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Summary

The first partial phylogeny of family Buthidae (17 genera) is presented, based on molecular data (16S rRNA mito-
chondrial DNA). The strong support for a monophyletic Old World group of 13 genera (mainly Palearctic desert
forms) is demonstrated, while representative genera from Madagascar (Grosphus) and Southeast Asia (Lychas)
group outside, as well as New World genera Centruroides and Rhopalurus. A very strong support is observed for the
first time for three groups of Old World genera: (a) Compsobuthus, Mesobuthus, Liobuthus, Kraepelinia; (b) Hot-
tentotta, Buthacus; (c) Orthochirus, Anomalobuthus. Phylogenetic hypotheses are discussed.

Introduction

All scorpion species with highly potent, mammal-
specific neurotoxins belong to the family Buthidae,
which therefore has medical importance. Buthidae is the
largest family of extant scorpions: Fet & Lowe (2000)
listed 73 genera and 529 species in the “Catalog of
Scorpions of the World”, and it is likely that many more
species exist in nature. Buthids are ecologically diverse
and successful, widely spread across the globe (Nenilin
& Fet, 1992; Lourenço, 1996, 2000), and known from
the fossil record since Paleocene-Eocene (Baltic amber).
This family also represents one of the fundamental evol-
utionary lineages of extant scorpions, so-called ortho-
bothriotaxic Type A (Vachon, 1974; Sissom, 1990;
Soleglad & Fet, 2001).

The existing keys for the family Buthidae (Stahnke,
1972; Sissom, 1990) make use of a number of variable
morphological characters, including carapacial and me-
tasomal carination, leg spination, dentition of chelicerae

and pedipalp chela, and patterns of trichobothria. Al-
though morphology of the family is relatively well
studied (see e.g. Levy & Amitai, 1980), there has been
no attempt to produce a modern cladistic phylogeny of
Buthidae. Historical suggestions to divide Buthidae into
two or more groups have not been consistent, and no
subfamilies or tribes are recognized at the moment (for a
detailed discussion, see Fet & Lowe, 2000: 54).

It is well known (Fet & Lowe, 2000) that the genus-
level diversity in Buthidae is much higher in the Old
World than in the New World, although species-level
diversity is higher in the New World. To some extent it
could be an artifact of “splitting” tendencies of buthid
taxonomists who worked in the Old World. On the other
hand, arid (desert) Old World scorpion taxa often pres-
ent clearly derived morphological characters, which
have been traditionally used for delineation of genera in
scorpions. Many of those characters are undoubtedly a
result of parallelism, e.g., sand-living adaptations (Fet et
al., 1998).
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The arid Buthidae of the Palearctic biogeographic
region have been extensively studied - first as members
of a “catch-all” genus Buthus  (Pocock, 1893; Kraepelin,
1899; Birula, 1917a, 1917b); then, due mostly to the
detailed studies of Vachon (1952), as members of many
genera (of which some are monotypic). Since the 1950s,
there has been a considerable increase in description of
new forms and regional faunas of Buthidae, which
proved to be especially rich in the Palearctic, Afrotropic
and Neotropic regions.

We present here the first data supporting a phylog-
eny of 17 genera of Buthidae, focusing on the Palearctic
fauna (13 genera), and based on the sequence analysis of
mitochondrial DNA (16S rRNA gene). We included
representatives of all most common, widely distributed
buthid genera from the Palearctic region (such as An-
droctonus, Buthus, Hottentotta, Mesobuthus). These
genera have wide geographic ranges (e.g. Mesobuthus,
found from Greece to China; Androctonus, from Mo-
rocco to India), and their radiation has been associated
with aridification of the Palearctic deserts (Fet, 1994).

Methods and Material

Material. Data on the specimens and DNA se-
quence accession numbers are presented in Table 1. De-
tailed data on locality and specimens are available from
the authors. We previously published sequence of Cen-
truroides exilicauda (Gantenbein et al., 2001). Lychas
mucronatus sequence was taken from GenBank; it was
published in Giribet et al. (2001) without locality data.

DNA Analysis. For DNA analyses, the total DNA
was extracted from fresh or preserved (94-98% ethanol)
muscle tissue (usually pedipalp or metasoma) using
standard extraction methods. We amplified a 400-450
base pair (bp) fragment of the 16S rRNA mitochondrial
(mt) DNA by polymerase chain reaction (PCR) using the
primers and conditions as described in Gantenbein et al.
(1999). PCR primers were removed by polyethylene
glycol (PEG 8000) precipitation or by Qiagen purifica-
tion kit, and templates were directly sequenced on one
strand using one of the PCR primers and the BigDye
sequencing kit (Version 2, Roche). Sequencing reactions
were ethanol/sodium-acetate precipitated and were run
on an ABI377XL sequencer. All sequences were
checked manually for sequencing errors. All sequences
were deposited in the GenBank nucleotide sequence
database (http://www.ncbi.nlm.nih.gov).

Phylogenetic Analysis. The DNA sequences were
aligned using ClustalX (Thompson et al. 1997) and by
eye. We applied Maximum Likelihood (ML) to the DNA
sequence data.  All ambiguities and gaps were removed
(Felsenstein, 1981; Swofford et al., 1996), leaving 296
bp. Initially, a Neighbor-Joining (NJ) tree (Saitou & Nei,
1987) using JC69 distance (Jukes & Cantor, 1969) was

calculated for all three genes separately. This tree was
then used for estimating the maximum likelihood (ML)
score and parameters from 56 different substitution
models. Maximum likelihood ratio tests were then per-
formed in a nested design using the program
MODELTEST 3.06 (Posada & Crandall, 1998) imple-
mented in PAUP* 4.0b10 (Swofford, 1998). Details
about likelihood ratio tests (LRT) are given in
Huelsenbeck & Crandall (1997) and Huelsenbeck &
Rannala (1997). The tree space was explored by 100
heuristic tree searches and by randomizing the order of
the sequence input in PAUP*. The rate heterogeneity
among sites was assumed to follow a gamma distribu-
tion (shape parameter α was ML-estimated) with four
categories, each represented by its mean (Yang, 1996).
In a further step, the molecular clock hypothesis (i.e.,
equal rates across all sequences) was tested using the χ2

approximated likelihood ratio test statistics. The stability
of nodes was evaluated with NJ non-parametric boot-
strapping of ML-distances using the parameters esti-
mated from the heuristic tree search.

As an outgroup we selected Pseudochactas ovchin-
nikovi Gromov, 1998, the relict taxon of the monotypic
family Pseudochactidae, which is considered to be the
basal group to Buthidae (Soleglad & Fet, 2001).

Results

The phylogeny resulting from the ML analysis is
presented in Fig. 1. The hierarchical likelihood ratio
testing revealed the TVM + I + Γ substitution model as
most likely. The estimated parameters are given in the
legend of Fig. 1. The molecular clock hypothesis was
not rejected (2δ = 2(lnL0 - lnL1) = 2(2721.21 - 2714.12)
= 14.16, Pχ2 = 0.59, df = 16). Thus, the tree search was
carried out enforcing a global molecular clock.

For distance matrix representing sequence diver-
gence, showing both uncorrected p and TVM + I + Γ,
see the Appendix. Strong support is demonstrated for a
monophyletic group of 13 genera (bootstrap 83 %). Rep-
resentative genera from Madagascar (Grosphus) and
Southeast Asia (Lychas) group outside this clade, as well
as New World genera Centruroides and Rhopalurus.
The latter two genera formed a strongly supported clade
(91 %) as well (Fig. 1). Within the “13 genera clade”,
two moderately supported (60-65 %) clades emerged.
Within the first clade (6 genera), a very strong support
was observed for two groups of genera: (a) Compsobu-
thus, Mesobuthus, Liobuthus, Kraepelinia (93 %), and
(b) Hottentotta and Buthacus (85 %). Within the second
clade (7 genera), most branching orders were weakly
supported (54-56 %), except a very strongly supported
(91 %) clade of Orthochirus and Anomalobuthus. Rela-
tionships were less defined within a cluster of five gen-
era (Buthus, Androctonus, Leiurus, Vachoniolus, Apisto-
buthus).

http://www.ncbi.nlm.nih.gov/
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Taxon Country of
origin

Collector(s) GenBank
sequence accession
number

Fam. Buthidae
Androctonus amoreuxi  (Audouin, 1826) Morocco A. Scholl AY226175
Anomalobuthus rickmersi Kraepelin, 1900 Kazakhstan V. Fet &

A. Gromov
AY226170

Apistobuthus pterygocercus Finnegan, 1932 Oman G. Lowe AY226178
Buthacus yotvatensis Levi, Amitai & Shulov,

1973
Oman G. Lowe AY226173

Buthus occitanus  (Amoreux, 1789) Morocco A. Scholl AY226172
Centruroides exilicauda (Wood, 1863) Arizona, USA J. Bigelow AJ288640

(Gantenbein et al.,
2001)

Compsobuthus arabicus Levy, Amitai &
Shulov, 1973

United Arabic
Emirates

B. & I. Ganten-
bein

AY226177

Grosphus madagascariensis (Gervais, 1843) Madagascar W.R. Lourenço AY226168
Hottentotta jayakari  (Pocock, 1895) United Arab

Emirates
B. & I. Ganten-
bein

AY226176

Kraepelinia palpator (Birula, 1903) Turkmenistan A. Gromov AY226181
Leiurus quinquestriatus (Ehrenberg, 1828) Oman G. Lowe AY226174
Liobuthus kessleri Birula, 1898 Turkmenistan V. Fet &

A. Gromov
AY226180

Lychas mucronatus (Fabricius, 1798) n/a (Southeast
Asia?)

n/a AF370855
(Giribet et al., 2001)

Mesobuthus eupeus (C. L. Koch, 1839) Kazakhstan A. Gromov AY228141
Orthochirus innesi Simon, 1910 Morocco A. Scholl AY226171
Rhopalurus abudi Armas & Marcano Fondeur,

1987
Dominican Re-
public

D. Huber AY226169

Vachoniolus globimanus Levy, Amitai &
Shulov, 1973

Oman G. Lowe AY226179

Fam. Pseudochactidae (outgroup)
Pseudochactas ovchinnikovi Gromov, 1998 Uzbekistan V. Fet &

A. Gromov
AY226167

Table 1: Data on specimens.

Discussion

A variety of buthid genera inhabit North Africa,
Middle East and Central Asia (Vachon, 1952; Levy &
Amitai, 1980; Sissom, 1990; Fet & Lowe, 2000). These
desert areas of the Palearctic have been a rich source of
speciation for arid animal taxa (Kryzhanovsky, 1965). It
is assumed that extensive Tertiary aridification of the
southern Palearctic region facilitated radiation in scorpi-
ons (Nenilin & Fet, 1992; Fet, 1994; Fet et al., 1998), as
well as in other groups of organisms.

Since no morphology-based phylogenetic analysis
exists for these taxa, all relationships supported within a
monophyletic group of “13 genera” are being observed
here for the first time. Of these 13 genera, most belong
to the desert Palearctic fauna, and only Hottentotta and
Mesobuthus have species found also outside of the arid

zone of the Palearctic region. Morphological studies of
the analysed genera (e.g. Vachon, 1952; Levy & Amitai,
1980) did not contain any phylogenetic hypotheses on
their relationships. Below, we briefly address the bio-
geographic details and evolutionary issues that the ob-
tained DNA phylogeny appears to document and clarify.

Compsobuthus, Mesobuthus, Liobuthus, and
Kraepelinia

This strongly supported (93 % bootstrap) mono-
phyletic group includes genera either monotypic and
endemic for Central Asia and Iran (Liobuthus, Kraepe-
linia), or diverse and widely distributed in many
Palearctic arid landscapes (Compsobuthus is found from
North Africa to Iran; Mesobuthus, from the Balkans to
China). The branching order of this group of genera
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strongly supports Compsobuthus as a sister group to the
other three genera. Note that of this group only species
of  Compsobuthus are found in Africa; others are almost
exclusively Asian. Relationship of the ingroup Mesobu-
thus, Liobuthus and Kraepelinia was not resolved. Bio-
geographic observations in Turkmenistan (Fet, 1994)
indicate that  Liobuthus is a widespread endemic genus
of Central Asian sand deserts, highly adapted to a
psammophile way of life (Fet et al., 1998). Conversely,
Kraepelinia is a reclusive small genus burrowing in clay
soils of southern Turkmenistan and Iran, and known
from only a couple of localities (Fet, 1984, 1989, 1994).
It also has highly derived features including a remark-
able “stocky” pedipalp chela (Vachon, 1974, Fig. 235-
239). Both of these are highly specialized genera en-
demic to desert Central Asian deserts. On the other hand,
Mesobuthus is widely distributed, with a center of its
diversity in Iran and Central Asia. Phylogenetic studies
are now under way of the genus Mesobuthus (Ganten-
bein et al., in progress), revealing an order of branching
that implies western Palearctic forms of this genus are
ancestral, and forms distributed further east and north in
Central Asia, Mongolia and China are derived. Modern
range of the genus Mesobuthus represents the northern
limit of scorpion distribution in Asia (Gromov, 2001).
This corresponds to the general trend of the evolution for
Central Asian desert biota (Kryzhanovsky, 1965; Fet,
1994).

Hottentotta and Buthacus

Both genera are widespread in western Palearctic
arid zone, in addition, a number of species of the diverse
genus Hottentotta are also commonly found further
south in the Afrotropical region in various ecological
conditions. It remains to be seen whether the genus
Hottentotta as accepted now is monophyletic. Buthacus
includes eight psammophile species from North Africa
and Middle East.

Orthochirus and Anomalobuthus

While the monotypic genus Anomalobuthus is a
psammophile endemic of Central Asian deserts (Turk-
menistan, Uzbekistan, Kazakhstan; Fet, 1994), species
of the genus Orthochirus inhabit deserts from North
Africa to Central Asia and India. The fact that these two
genera are phylogenetically close is a new and important
discovery. Earlier observations in nature (A. V. Gromov,
pers. obs.) demonstrated some common behavioral traits
of these species (the resting position of metasoma and its
characteristic “jerky” movements). The genus Orthochi-
rus has been under significant scrutiny by taxonomists
for a long time, as it (as several other similar genera)
possesses a number of unique features (morphosculpture
of metasoma with “pitted” appearance due to small

punctations; reduced telson; shape of carapace; Vachon,
1952; Levy & Amitai, 1980). Birula (1917a, 1917b)
even created a separate subfamily Orthochirinae based
on this genus.  A highly derived position of Orthochirus
in our phylogeny casts a serious doubt on the possible
validity of Orthochirinae in terms of phylogenetic classi-
fication, as its acceptance will require creation of at least
several subfamilies to accommodate monophyly for
other clades of Buthidae. It remains to be seen if a num-
ber of other buthid genera recently split off, or associ-
ated with, Orthochirus, are in fact closely related to this
genus.

Buthus, Androctonus, Leiurus, Vachoniolus and
Apistobuthus

This group, only weakly supported in our analysis,
includes widespread Buthus, Androctonus, and Leiurus,
all very typical for the western Palearctic deserts (North
Africa, Middle East) (Vachon, 1952; Levy & Amitai,
1980; Sissom, 1994), and two psammophile genera from
the Arabian Peninsula, Vachoniolus and Apistobuthus
(two species each) It is worth noting that this loose
group includes the most toxic of Old World scorpion
genera, Androctonus and Leiurus. This result suggests
that Androctonus and Leiurus could be more closely
related to each other than to any other genus represented
in our study, though their coupling is weakly supported
in this analysis. This is consistent with the data on their
venom (Loret & Hammock, 2001; see also below). The
weak support for Vachoniolus and Apistobuthus could
indicate their common origin as psammophile species in
the Arabian deserts; Apistobuthus possesses some highly
derived features (“flared” metasomal segments; Vachon,
1960). Placement of Vachoniolus within this clade, apart
from Buthacus, was surprising because these two genera
are closely similar in their external morphology, and
indeed female Vachoniolus was originally confused with
Buthacus (Levy et. al., 1973). Both genera express rela-
tively abbreviated pedipalps and the loss of carapacial
and mesosomal carination. The data here implies these
similarities may be a result of convergence, possibly
associated with psammophilic lifestyles. However, the
grouping of Buthacus yotvatensis (the example se-
quenced here) with Hottentotta jayakari is also corre-
lated with distinctive characters separating this species
from other members of Buthacus, i.e., large size and
development of dense pilosity on the metasomal carinae,
a feature typical of the “hirsute” group of Hottentotta
sp., as exemplified by H. jayakari. The divergence of
other diagnostic characters between Hottentotta and
Buthacus, related to tarsal setation, are likely due to
ecological radiation into different substrata (i.e., rock
and gravel vs. sand). Molecular data from the smaller
species of Buthacus may yet reveal a relationship to
Vachoniolus.   
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Figure 1: Maximum Likelihood (ML) tree of Old World and New World Buthidae inferred from a 296 bp fragment of the mi-
tochondrial ribosome 16S region. The DNA substitution model was TVM + I + Γ; base frequencies: πA = 0.34, πT = 0.42, πC =
0.14, Rmatrix = (A-G = 11.50, A-C = 2.95, C-G ~ 0, A-T = 2.44, G-T = 1, C-T = 11.50), gamma shape parameter α = 0.67, and
proportion of invariable sites = 0.28, respectively. The tree was rooted using the outgroup species Pseudochactas ovchinnikovi.
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Other genera

Outgroups used in our analysis originate from the
New World (genera Centruroides and Rhopalurus),
Madagascar (endemic genus Grosphus) and Southeast
Asia (Lychas). Not surprisingly, we see the expected,
strongly supported close relationship of the genus Cen-
truroides (North and Central America, Caribbean, north-
ern South America) and Rhopalurus (South America and
Caribbean). Absence from our analysis of additional
genera from tropical Africa and Asia did not allow us to
achieve phylogenetic resolution outside of the “13 gen-
era clade”; it is most important, however, that both
tropical Old World genera (Grosphus and Lychas) group
outside of the “13 genera clade”, although their common
clade with New World species is not supported. A pos-
sible evolutionary scenario for Buthidae could include
separate evolution in Laurasia and Gondwana, after the
split of Pangaea, as it was for many other groups of or-
ganisms. In this case the “13 genera clade” could repre-
sent lineages of northern (Laurasian) evolution. If sup-
port is obtained in the future for the clade of modern
Neotropical and Afrotropical scorpions (represented by
Centruroides, Rhopalurus, and Grosphus in our analy-
sis), it would strongly suggest a typical Gondwanan
“signature”, with New World buthids originating from
South America as tropical forms. The latter hypothesis
would correlate with patterns of modern diversity of arid
scorpions in the New World, where scorpion radiation in
the deserts of both Americas is largely observed in Both-
riuridae, Vaejovidae and Iuridae. The few Buthidae
which inhabit deserts of North America (species of
Centruroides) could have dispersed to the arid land-
scapes from the New World tropics. It is worth noting
that one of the major characters subdividing Buthidae at
this moment, so-called alpha versus beta orientation of
dorsal trichobothrial on pedipalp femur (Vachon, 1975;
Sissom, 1990) also is consistent with our phylogeny, the
“13 genera clade” all being beta pattern.

Independent origin of psammophily

An important issue in scorpion evolution, discussed
in detail by Fet et al. (1998) is parallelism in the highly
adaptive features allowing psammophily (life in sand).
For the first time, within the “13 genera clade”, we
document an independent origin of buthid psammophily
in at least four clades: (a) Liobuthus (Central Asia); (b)
Buthacus (North Africa, Middle East); (c) Anomalobu-
thus (Central Asia); and (d) Vachoniolus and Apistobu-
thus (Middle East) (the latter two could have shared a
psammophilic ancestor). Especially impressive is
strongly supported independent evolution of psammo-
phily in Liobuthus and Anomalobuthus, two virtually
sympatric monotypic genera inhabiting the vast deserts
of Central Asia from the Caspian Sea in Turkmenistan to

Syr-Darya River basin (Fet, 1989, 1994). A further study
of molecular phylogeny of these genera is under work
(Fet et al., in progress).

Origin of mammal-specific toxins

Another important issue in scorpion evolution is, of
course, evolution of toxins. Our phylogeny supports a
common origin of Old World lineages of Buthidae with
the most potent neurotoxic venom: the genera Androcto-
nus and Leiurus. These and other Palearctic species in
which toxins have been studied (Buthus, Mesobuthus,
Hottentotta, Orthochirus) are all present in our “13 gen-
era clade” All these forms share separate mammal- and
insect-specific neurotoxins specific for Na+ channels
(Loret & Hammock, 2001). At the same time, New
World genera have potent toxins (Centruroides, Tityus)
acting on both mammals and insects. We  suggest that
the origin of this feature could lie in the Laurasia versus
Gondwana split as discussed above. Thus, the separate
mammal-specific Na+ toxins could have evolved during
aridification of the Palearctic in the Tertiary period,
when one of the most important selective factors was
rapid radiation of small burrowing mammals (mostly
rodents) in arid landscapes. Naturally, such newcomers
to the scorpion environment as rodents would be a direct
competitor for space (burrows) and in addition important
nocturnal predators, as many of them are today
(McCormick & Polis, 1990). Such pressure explains
emergence of specific mammal-targeting toxins (used
for defense, not for foraging) in predominantly burrow-
living Palearctic buthids – as opposed to largely vegeta-
tion-inhabiting New World buthids.   

Loret et al. (1991) discovered a toxin (AahIT4) with
“ancestral” properties in a North African population of
Androctonus australis. It is able to bind to both alpha
and beta sites in both vertebrates and insects, as opposed
to other, more specialized toxins. This led to a bio-
geographic hypothesis that buthid toxins acting on
mammals “originated from North Africa” (Loret et al.,
1991; Loret & Hammock, 2001). However, the currently
accepted A. australis ranges from Mauritania to India
(Fet & Lowe, 2000: 69), and the center of origin of this
species is unknown; further, none of the congeneric An-
droctonus species or non-African Old World buthids
were tested for the existence of the AahIT4 or related
toxins. The constant reference to A. australis as the
“Sahara scorpion” in toxicological literature leads to
unjustified and superficial conclusions about evolution
of both species and toxins, further confusing this com-
plicated issue. According to our analysis, Androctonus
does not have a basal position in buthid phylogeny, thus
“ancestral” properties of Androctonus toxin should be a
plesiomorphic character. Only an independently as-
sessed evolutionary history of Buthidae will allow us to
“plot” toxin features on the supported phylogeny. In
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fact, some studies demonstrated that toxicity to both
mammals and insects, as opposed to either mammal- or
insect-specificity, could depend on minor amino acid
changes (Kopeyan et al., 1993), thus a long evolutionary
history is not required for explanation of toxin evolution.

Further Directions of Research

Although our preliminary study covered only a se-
lection of all existing buthid genera, we detected several
important evolutionary trends in the radiation of
Palearctic buthids, which include some of the most toxic
scorpion species (genera Androctonus and Leiurus). In
future, a combined morphological and molecular (DNA)
phylogenetic analysis including more taxa will further
clarify relationships within Buthidae. The major issues
remaining to be addressed are the relationship between
Palearctic, Afrotropical, and Oriental buthids in the Old
World, and the origin of New World buthids (according
to our hypothesis, from Gondwana). Many speciose bu-
thid genera, first of all Tityus and Centruroides in the
New World, have to be subjected to phylogenetic analy-
sis, and could be eventually split into several genera. A
large number of branches should be added to our pre-
liminary tree in the future, many from exotic taxa in
remote and difficult localities and hardly accessible. We
are convinced that only the collaborative efforts of many
scorpion taxonomists from many parts of the world will
bring sufficient knowledge on evolution of Buthidae.
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