism by acting like a ballast to help placodonts maintain proper buoyancy for foraging 

(Storrs, 1993). 

Pachypleurosauria 

 Pachypleurosaurs are a monophyletic group that evolved in the Tethyan Ocean during the 

mid-Triassic (Liu et al., 2011). They are considered the most basal eusauropteyrigians (Rieppel, 

1994, 1998, 2000). The group has also been placed as basal Nothosaurs (Rieppel & Hagdorn, 

1997; Holmes, Cheng, & Wu, 2008). The name pachypleurosaurs refers to their thick ribs; the 

increased rigidity of the ribs may support some para-axial propulsion. Their presacral to caudal 

length proportions are similar to other marine reptiles, and they likely relied on axial movement 

through the water. In addition they have elaboration of the coracoids suggesting the use of the 

anterior limbs while swimming (Carroll & Gaskill, 1985). The distal limbs still resemble the 

ancestral terrestrial condition and there was only slight hyperphalangea in Keichousaururus 

(Holmes et al., 2008). The cranium shows a reduction of bones: the epipterygoid is lost and the 

pterygoids broaden and close dorsally over the brain case. The ectopterygoid is elongate. The 

nasal bones are large and touch the frontal. Like the preceding members of the clade, 

pachypleurosaurs have a relatively small temporal opening and overall small to moderate body 
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size. The group inhabited near shore coastal environments and was common in the Triassic 

(Klein, 2012). Pachypleurosaurs are the earliest known sauropterygian to give live birth. They 

are well represented in the fossil record allowing for studies on ontogenetic and intraspecific 

variation including sexual dimorphism in the propodial and pelvic elements (Rieppel, 1989; 

Cheng, Wu, & Ji, 2004; Xue et al., 2015). The growth rates of pachypleurosars were comparable 

with extant reptiles, but they matured faster (Klein & Griebeler, 2018). 

Nothosauroidea        

 Nothosaurs were a mid-Triassic, partially aquatic, marine group that has been found in 

North America, Europe, and China. Specimens of nothosaurs are found almost exclusively in 

shallow near-shore environments. They may have lived in a similar manner to modern seals. 

Their tails were long and the group likely maintained axial movement. The limbs and pectoral 

girdle show some modification for aquatic life such as limited hyperphalangy, a curved humerus, 

ossified ribs, and gastralia which may have compensated for buoyancy in the water column 

(Storrs, 1993). The skull of nothosaurids became more triangular in shape and also showed an 

elongation of the post orbital region with an increase in the upper temporal fenestra size. An 

early species Nothosaurus marchicus, showed a broad skull and numerous heterodont teeth-- 

large heterodont teeth remained common in the clade. They had large pterygoids that lack an 

interpterygoid vacuity (Klein & Albers, 2009). Cymatosaurus maintained openly constructed 

occiput that was closed and plate-like in other Nothosaurids, but occurs in the later taxa 

Plesiosaurs (Rieppel, 1998; Maisch, 2014). Nothosaur grade taxa studies of the life history has 

found at least some more advanced nothosaurs were viviparous (Griebeler & Klein, 2019). 

Nothosaurs grew and matured quickly compared to modern reptiles (Klein et al., 2016). 
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Pistosauroidea 

 A contemporary of nothosaurs and pachypleurosaurs, pistosaurs show many adaptations 

towards a fully marine habitat and therefore closely resemble the more derived plesiosaurs. They 

evolved necks with 30 or more cervical vertebrae and had an increased growth rate compared to 

more basal eosauropterygians (Wintrich et al., 2017). Corosaurus alcovensis is the most basal 

pistosaur known from the upper most Early Triassic (Rieppel, Martin, & Storrs, 2002) The 

pterygoids begin to open posteriorly, exposing the parasphenoid. The quadrojugal and coracoid 

foremina are lost (O’Keefe, 2001). Pistosaurs and plesiosaurs have keeled sagittal crest, 

narrowing parietals; the pineal foramen moves forward (O’Keefe, 2001). The jugal becomes 

separate from the orbital margin (Rieppel et al., 2002). The limbs are large and express 

hyperphalangy. The coracoids are large forming a long median symphysis (Sues, 1987), 

suggesting anterior para-axial propulsion. The caudal region was shortened as the limbs likely 

became the dominate form of locomotion. A reduced number of caudal vertebrae and flipper-like 

limbs are shared with plesiosaurs, and likely represent the sauroptyrigian’s progression to the 

deep marine environments where plesiosaurs later radiated (Storrs, 1993). 

Plesiosauria 

 Plesiosauria is the crown group in the lineage Sauropterygia. They evolved in the late 

Triassic and were medium to large, fully aquatic carnivores. Early plesiosaurs had robust 

thoracic regions with heavily ossified gastralia and thick ribs, potentially to help maintain 

balance in the water column (Storrs, 1993). The basicranium shows some more primitive 

characters, particularly involving the reduction of the pterygoids (O’Keefe, 2006). Several post 

cranial synapomorphies include: coracoids that become expanded and a large ventral 

puboischiadic plate (Sues, 1987). The limbs exhibit increased hyperphalangy and taper distally. 
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Propodials are shortened, but broad, expanded, and curved distally. The epipodials are shortened 

and widened to become broader than long. Together these form four broad, paddle-like limbs 

that were used in  para-axial propulsion (O’Keefe, 2001). Their tails were reduced. Their 

evolution is concurrent with an increased metabolism; studies involving their cortical growth 

rates and periosteal deposition demonstrate plesiosaurs grow faster than basal sauropsids, likely 

accompanied by an increased body temperature, compared to predecessors (Fleischle, Wintrich, 

& Sander, 2018). An elevated metabolism may have facilitated their success at exploiting open 

waters and surviving the Triassic/ Jurassic boundary (Wintrich et al., 2017). 

 Early plesiosaurs had moderate neck length and head size, with a short preorbital region 

and a deeply embayed cheek (Storrs & Taylor, 1996). From early plesiosaurs, two main 

morphotypes evolved in response to different feeding strategies; large headed, small necked 

pliosaurmorphs and small headed, long necked plesiosaurmorphs (O’Keefe, 2002; O’Keefe & 

Carrano, 2005). Recent findings in Germany, uncovering a primitive plesiosaur from the 

Jurassic, suggest that diversification in plesiosaurs occurred very early in their history (Wintrich 

et al., 2017). The short necked variety may have fed on larger prey, like modern sharks, whereas 

the smaller head variety consumed fish with several species of fish found in their remains 

(Cicimurri & Everhart, 2001). Other features associated with each include; in pliosaurmorphs the 

femur is longer than the humerus with larger posterior limb (O’Keefe & Carrano, 2005). This 

condition is reversed in plesiosaurmorphs. The two main morphotypes are not monophyletic 

groups, but rather the pliosaurmorphs evolved independently at least twice and the long necked 

variety converged at least three times (O’Keefe, 2002). 
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Figure 2. Phylogeny of Sauropterygia (modified from Wintrich et al., 2017). 

Elasmosauridae 

 Elasmosaurs evolved in the Cretaceous as early as the Valanginian (O’Keefe, 2001; 

Benson, Evans, & Druckenmiller, 2012) and had a cosmopolitan distribution, with the Western 

Interior Seaway in the Northern hemisphere and the Weddelian sea in the Southern hemisphere 

containing a great many taxa (Welles, 1952; Brown, 1981; Carpenter, 1999; Fostowicz-Frelik & 

Gaźdicki, 2001; O’Keefe, 2001, 2004; Ketchum & Benson, 2010; O’Gorman, Salgado, Olivero, 

& Marenssi, 2015; Serratos, Druckenmiller, & Benson, 2017). Cranial characteristics include 

continued opening of the pterygoids, a vomer extending posterior to the internal nares (O’Keefe, 

2001) and the posterior extension of the premaxilla separates the frontals. The pineal opening 

was lost. Other characteristics of elasmosaurs include: a posterior interpterygoid vaculity, an 
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occipital condyle composed only of the basioccipital and bilobed cervical vertebrae (Otero, Soto-

Acuña, Vargas, et al., 2014), triangular heads, and a cardiform opening between the coracoids 

(Sachs & Kear, 2015). By the end of the Cretaceous elasmosaurs also had a distinctive fully open 

medial embayment of the coracoid (Otero, O’Gorman, Hiller, O’Keefe, & Fordyce, 2016). The 

post cranium is relatively conserved, but the family is known for very elongate gracile necks 

with a great increase in neck vertebrae from the ancestral condition of approximately 55 (Otero, 

Soto-Acuña, Salazar, & Oyarzún, 2015) to upwards of 72 in Elasmosaurus and 75 in 

Albertonectes (Sachs, Kear, & Everhart, 2013). The centra are dumbbell shaped and longer than 

high with the exception of Aristonectes, to be discussed.  

Aristonectinae 

 The evolutionary history of aristonectine elasmosaurs, now known to be within 

Elasmosauridae, has been contentious since their first discovery in 1941 (Cabrera) due to their 

unusual morphology and what was, for many years, only fragmentary remains. They have been 

placed in Cryptocleididae (O’Keefe, 2001; Cruickshank & Fordyce, 2002) and in their own 

family Aristonectidae (O’Keefe & Street, 2009; Otero, Soto-Acuña, & Rubilar-Rogers, 2012). 

The first suggestion that they were Elasmosaurids came from Gasparini, Bardet, Martin, & 

Fernandez (2003) which was later supported in a phylogenetic analysis (Ketchum & Benson, 

2011). They are known only from the Campanian-Maastrichian ages of the late Cretaceous 

(Sachs & Kear, 2015). Found in South America (O’Gorman Gasparini, & Salgado, 2013; Otero, 

Soto-Acuña, O’Keefe et al., 2014), Antarctica (Chatterjee & Small, 1989), New Zealand 

(Cruickshank & Fordyce, 2002), and Angola (Araújo et al., 2015) they are restricted to high 

latitude southern locations around the Weddellian Biogeographic Province (WBP, hereafter, 

Zinsmeister, 1979) with two potential exceptions from the Pacific in California and Japan (Sato 
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et al., 2006; O’Gorman, 2016). Despite the preservation of several taxa, the phylogeny of the 

origin of the group is poorly understood. The subfamily is unique among other elasmosaurs in 

that they have relatively large heads and short necks. Their reduced neck is achieved through a 

reduced number of short, broad vertebrae. They have around 60-65 aveoli (Otero, Soto-Acuña, 

O’Keefe, 2014) in the maxillary and dentary, which is increased compared to other elasmosaurs 

and is achieved with smaller teeth. The mandibles have a large hoop-like appearance due to 

having increased transverse length between the mandibular symphysis and rostrum (O’Gorman 

et al., 2013). The mandibular symphysis is short and weak (O’Keefe et al., 2017). Another 

autopomorphic aristonectine feature includes the jaw articulation being placed beyond the 

basicranium due to a posterior extension of the quadrate flange (O’Keefe et al., 2017). The 

unique cranial adaptations have begged a morphological explanation (O’Gorman et al., 2013). A 

2017 paper by O’Keefe et al. involved a unique member of Aristonectinea, Mortuneria, and 

explored a potential feeding strategy of filter feeding.  

 The current defining characters of aristonectine elasmosaurs has been restricted to the 

cranial and cerval elements. It has also been proposed that strongly octagonal caudal vertebrae 

may indicate an aristonectine. The shape of the caudal vertebrae has been used to place several 

postcranial remains into the subfamily Aristonectinae (Otero et al., 2015, O’Gorman, 2016).  
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Neck Evolution 

 Elasmosauridae is considered a monophyletic clade, but the inter-relationships are poorly 

understood. One characteristic used to compare taxa are measurements of the vertebrae. The 

vertebral centra are measured in breadth, width, and length (Welles, 1943) and overall size is 

compared using ratios. Overall shape of the vertebrae can be compared using a vertebral length 

measurement (O’Keefe & Hiller, 2006, figure 4). This measurement gives the overall shape in 

one number without size bias, allowing for taxa of various sizes to be compared. There are three 

main morphotypes often used to group taxa based on the centrum proportions of the cervical 

vertebra with emphasis on the maximum length found in adult, mid cervical vertebrae. A non-

elongate, also referred to as a plesiomorphic, condition contains taxa that have centra that are 

longer than high with vertebral length indices (VLIs) of  approximately 100, and moderate 

vertebrata counts around 60 (O’Keefe & Hiller, 2006; O’Gorman, 2016). This group is 

represented by several taxa in the northern hemisphere, including Libonectes at 108 and 

Aphrosaurus sensu O’Keefe & Hiller (2006) and Nakonectes (Serratos et al., 2017). The 

Figure 3. Phylogenetic relationships of the evolution of the subfamily Aristonectinae within 

Elasmosauridae. Figure modified from O’Keefe et al., 2017. 
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Southern hemisphere also includes non-elongate taxa through the Campanian-Maastrichtian, 

including Vegasaurus from Antarctica with average VLIs lower than 108 (O’Gorman, 2016). 

Mauisaurus from New Zealand and Kawanectes from South America had a maximum VLI of 

110 (O’Gorman, 2016). The third group contains the Aristonectinae, with very low VLIs 

averaging near 80 (Otero, Soto-Acuña, O’Keefe et al., 2014) and with as few as 43 cervical 

vertebrae (Otero et al., 2015). The shorter necked group is currently only known from the 

Southern Hemisphere, and is found in deposits with the moderate-necked taxa.  

 

 

 

 A limitation of the VLI measurement is that elasmosaur cervical centra increase 

disproportionately through ontogeny. Length proportion can increase over 20% and continues to 

do so well into development (O’Keefe & Hiller, 2006). One also needs to know whether or not 

the centra is a central vertebra, which may be difficult if few vertebrae were found. Overall 

average VLIs have been used for comparison with southern taxa (O’Gorman, 2016; Otero et al., 

2015) where, by the Maastrichtian, only non-elongate and shortened taxa are known (Otero et al., 

2015). 

Histology 

 Histology, the study of tissues, has a long history of being used to learn about the life 

style and ontogeny of fossil taxa (Padian & Lamm, 2013). Histology has been performed on 

Figure 4. The equation  to calculate vertebral length indices (VLI). L equals the length, H equals 

the height of the centrum, and W equals the width of the centrum along the articular surface. From 

O’Keefe and Hiller 2006.  
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plesiosaurs since 1883 (Kiprijanoff) and has since been used to study the clade’s adaptations for 

a marine lifestyle (Wiffen, Buffrénil, Ricqlès, & Mazin, 1995; Klein et al. 2016; Klein & 

Griebeler, 2018), ontogeny (Wiffen et al., 1995; O’Keefe, Sander, Wintrich, & Werning, 2019), 

and the phylogeny of plesiosaurs (Wintrich et al., 2017). Secondarily aquatic amniotes show 

specializations for their mode of life that fall into two main categories: increasing or decreasing 

bone mass (Houssaye, Sander, & Klein, 2016). Slow moving species show pachyostotic, dense 

bone, such as manatees (Houssaye, 2009). The increased ossification acts as a ballast for the 

animal. Quick swimming animals lighten the bone to reduce inertia. Osteoporitic bone structure 

is beneficial for species with quick-moving prey (Wiffen et al., 1995) likely to resist the forces 

during propulsion through the water (Houssaye, 2008, 2013). Plesiosaurs show both dense bone, 

as juveniles, and osteoporotic bone density as adults.  

 Bone tissue can also indicate the metabolism of animals. Pachypleurosaurs had growth 

rates similar to modern reptiles, though they reached maturity younger. The first sauropterygian 

with elevated metabolism was in Pistosaurus, a taxa close to the origin of plesiosaurs.  

Pistosaurus still retained primary osteons, and there was no fibrolamellar bone tissue (Fabbri, 

Vecchia, & Cau, 2013; Wintrich et al., 2017). Haversion remodeling, which is unique to 

plesiosaurs among sauropterygians (O’Keefe et al., 2019), and fibrolamellar bone can indicate 

increased metabolic rates. Increased vascularization provides increased blood flow to supply a 

high metabolism, but may also be the result of large sizes.  

 Histology also allows us to determine the relative state of development of a fossil 

organism. Studies with homologous bones among juvenile and adult plesiosaurs have shown that 

plesiosaurs undergo Haversion remodeling. The fetal medullary center bone is compact, 

following birth juveniles show quick radial, lateral growth of cortical bone that appears in 
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elongate fibers outward from the medullary region. The medullary and corticle bone are 

separated by Kastschenko’s line (Klein & Griebeler, 2018). The endosteal cartilage narrows in 

the center of the propodial and expands towards the ends resulting in an hour glass shape. The 

periosteum wraps the endosteum and grows outward, visually separated due to a change in 

deposition referred to as the birth-line (Curtin, 1999). However in plesiosaurs it is unknown 

whether this line represents the sudden change in development as the organism is no longer 

provided with maternal nutrition or if this represents the end of the first year of life (Wintrich et 

al., 2017). The latter hypothesis is supported in part by the position of the line, which occurs at 

approximately 60% the total maximum shaft diameter. Wintrich et al. (2017) argue that 60% is 

too large to be natal size. A further complication of the interpretation of this separation between 

the cortex and periosteum being the birth line is that ribs sectioned show more lines than the 

propodials which may indicate that multiple years occur before the first line. The plesiosaur 

acquires further sequential lines with rapid-growing, radial fibrolamellar bone between. As the 

plesiosaur reaches adulthood, secondary replacement occurs and the bone develops a ―porous‖ 

look due to the formation of secondary osteons.   

Purpose of Study 

 The purpose of this study is to reevaluate four specimens collected by a team from Texas 

Tech University and originally described in 1989. Since their original description, great strides 

have been made in our understanding of elasmosaur ontogenetic states and evolution. In this 

paper we use histology to determine the ontological state of the small elasmosaur MTTU 9218. 

MTTU 9219, fragmentary postcranial remains from the holotype Mortuneria seymourensis and 

MTTU 9217 likely represent the same taxon. Previously this material has only been described 

under the genus Aristonectes. This is the first paper describing it as Mortuneria. Considering its 
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characters as a separate genus we can better understand potential apomorphic characters and 

their relationship to closely related aristonectines. This paper aims to better understand these 

unusual elasmosaurs and the relationships of WBP elasmosaurs.   
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CHAPTER 2 

DESCRIPTION OF THE POSTCRANIUM OF MORTUNERIA 

Introduction 

 Antarctica has revealed many unique marine reptiles that inhabited its near-polar seas 

during the end of the Cretaceous. The plesiosaur remains from the Antarctic peninsula have been 

at times puzzling including the Aristonectines, whose unusual morphology lead them to be 

originally placed in Cryptocleididae (Chatterjee & Small, 1989; Cruikshank & Fordyce, 2002)  

then later into their own family Aristonectidae, then finally their own subfamily within 

elasmosauridae Aristonectinae (O’Keefe & Street, 2009; Otero et al., 2012). Our understanding 

of aristonectines has been limited to cranial characters and proposed postcranial characters, but 

these have at times been dubious with what were considered aristonectine characters appearing 

in taxa without the shortened cervical centra (Fostowicz−Frelik & Gaździcki, 2001); see chapter 

3. Currently the affinities within Elasmosauridae are not well understood. However 

morphological characters between Weddelian Biogeographic Province (WBP) taxa and 

Aristonectines may unite the two groups, and morphologies between WBP taxa and Pacific Late 

Cretaceous elasmosaurs may suggest a close evolutionary relationship. In this chapter we re-

evaluate two specimens collected in 1989, MTTU 9217, and MTTU 9219, the former being the 

holotype of Mortuneria seymourensis (O’Keefe et al., 2017); MTTU 9217 is referred to as 

Mortuneria from cervical vertebrae and size.   

Geologic Location                                                            

 The Lopez de Bertodano Formation, where specimens MTTU 9217, MTTU 9218, and 

MTTU 9219 were collected, is exposed in the northeastern peninsula of Antarctica on the 

Seymour and Snow Hill Islands. It is the upper member within the Marambio group which is 
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comprised of Santa Marta, Snow Hill Island, Haslum Crag and Lopez de Bertodano formations 

(O’Gorman, Olivero, & Cabrera, 2012). The upper Campanian-Maastrichtian aged formation 

overlies the Snow Hill Island Formation and is overlain by the Sobral Formation. The Lopez de 

Bertodano consists primarily of poorly consolidated sandy siltstone and calcareous concretions 

and is interpreted as a near shore environment in a transgressive-regressive cycle (Macellari, 

1988; Olivero, Ponce, & Martinioni, 2007; Witts et al., 2015). The formation was separated into 

10 informal units; the lower stratigraphic units 1-6 are informally termed the Rotularia units and 

the upper 7-10 are the Molluscan units (Macellari, 1988). The K-Pg boundary is interpreted as 

lying between units 9 and 10 due to the disappearance of ammonite fossils (Macellari, 1988) and 

evidence of high fish mortality (Zinmeister, 1998). The formation includes invertebrates such as 

echinoids, bivalves, and ammonites. Vertebrates found in the formation include aves (Chatterjee,  

2002), sharks, teleost fish (Grande & Chatterjee, 1987), mosasaurs (Chatterjee & Small, 1989) 

and plesiosaurs (Chatterjee & Small 1989; Fostowicz-Frelik & Gaździcki 2001). 
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Institutional Abbreviations: CM.Zfr, Canterbury Museum, Christchurch, New Zealand; 

MTTU, Museum of Texas Tech University, Lubbock, Texas, U.S.A.; UCMP, University of 

California Museum of Paleontology; ZPAL, Polish Geological Institute, Warszawa, Poland 

Anatomic Abbreviations: act, acetabulum; actf, acetabular foramen; atna, atlantal neural arch; 

atr, atlas rib; axna, axis neural arch; cap, capitulum; ce, centrale; dc1, distal carpal 1; dc2+3, 

distal carpal 2+3; dc4, distal carpal 4; epf, epipodial foramen; f, fibula; ff, fibular facet; hf, 

hemal facet; isf, ischiadic face; nc, neural canal; pao, postaxial ossicle; par, parapophysis; pf, 

pedicellar facet; r, radius; rf, radial facet; tub, tubercle; u, ulna; uf, ulnar facet; un, ulnare; vf, 

Figure 5. Seymour Island and location of the collection site of MTTU 9218. Dotted line 

represents the K/Pg boundry. Modified from Witts et al. 2016. 
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ventral foramen. 

Materials  

 These specimens were collected below the Cretaceous/Paleogene boundary from the 

upper Maastrichtian of Seymour Island, Antarctica, by teams from Texas Tech University in the 

early 1980s. They were each collected from the Lopez de Bertodano Formation. Specimen 

MTTU 9217,was collected from units 5-6. MTTU 9219 was collected between units 9-10. 

Systematic Paleontology 

Order PLESIOSAURIA Blainville, 1835 

Family ELASMOSAURIDAE Cope, 1869  

Subfamily ARISTONECTINAE O’Keefe & Street, 2009 (sensu Otero, Soto-Acuna, & Rubilar-

Rogers, 2012)  

Genus Morturneria (Chatterjee & Small, 1989) 

Type Species—Morturneria seymourensis (Chatterjee & Small, 1989). 

Results 

 Type specimen MTTU 9219. Cranial  elements for this specimen were described in 

O’Keefe et al. (2017). The specimen’s post-cranium consists of five complete cervical vertebrae, 

a cervical fragment, two rib fragments, a capitulum (humoral head?), a fragment of an epipodial, 

a mesopodial, and 3 phalanges. Referred specimen MTTU 9217: Specimen includes posterior 

cervical vertebrae, the complete right humerus, distal end of left humerus, radius, ulna, 

mesopodials, phalanges and the nearly complete left femur. 

  Axial Skeleton  

 The atlas-axis complex of MTTU 9219 is a single anatomical feature with clear sutures. 

The atlas-axis complex is longer than broad and broader than tall (Figure 6). Its proportions are 
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similar to A. parvidens, but not as long (Gasparini et al., 2003; O’Gorman, 2016) and much 

shorter than Vegasaurus and A. quiriquinesis (O’Gorman et al., 2015). The ventral surface lacks 

a ventral keel and any visible foramen. The axial ribs are broken off with part of the centrum so 

length and breadth are not known. The atlas neural arch contacts the axial neural arch, unlike 

Vegasaurus and Tuarangisaurus keyesi, leaving a foramen.  

 Five complete cervical centra were preserved and one fragment of MTTU 9219. The 

centra are ―binocular-shaped,‖ having greater concavity on the ventral surface than the dorsal 

surface. The centra are higher than long and broader than high. Two of the centra have neural 

spines, but show clear suture lines (Figure 7). The rest of the preserved cervicals had completely 

unfused neural arches with no clear rugosity. A few fragmented posterior cervicals show typical 

elasmosaur dumbbell shape and typical aristonectine shortening. The neural arches are shorter 

than the centra. The articular surfaces for the neural arches on the unfused centra are nearly 

round, with some rugosity towards what is estimated to be the posterior face. The neural spines 

are broken off. The rib articulations are smooth, showing little development towards fusing. Each 

centra has two near equal, rounded ventral foramina.  

  Appendicular Skeleton 

 A 
 There is one capitulum unarticulated to a propodial. It is highly convex and circular. The 

single mesopodial may represent the centrale. The edges are poorly ossified and the thin 

periosteum layer preserved on the ventral or dorsal side is flaking. The three preserved phalanges 

are short and only slightly spindle-shaped. Their edges are poorly ossified. One phalanx is 

broken parallel to the long axis. It shows a periosteal cone with the periosteal thickest in the 

center and thinning outward. 
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Appendicular skeleton 

 The right humerus is complete. It is relatively slender compared to other Austral 

elasmosaurs such as Vegasaurus and CMZfr 145 (Hiller & Mannering, 2005; O’Gorman et al., 

2015). The narrow diaphysis trends anteriorly then flares posteriorly approximately a fourth of 

the way from the distal end. The shaft is strongly bent towards the ventral surface of the 

Figure 6. Atlas-axis complex of MTTU 9219. A, anterior view; B, posterior view; C, dorsal view; 

D, ventral view; E, lateral view. 

 

Figure 7. Cervical vertebrae of MTTU 9219. A-E cervical without preserved neural arch. A, 

anterior view; B, posterior view; C, dorsal view; D, ventral view; E, lateral view G-K, preserved 

with poorly fused neural arch; G, anterior view; H, posterior view; I, dorsal view; J, ventral view; 

K, lateral view. 
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organism from the capitulum. A similar, less exaggerated condition is observed in ZPAL R.8. 

The capitulum is semicircular and narrow with a rectangular, projecting tuberosity. The distal 

end becomes narrow and is rounded due to taphonomic compression. The shaft becomes very 

straight and narrow in lateral view towards the distal end due to the compression (Figure 8). The 

distal portion of the left humerus was preserved without the compression experienced by the 

right humerus. The left humerus does not narrow dorso-ventrally towards the distal end, and has 

a small ventral bend. The diaphysis is broken off at the point the distal posterior end flares to a 

posterior ―knee‖ similar, but not as exaggerated as typical of some other WBP taxa (O’Gorman 

et al., 2015). The articular facets are present, but only moderately defined. The dorsal side of the 

humerus shows a greater concavity than the ventral side in distal view. 

 

  

  The left fore-paddle is nearly complete, apart from the proximal portion of the left 

humerus (Figure 9). The ulna is pentagonal with a short and angler articular facet for the 

centrale. The radius is broad and sub-rectangular. Mesopodials are well preserved with well-

defined articular facets. The epipodial foramen of both the ulna and radius are small, circular, 

and positioned midway along the height of the element similar to CMZfr 145 (Hiller & 

Figure 8. Right humerus of MTTU 9217. A, Right lateral; B, left lateral; C, ventral view; D, 

dorsal view; E, proximal view; F, distal view. 
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Mannering, 2005). The radius is rectangular and wider than tall. The ulnare is pentagonal and 

wider than long. The centrale is strongly pentagonal with the proximal side curving up along the 

inner edged of the epipodials, condensing their medial symphysis (Figure 10). The remaining 

mesopodials are shared with A. parvidens and similar in shape and proportion (Gasparini et al., 

2003). 

  
Figure 9. Left humerus of MTTU 9217. A, ventral view; B, dorsal view; C, distal view showing 

greater convex curvature on the dorsal side; D, lateral view. 
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Figure 10. Left fore-limb of MTTU 9217 in ventral view.  

 The left femur is shorter than the humerus. The diaphysis is narrow and straight. The 

posterior muscle attachment is well developed and more exaggerated than in A. quiriquinesis 

(Otero et al., 2012). This feature seems to be unique to aristonectine specimens more derived 

than Kaiwhekea that, like other austral elasmosaurs, has a more rounded posterior distal end of 

the femur. There is what appears to be a third articular facet associated with this posterior 
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extension (Figure 11) which may articulate to a supranumerary element that is not preserved. 

The ventral surface is slightly more convex than the dorsal surface, a condition shared by MTTU 

9218, ZPAL R.8 and A. quirquinensis (Otero et al., 2012).  

 

Figure 11. Right hind limb of MTTU 9217. A, dorsal view; B, ventral view; C, distal view. 

Discussion 

  Mortuneria Postcranium 

 Using cranial apomorphies MTTU 9219 was placed in its own taxa Mortuneria 



26 

seymourensis (O’Keefe et al., 2017). Typical elasmosaurs have well developed ventral keels on 

the atlas-axis centra (Kubo et al., 2012; Sachs & Kear 2015; O’Gorman et al., 2015). The 

aristonectine specimens also have a simplified region about the atlantal neural arch that closes 

off the intervertebral foramen unlike Vegasaurus (O’Gorman et al., 2015). If these combined 

traits are unique to derived aristonectines they may give further insight on the lifestyle driving 

this enigmatic, relatively short-necked clade of elasmosaurs. The atlas-axis complex of 

Mortuneria is very similar to A. parvidens, but it contrasts in appearance with A. quiriquinesis.  

 MTTU 9219 has poorly fused neural arches. When present the neural arches have a clear 

suture to the centrum. The ribs are unfused with rounded facets. Based on the criteria proposed 

by Brown (1981), MTTU 9219 represents a young organism due to these poorly fused elements. 

It was proposed in O’Gorman et al., (2015) that the sutures may close at a different ontogentic 

stage in Aristonectes. However as MTTU 9219 has very juvenile characters on all the preserved 

centra MTTU 9219 can give no insight into this character. The pedicular facets are broad and 

subelliptical pedicular facets of Mortuneria are similar to A. parvidens (Gasparini et al., 2003). 

Sub elliptical pedicular facets are suggested to be due to the juvenile state of the specimen. 

However there is reason to suspect that this sub elliptical pedicular facet is a feature of these 

aristonectine elasmosaurs. The unfused cervicals of MTTU 9218 (see chapter 3), the perinatal 

cervical found with MTTU 9218, and to an extent the young elasmosaurs MLP 15-I-7-6 

(O’Gorman et al., 2018) have more elliptical pedicular facets. The facets of MTTU 9218 are 

fusing and more rugose on the posterior and anterior-most portions of the facets. The sub 

elliptical facets of MTTU 9219 are also rugose on the posterior and anterior-most portions. 

 MTTU 9217 offers more insight into the post cranium of Mortuneria. The well ossified 

elements and development of its articular facets place the specimen as ontogenetically older than 
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MTTU 9219, while still being much smaller than Aristonectes (Figure 12), supporting 

Mortuneria as a valid taxon. The most unique feature of MTTU 9217 are the propodials. They 

are strongly bent ventrally, so that they are convex in anterior view on the distal half. The typical 

elasmosaurs condition is a straight propodial in anterior view (Otero et al., 2016). Currently the 

only elasmosaur with a similar condition is ZPAL R.8 (Fostowicz−Frelik & Gaździcki, 2001). 

This smaller elasmosaurs has only a distal fragment of the humerus, which is very similar in 

shape, but the left femur is near complete and shows this bend. The femur of Z.PAL R.8 does not 

have the same strong posterior extension, however MTTU 9217 shares the fore flipper and femur 

with A. quiriquinesis. The fore flipper shares the typical WPB distal shape of the humerus with a 

projecting posterior end. Both specimens have long, relatively narrow diaphysis. The epipodials 

of MTTU 9217 are proximal-distally shorter than A. quiriquinesis and the mesopodials are 

shaped differently, particularly the centrale, which has more contact with the radius in MTTU 

9217. The shape and position of the centrale gives the epipodials a narrower medial contact, 

causing the ulna to be pentagonal, with smaller epipodial foramen. The femur of MTTU 9217 

shares the same distal shape with A. quiriquinesis. There is a strong posterior extension and the 

facets for the epipodals are nearly even giving a very flat, broad distal surface. 
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  Aristonectine Characters 

 The family the characters used to unite aristonectine elasmosaurs include cranial and 

cervical characters: rostrum relatively long, but unconstricted and wide anteriorly, with a narrow 

symphysis, paraoccipital process articulates only with the squamosal, numerous small teeth, 

greater than six premaxillary teeth, cervical vertebrae much wider than long that have poorly 

defined rims on the articular surfaces, and a less convex ventral surface that gives the vertebrae a 

binocular shape in anterior or posterior view (O’Keefe & Street, 2009). This description limits 

diagnosis of the family to cranial and cervical material. Other characters proposed through the 

literature in the ten years since the sub-family was erected include VLI, much below 100. This 

character is as of yet distinctive to the subfamily. Other features have included strongly 

octagonal anterior caudal vertebrae (Figure 13). Cranial material of non-aristonectes has also 

shared traits with Aristonectes. A non-aristonectine from the Snow Hill Formation on Vega 

island shares the cranial morphology of a posterior plate-like extension of the pterygoids and 

lacks an interpterygoid symphysis (O’Gorman et al., 2018). While the presence of these 

Figure 12. Comparison of propodials of WBP taxa. A, UCMP 38348 humerus in anterior and 

dorsal (mirrored) views; B, Vegasaurus (O’Gorman et al., 2015) humerus in anterior and dorsal 

view; C, femur of ZPAL R.8 in lateral, dorsal view (Fostowicz−Frelik and Gaździcki, 2001); D, 

humerus of MTTU 9217 in anterior, ventral; E, humerus of Aristonectes quirquinesis (Otero, 

Soto-Acuña, Vargas, et al., 2014). 
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previously thought to be aristonectine traits in a non-aristonectine elasmosaur excludes these 

traits as being diagnostic to aristonectines, it does provide support to aristonectines evolving 

from plesiomorph-necked elasmosaurs of the WBP (O’Gorman et al., 2015; O’Gorman et al., 

2018). While not aristonectine, elasmosaurs like MTTU 9218 (see Chapter 3), and ZPAL R.8 

likely share an evolutionary relationship close to Aristonectines. 

 

 

 

 

 

  Proposed Aristonectine Characters 

 The propodials of Mortuneria have other characters that also occur in aristonectines and 

non-aristonectine WBP elasmosaurs. Elasmosaurs typically have greater curvature on the ventral 

side of the propodial (Figure 14) or near equal curvature. In the aristonectines and some other 

Southern Hemisphere taxa the ventral surface is more convex. In taxa with this reversed 

curvature and complete, or near complete, propodials there is also a curve to the propodial in 

anterior view. The capitulum in these elasmosaurs, with bent midshafts and ventral curvature, is 

also at a strong angle to the propodial. This bent proximal end also occurs in Vegasaurus, whose 

Figure 13. Comparison of caudal vertebrae between WBP taxa. A, Vegasaurus (O’Gorman et al., 

2015); B, MTTU 9218; C, ZPAL R.8 (Fostowicz−Frelik and Gaździcki, 2001); D, Aristonectes 

parvidens (Gasparini et al., 2003); E, A. quiriquinesis (Otero, Soto-Acuña, O’Keefe et al., 2014). 

Not to scale. 

 

Figure 14. Comparison of the curvature between A, UCMP 58569; B, ZPAL R.8; C, MTTU 9217 

with propodials in distal view. 
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midshaft is straight. The evolution of the bend occurs as early as Alzadasaurus of the early 

Maastrichtian (Figure 12), though the midshaft is straight and the proximal bend shallow. A long 

distal end of the femur with a potential third articulation is known only in Mortuneria and A. 

quirquinesis (Otero, Soto-Acuña, O’Keefe et al., 2014). Kaiwhekea, a more basal aristonectine, 

has a narrower distal end of the femur and is more similar in shape to ZPAL R.8 (Cruickshank & 

Fordyce, 2002). The long, flat distal femur may be a synapomorphy of advanced aristonectine 

elasmosaurs.  

Conclusion 

  The post cranial materials of Mortuneria, along with other derived WBP taxa help shed 

light on the characters previously proposed to be aristonectine. The strongly octagonal caudal 

vertebrae previously suggested as an aristonectine trait is not restricted to aristonectines. The 

propodials of MTTU 9217 show curvature, including a more convex surface on the ventral side, 

a bend mid-shaft, and a strongly angled capitulum. These traits are not restricted to 

aristonectines, but may help define evolutionary relationships among Aristonectinae and other 

WBP elasmosaurs.  

 The femur of MTTU 9217 shows a long, flat distal end with a possible third articular 

surface similar to Aristonectes, but the large size difference, despite the ontogenetically advanced 

condition of MTTU 9217, and more angular epipodials and mesopodials further establish 

Mortuneria as a separate, valid taxa.  
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CHAPTER 3 

DESCRIPTION OF A SMALL-BODIED ELASMOSAUR 

Introduction  

 Indeterminate plesiosaur fossils have been collected from Antarctica since 1977 (del 

Valle, Medina, & Gasparini, 1977). Elasmosaurs have been identifiable from the area as early as 

the early Campanian (O’Gorman et al., 2012), but the late Maastrichtian has far more 

representatives (Chatterjee and Small 1989; Fostowicz-Frelic & Gaździcki, 2001; Martin, 

Sawyer, Reguero, & Case, 2007; O’Gorman et al., 2012). Seymour Island, off the Antarctic 

Peninsula, has produced several interesting Maastrichtian aged elasmosaurs including 

Aristonectes (O’Gorman et al., 2012), the filter feeding Mortuneria (O’Keefe et al., 2017), and 

several small, sub adult taxa. 

 Elasmosaurs are typically associated with large body sizes. Albertonectes (Kubo et al., 

2012) reached over 18m and many others were in excess of 8m (Hiller & Mannering, 2005; 

Welles, 1952). In 1985 several small bodied plesiosaurs were found in Patagonia and attributed 

to polycotylids, later corrected to be members of Elasmosauridae (Gasparini & Salgado, 2000). 

In 1989 and 2001 small body plesiosaurs were described on Seymour Island in the Antarctic 

Peninsula (Chatterjee & Small, 1989; Fostowicz-Frelik & Gaździcki, 2001). In 2017 a 

contemporary of the small bodied austral elasmosaurs was described from North America 

(Serratos et al., 2017). Each specimen was found in deposits interpreted as shallow marine 

environments, hypothesized to be ―nurseries‖ where elasmosaurs would give birth (Wiffen et al., 

1995; O’Gorman, Coria, Reguero, & Mörs, 2017). However, these small elasmosaurs were each 

found to be ontogenetically sub adult or older due to the ossification of limb elements, fused 
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vertebrae, or histological studies. However the possible interrelationships among these small 

bodied forms are unknown. In this chapter we describe a small bodied elasmosaur from the 

Antarctic Peninsula and compare the specimen to other small bodied, end-Cretaceous 

elasmosaurs. 

Materials and Methods                                           

 MTTU 9218 includes postcranial material collected on Seymour Island of the Antarctic 

Peninsula from the Lopez de Bertodano Formation (Figure 5). The material was collected in unit 

6 (Chatterjee & Small, 1989). The axial elements comprise 23 cervical centra, eight cervical 

vertebra fragments, and a single pectoral and caudal vertebra. The pelvic girdle is fragmented or 

missing aside from a single partial ischium and both distal ends of the ilia. The four propodials 

are incomplete, but elements of all four are present along with a radius, ulna, both fibulae, three 

mesopodials, and two phalanges. The vertebral measurements were taken with a mechanical 

caliper and include centra length measured along the dorsal side (L), the breadth of the posterior 

face (B), and height (H) from the center of the centrum to between the pedicles on the posterior 

face. Indices calculated are based on Welles (1952) and include: height index 

(height/length)*100, breadth index (width/length)*100, and breadth height index 

(width/height)*100. Vertebral length index introduced by Brown (1981) expresses the shape of 

the centra and allows for the comparison between different sized taxa (Figure 4).  

Histology 

 We thin sectioned MTTU 9218 allowing us to better determine the biological age of the 

specimen. We used the most proximal portion that was preserved on the diaphysis of the right 

femur (Figure 20) for two reasons. (1) The propodials have a slower replacement, with the shaft 

having a slower growth than the ends, better allowing us to get a more reliable age estimation 
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(Wiffen et al., 1995). (2) The shape of the propodial fragment allowed for easy access to the mid 

shaft with minimal damage to the specimen. The mid-shaft of right femur was cut perpendicular 

to the long axis on an oil lubricated rock saw at Marshall University in Huntington, WV. The 

following preparations took place at Ohio University in Athens, Ohio. The three rough thin 

sections were cut on an IsoMet 1000 Precision Saw. The sections were then polished on a 

MetaServe 2000 Grinder-Polisher to width of approximately 80 μm. The images were viewed on 

a LEICA S8APO microscope and photographed by a Canon 60D camera through a LEICA 

10445930 attachment. 

Systematic Paleontology  

Subclass SAUROPTERYGIA Owen, 1860 

Order PLESIOSAUR Blainville, 1835 

Superfamily PLESIOSAUROIDEA Welles, 1943 

Family ELASMOSAURIDAE Cope, 1869 

Results 

   Axial Skeleton 

 There are 23 mostly complete cervical centra and 8 fragments of separate centra 

identifiable as cervicals. The majority of the complete centra come from what is estimated to be 

the center to posterior of the column due to their size in proportion to the anterior centrum, and 

the dorsally migrating position of the cervical rib attachments. Many of the fragments appear to 

be similar in size to the posterior portion preserved. The centra are bilobate and are all longer 

than high and broader than long. The VLI measurements range from 68 to 108. The anterior 

cervicals are dorso-ventrally flattened and elongate. MTTU 9218 lacks a lateral longitudinal 

ridge similar to Nakonanectes (Serratos et al., 2017), which appears in Western Interior Seaway 



34 

(WIS) elasmosaurs. The rib facets are dorso-ventrally narrow, becoming dorso-ventrally wider 

and more elliptical through the series. The ribs are well fused without visible sutures. One 

posterior cervical rib is broken off at the centra with a smooth surface in the central portion of 

the rib articular surface and rugosity on the edges of the facet suggesting fusion was not 

complete despite the lack of visible sutures. Neural arches are fused in all but the anterior-most 

cervicals, with sutures visible at the base of the neural arches. Attachments to the neural arches 

are rounded laterally and extend almost the entire centra, slightly shifted posteriorly. Ventral 

foramina range from two to three, with three occurring only on the posterior most centra. The 

paired or tripled foramina are occasionally asymmetrical in size (Figure 15).  

 One of the cervical vertebrae with specimen MTTU 9218 does not belong to the same 

taxon as the rest of the material and represents a much younger individual with very smooth 

articular facets. The paired ventral foramen are large and widely spaced. This vertebra is 

marginally longer than high and binocular shaped like an anterior most cervical, but is much 

larger and yet younger ontogenetically.  

 

 

 A single pectoral vertebra with a fragmented dorsal surface and a disarticulated rib was 

Figure 15.The anterior most preserved cervical vertebra and a posterior cervical vertebra. A-E 

shows the anterior most cervical preserved in A, anterior view; B, posterior view; C, dorsal view; 

D, ventral view; and E, left lateral; F-J show a posterior cervical vertebrae in F, anterior view; G, 

posterior view; H, dorsal view; I, ventral view; and J, left lateral. 
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preserved (Figure 16). The vertebra is higher than long and broader than high. There is one 

foraminen on the ventral surface. The articular facets are slightly convex. The pectoral ribs are 

broken off at the centrum with rough textured facets suggesting the ribs were beginning to fuse. 

The facet is sub-rounded and the rib dorso-ventrally flattened distally and curves posteriorly. 

 

  

 The caudal region is represented by a single incomplete vertebra, likely from the anterior 

portion of the tail. The vertebra is higher than long and broader than high. The preserved 

articular rib facet is unfused, but roughly textured and laterally projected. The centrum has a 

slight concavity to both anterior and posterior surfaces, markedly more convex in the midsection 

compared to the pectoral vertebrae, creating a distinct ―thumb sized‖ divot (Figure 17 A). Hemal 

arch articulations are present on the anterior ventral portion and are triangular in shape opening 

anteriorly (Figure 17) followed by a flat ventral region.  

 

 

 No identifiable dorsal or sacral vertebrae were found among the available material. The 

Figure 17. An anterior caudal vertebra of MTTU 9218. A, anterior view; B, posterior view; C, dorsal 

view; D, ventral view; and E, left lateral. 

 

Figure 16. A pectoral vertebra of MTTU 9218. A, anterior view; B, posterior view; C, dorsal 

view; D, ventral view; and E, left lateral. 
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rib fragments show that the ribs are nearly circular in cross section becoming sub-elliptical 

distally. 

  Appendicular Skeleton 

 The pectoral girdle was fragmentary with no identifiable elements. The specimen 

preserves fragmented ribs, including an articular head.  

 The central portion of the left humerus was preserved. Only a small portion of the 

anterior part of the distal end was preserved of the right humerus, and shows that the radial facet 

was not yet well developed (Figure 18). The capitulum of the right humerus was preserved and is 

spherical, contrasting with Kawanectes lunate capitulum. The capitulum was not preserved 

attached to the propodial so its articulated angle is unknown. The broken edge of the right 

humerus shows differentiation between the periosteum and endosteum. Both humeri possess a 

slightly more convex ventral surface in distal veiw, unlike the typical elasmosaur convex dorsal 

surface. This state is currently only known in one other austral elasmosaur, ZPAL R.8 

(Fostowicz−Frelik & Gaździcki, 2001) and the aristonectines (see Chapter 2). The left radius and 

ulna are short and broad with a lateral width of 58mm and 63mm respectively and a proximal-

distal height of 47mm and 49mm respectively. These forelimb epipodial elements are shorter and 

more elliptical in shape than Vegasaurus, Nakonanectes, or Aristonectes quiriquinensis (Otero, 

Soto-Acuña, O’Keefe et al., 2014; O’Gorman et al., 2015; Serratos et al., 2017) and are more 

similar in shape to Terminonatator (Sato, 2003). The epipodial foramen are situated relatively 

high on the elements compared to the mid-positioned epipodial foramen found in other WBP 

taxa.   
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 The pelvic girdle was fragmentary, with only the right ischium and both proximal ends of 

the ilia preserved. The ilia are broad with rounded expansion (Figure 19) and a rugose surface. 

The ilia were large, especially given the small size of the specimen, with an articular surface of 

58mm and two articular facets at a high angle creating a wide acetabulum. The proximal portion 

has a well-developed posterior knob similar to Kawanectes and Vegasaurus.  

Figure 18. Left humerus of MTTU 9218. A, dorsal view; B, ventral view; C, capitulum; D, radius 

and ulna; E, right humerus. 

 



38 

 

Figure 19. Preserved pelvic material of MTTU 9218. A, left ischium; B, left ilia; C, right ilia.  

 The mid shaft of the left femur and the distal end of the right femur were preserved. The 

midshaft is slender compared to the humerus. While the true ratio between the humerus and 

femur cannot be known due to incomplete preservation, the humerus does not appear to be  

significantly larger than the femur as in Kawanectes. Both fibulae of MTTU 9218 were 

preserved, but only one is complete. The complete tibia is pentagonal, unlike Kawanectes’ 

square fibula, and very similar to that of ZPAL R.8 (Fostowicz−Frelik & Gaździcki, 2001) 

including a high epipodial foramen (Figure 20). The mesopodial facets are not well formed in 

MTTU 9218, but show the same angle as in ZPAL R.8. Both fibulae are flattened in comparison 

to the distal end of the femur. The right femur shows a greater convex curvature on the ventral 

side like the humeri.  
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Histology  

 The thin section showed the medullary region was dense and irregular. The endosteum 

and periosteum had a clear boundary, separated by a dense line that was paired in parts separated 

by vertical vascularization and the formation of secondary osteons (Figure 21). Following this 

line the bone grew with radially growing woven fiber bone. There was one other easily 

discernable line of arrested growth. There was a region at the edge of the periosteum where the 

Figure 20. Femora and fibula of MTTU 9218. A, right femur in dorsal view; B, right femur in 

ventral view, black line indicates area of cut for thin section; C, left femur; D, distal end of the 

right femur; E, fibula. 
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tissue became denser suggesting a third LAG line. There is minor Haversion remodeling 

throughout. At the first LAG line there is a far greater number of secondary osteons.  

 

 

Discussion 

  Taxonomy 

 MTTU 9218 can be determined down to the family level of Elasmosauridae due to its 

dumbbell shaped cervical centra. Further identification is made difficult by the specimen’s 

fragmentary preservation, but there are similarities between MTTU 9218 and other WBP 

Campianian-Maastrichtian elasmosaurs. 

  Neck Length 

 Cervical vertebrae are variable among elasmosaurs with three morphotypes being 

recognized based on relative neck lengths. An elongate group contains species with VLIs greater 

than 125-138 (O’Keefe & Hiller, 2006) and includes Thalassomedon, Styxosaurus, 

Elasmosaurus, and other Western Interior Seaway taxa (Welles, 1943, 1962; Sachs et al., 2013). 

Figure 21.  Histological thin section of the right femur. A, Kastschenko’s  line; B, the growth line; 

C, a close up of the birth line; D, shows the second line of arrested growth. 
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Central neck vertebrae are longer and may reach VLI of between 150 to 200. Along with a 

lengthening of the vertebrae these taxa also have elevated numbers of cervical vertebrae with 

Albertonectes having 72 (Kubo et al., 2012). The elongate group is restricted to taxa from the 

WIS (Otero et al., 2015). The non-elongate, or plesiomorphic group have VLIs averaging close 

to 100 with length still greater than height. These taxa include Vegasaurus and Kawanectes, that 

have about 55-65 cervical vertebrae (O’Gorman, 2016). They are not restricted geographically, 

with members in the WIS (Serratos et al., 2017) and WBP (Chatterjee & Small, 1989; O’Gorman 

et al., 2015), though most members are austral. A third, shortened vertebral group contains the 

monophyletic Aristonectinae. Aristonectines are, with the exclusion of the controversial 

Futabasaurus (Sato et al., 2006; O’Gorman et al., 2015), restricted to high latitudes in the 

southern hemisphere. MTTU 9218 can be considered in the non-elongate group; its VLI 

measurements range from 68 to 108. While the whole cervical region was not preserved the total 

count can be estimated to be approximately 55 as in other non-elongate taxa (O’Gorman et al., 

2015). With the fusion of the neural arches it is likely that MTTU 9218 has attained near adult 

proportions and VLI numbers.  

  Histology/Ontogenetic Considerations 

 Elasmosaurs are typically associated with large body sizes. This along with the 

possibility of an elasmosaur having a single live young up to 40% of the adult’s total body length 

(O’Keefe & Chiappe, 2011) led to the suggestion that the small individuals found in shallow 

marine environments are very young. It has been proposed that elasmosaurs give birth in shallow 

marine environments (Wiffen et al., 1995) where the young stay for a duration after birth. How 

long the young may stay in this environment, or whether all of the small bodied elasmosaurs are 

developing in nursery environments with the trajectory to develop into deep marine predators, is 
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unknown. In order to answer the question as to the age of individuals found in these shallow 

marine environments, histology has been done on several small bodied elasmosaurs (Gasparini & 

Goñi, 1985; Palamarczuk & Landman, 2011). The histology of young individuals have a central, 

dense medullary area followed by a Kastschenko’s line (Klein & Griebeler, 2018) then quick 

radial growth outwards. As the animal matures the bone become porous looking, ―spongey,‖ as 

the radial growth is remodeled. In MTTU 9218 we have reasonable cause to interpret the growth 

lines to be yearly indicators—particularly as, even with the Weddelian Sea in the Late 

Cretaceous being more temperate, it still would have been subject to a polar winter. The first 

growth line in MTTU 9218 is unique in appearance, having areas where the line is parted by 

vertical vascularization giving the appearance of a double line that is not consistent through its 

ring around the medullary region. The concentration of secondary osteons on this line and 

between the double portions of the first line suggests that the growth of these osteons is causing 

the double appearance of the line. The concentration of these osteons on this line suggests that 

Haversion remodeling begins at the endosteum/periosteum boundary and spreads through the 

rest of the bone from there. It is unknown whether the first growth line indicates the birth, the 

end of the first year, or even possibly conceals several years (Wintrich et al., 2017). However, 

there is a clear growth line superior to the division between the medullary region and cortex. The 

fibrous bone also becomes denser at the edge suggesting the organism died during conditions 

that would have otherwise lead to a second LAG. Due to these two LAGs we can interpret 

MTTU 9218 as being at least two years in age which accords with other ontogenetic indicators.  

 MTTU 9218 has several characteristics that place it as a late juvenile-young adult. The 

neural spines and ribs of the cervical vertebrae are fused in all preserved vertebrae posterior to 

the two anterior most cervicals. The ribs of the pectoral and caudal vertebrae did not fully fuse, 
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but the facet surfaces are rugose, suggesting fusion was beginning. In elasmosaurs, very 

immature specimens have well rounded propodials with thin layers of periosteum that may break 

off on the ends giving an appearance similar to flaking (O’Gorman et al., 2018; O’Keefe et al., 

2019). The bones are well ossified of MTTU 9218, with a periosteum layer thicker than would 

be found on a neonate and not flaking. The articular surfaces are not well defined, but the 

propodial ends are more developed than the rounded ends expected of a young juvenile. 

  Taxonomic Comparisons 

Kawanectes 

 Austral specimens are also typically large like the WIS elasmosaurs, but several small 

near adult specimens are known (Palamarczuk & Landman, 2011; O’Gorman, 2016). Gasparini 

and Goñi (1985) originally ascribed three specimens to Trinacromerum lafquenianum, later 

amended as Elasmosauridae (Gasparini & Salgado, 2000) and later described as Kawanectes 

(O’Gorman, 2016). Estimated to be 3.8 meters in length, Kawanectes is a small elasmasaurid. It 

was found in the Pellegrini, middle section, of the Allen formation exposed in Patagonia. The 

formation age overlaps with the Lopez de Bertodano, but is considered middle Campanian to 

Early Maastrichtian (Dingus et al., 2000). The Allen formation is also considered to be shallow 

marine (Gasparini et al., 2015). The type specimen for Kawanectes, MLP 71-II-13-1, and MTTU 

9218 share cervical vertebrae, caudal vertebrae, propodials, and ilia in preservation. The VLI 

measurements are similar between Kawanectes and MTTU 9218, with MTTU 9218 having 

slightly lower VLIs (Figure 22). The humeral cap of Kawanectes is more lunate, similar to 

Nakonanectes, compared to the nearly circular capitulum of MTTU 9218. The apomorphies of a 

posterior projection of the humerus and presence of pelvic bar cannot be compared to MTTU 

9218 due to incomplete preservation. The humerus of MTTU 9218 does appear to be a larger, 
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more robust element than the femur, as is typical for elasmosaurids, but the elements are 

incomplete, so whether MTTU 9218 shares the high aspect ratio of humerus to femur cannot be 

known, but the humerus does not appear to be significantly larger than the femur as in 

Kawanectes. The epipodials of Kawanectes are broader, with a large central epipodial foramen 

and a steep proximal curve to the fibula, unlike MTTU 9218 with a strongly pentagonal fibula 

and high epipodial foramen. The shape of the distal end of the femur and laterally projected 

parapophyses of the caudal vertebrae are shared between specimens. However the latter may not 

be a strong diagnostic tool, as Nakonanectes also shares this characteristic (Serratos et al., 2017). 

 

Figure 22. Vertebral measurement comparison of MTTU 9218 and Kawanectes. 

ZPAL R.8 

 Another small bodied-elasmosaur was found on Seymour Island in a lower stratigraphic 

position of the Lopez De Bertodano formation, unit 2, and was described in 2001 

(Fostowicz−Frelik & Gaździcki, 2001). There is reason to suggest that ZPAL R.8 and MTTU 

9218 are from the same taxon. Both specimens have preserved cervical vertebrae, anterior 
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caudals, distal portions of the humeri, femora, and fibulae. The caudal vertebrae of ZPAL R.8 

share laterally projected parapophyses with MTTU 9218, Kawanectes and Nakonanectes. The 

size of the elements preserved suggests a slightly smaller individual than MTTU 9218, but ZPAL 

R.8 seems to show more development in the epipodial facets of the humerus, a distinction 

difficult to make due to MTTU 9218 having poor preservation and being more juvenile 

specimen. The femur of MTTU 9218 has the same distal posterior ―knee,‖ common to WBP taxa 

(O’Gorman et al., 2015), but with the same angle in both MTTU 9218 and ZPAL R.8 (Figure 

23). The fibulae of both specimens are medio- laterally flattened with a pentagonal shape and 

high positioned epipodial facet.  

  ZPAL R.8 is fragmentary, but its propodials share distinctive features with 

aristonectines. So far only aristonectines have strongly recurved propodials (Otero, Soto-Acuña, 

O’Keefe et al., 2014) with a sharp bend to the ventral side at the capitulum, then a gentle dorsal 

curve to the proximal end. MTTU 9218 does not possess enough proximal shaft to determine a 

curve. A feature ZPAL R.8 shares with MTTU 9218 is a greater curvature on the ventral side of 

the propodials (Figure 23). Aristonectes quiriquinesis and Mortuneria (see Chapter 2) are the 

only other known taxa with this reversed convex curvature on the propodials (Otero, Soto-

Acuña, O’Keefe et al., 2014); all other known elasmosaurs have greater curvature on the dorsal 

side. Sharing these two traits unique to artistinectines indicates a possible relationship with 

ZPAL R.8 whose poorly preserved cervical vertebrae resemble the ―plesiomorphic‖ neck 

morphotype. Furthermore, ZPAL R.8 has a close affinity to MTTU 9218, whose vertebral 

column is over half complete and displays a clear ―plesiomorphic‖ morphotype. It is not the 

objective of this paper to do a phylogenetic study; however, this supports the hypothesis of an 



46 

austral evolution of aristonectines as put forth by O’Gorman et al. (2015). 

 

 

 

Nakonanectes 

 Nakonanectes is a small bodied elasmosaur from the WIS described in 2017 (Serratos et 

al., 2017). It was found in the Campanian-Maastrichtian aged Bearpaw shale, interpreted as a 

shallow marine environment with potentially low saline water due to the presence of fresh water 

algae and dinoflagulates (Palamarczuk & Landman, 2011). The specimen itself was found to be 

of early Maastrichian age (Serratos et al., 2017). Nakonanectes shares in preservation with 

MTTU 9218 the presence of anterior cervical vertebrae, caudal vertebrae, humeri, radius, ulna, 

femura, and ilia. The caudal vertebrae share rounded rib facets with a lateral projection. However 

MTTU 9218 lacks the strong chevron facets on the articular surface of the caudal centra. The ilia 

are broad at the proximal end like MTTU 9218, but lack the same rounded dorsal expansion. The 

femur and fibula are markedly different between the two taxa. The femur in Nakonanectes 

curves downward on both sides of the distal edge. This curvature is unlike the southern 

elasmosaurs, including MTTU 9218, that have a posterior extension that forms an angle upward. 

While MTTU 9218 lacks the preservation of the skull material and intercoracoid vacuity that are 

Figure 23. A comparison of the shared elements between MTTU 9218 and ZPAL R.8 (right). A, 

Posterior view of Z PAL R.8 left femur; B, Anterior view of MTTU 9218 right femur; C, Z PAL 

R.8 fibula; D, MTTU 9218 fibula (mirrored); E, Z PAL R.8 distal view of left femur; F, distal 

view of right femur.     
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diagnostic for Nakonanectes, the elements that they share suggest that MTTU 9218 is not a 

specimen of Nakonanectes.  

  Dwarf Aristonectines 

 Previously the concept of ―dwarf Aristonectes‖ was proposed by Otero et al. (2015). In 

this category he includes ZPAL R.8. The cervical region of ZPAL R.8 is very poorly preserved 

with single fragmentary vertebrae from the neck. MTTU 9218 has strong affinities for ZPAL R.8 

and a more complete cervical region with plesiomorphic VLIs. It is unlikely that ZPAL R.8 

represents a true aristonectine, but the characters shared by the small elasmosaurs from 

Antarctica display a potential relation to aristonectines. They share curved propodials, stronger 

convex of the dorsal side of the propodial in distal view, and a strongly octagonal outline of the 

caudal vertebrae. The presence of these small bodied elasmosaurs suggests that aristonectine 

appendicular adaptations preceded the cervical shortening. These features shared may not be 

diagnostic for the subfamily Aristonectinae, but may be valuable for determining the lineage and 

evolutionary history of Aristonectinae and WBP elasmosaurs (Table 1; Figure 24). 

 

 Cervical 
centrum 
length 

Capitulum 
angular 

Propodial 
bent 
dorsal-
ventrally 

Propodial 
reversed 
curvature 

Third 
articulation 
on the 
distal end 
of the 
femur 

Anterior 
caudal 
strongly 
octagonal 

Kawanectes Moderate N/A No No No No 

Vegasaurus Moderate Yes Yes No No N/A 

MTTU 9218 Moderate N/A N/A Yes No Yes 

ZPAL R.8 N/A (likely 
moderate) 

Yes Yes Yes No Yes 

Mortuneria Short Yes Yes Yes Yes N/A 

A. 
quiriquinesis  

Short Yes Yes Yes Yes Yes 

 

Table 1. Appearance of aristonectine-like character states in southern taxa. 
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Conclusion 

 The fusion of neural arches and ossification of the elements in MTTU 9218 are 

intermediate between neonate and adult elasmosaurs. The histology, containing little remodeling, 

showed significant growth after the first growth line suggesting the specimen was at least two 

years old at death. The overall size and age indicates that MTTU 9218, of approximately 3-4 

meters total length, was a small bodied elasmosaurid and would have grown up to be smaller 

than typically associated with elasmosaurs. The taxonomic position could not be identified due to 

fragmentary remains, but the specimen most closely resembles ZPAL R.8, another small bodied 

elasmosaur with postcranial attributes shared by Mortuneria. While there was no cranial material 

preserved it is probable that the cranial material reflects this intermediate position between WBP 

elasmosaurs and aristonectines. The cranial skeleton may have some aristonectine characters 

such as Alexandronectes (Otero et al., 2016). The description of MTTU 9218 is significant, 

Figure 24. Phylogenetic hypothesis of the relationship between elasmosaurs with aristonectine-

like affinities. 
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adding to the knowledge of the uncommon small bodied plesiosaurs, information on the 

potentially near aristonectine Weddellian taxa, and examines the histology of a young, austral 

plesiosaur. 

  The combination of characters between MTTU 9218 and ZPAL R.8 in comparison with 

Pacific plesiosaurs and aristonectine characters provide support in the link WBP Aristonectines 

and Pacific plesiosaurs that has been suggested by O’Gorman (2016). 
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