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 2 

Abstract 45 

Background: The objective of this study was to determine movement variability in 46 

the more-affected upper-extremity in chronic stroke survivors. We investigated 47 

two hypotheses: (1) individuals with stroke will have increased amount of 48 

variability and altered structure of variability in upper-extremity joint movement 49 

patterns as compared to age-matched controls; and (2) the degree of motor 50 

impairment and joint kinematics will be correlated with the temporal structure of 51 

variability. 52 

Methods: Sixteen participants with chronic stroke and nine age-matched controls 53 

performed three trials of functional reach-to-grasp. The amount of variability was 54 

quantified by computing the standard deviation of shoulder, elbow, wrist and 55 

index finger flexion/extension joint angles. The temporal structure of variability 56 

was determined by calculating approximate entropy in shoulder, elbow, wrist and 57 

index finger flexion/extension joint angles.  58 

Findings: Individuals with stroke demonstrated greater standard deviations and 59 

significantly reduced approximate entropy values as compared to controls. 60 

Furthermore, motor impairments and kinematics demonstrated moderate to 61 

strong correlations with temporal structure of variability.  62 

Interpretation: Changes in the temporal structure of variability in upper-extremity 63 

joint angles suggest that movement patterns used by stroke survivors are less 64 

adaptable. This knowledge may yield additional insights into the impaired motor 65 



 3 

system and suggest better interventions that can enhance upper-extremity 66 

movement adaptability.   67 

 68 

Keywords: Time-dependent structure, Motor skills, Complexity, Kinematics, 69 

Upper extremity  70 
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1. Introduction 84 

Stroke is a leading cause of disability in the United States affecting over 85 

795,000 individuals every year (American Heart Association, 2010). Up to 85% of 86 

individuals with stroke exhibit hemiparesis resulting in upper-extremity (UE) 87 

impairments (Olsen, 1990). Unfortunately, despite the development of various 88 

rehabilitation techniques, residual UE impairments remain (Duncan et al., 2000; 89 

Nakayama et al., 1994). Thus, a more thorough understanding of UE 90 

impairments is needed to develop effective treatments maximizing motor ability 91 

post-stroke.  92 

Among the constellation of UE impairments, individuals with post-stroke 93 

hemiparesis often exhibit atypical movement patterns characterized by mass and 94 

whole limb movements with limited dissociation between joints (Cirstea and 95 

Levin, 2000). These aberrant movement patterns exhibit high variability in terms 96 

of increased standard deviation (SD) and/or coefficient of variation (CV) in 97 

several kinematic measures: UE joint range of motion, peak velocity, movement 98 

time and trajectory accuracy as compared to healthy controls (Cirstea and Levin, 99 

2000; Woodbury et al., 2009). SD and CV are linear measures of variability and 100 

quantify the amount of variability, or movement error, around a central point 101 

(Newell, 1976); however, they cannot capture the fine adjustments of the limbs 102 

that occur during the course of motor performance (Harbourne and Stergiou, 103 

2009). UE movements involve continuous adjustments to successfully reach and 104 

grasp objects of various sizes and shapes. For instance, individuals make 105 

continuous fine adjustments to maintain their grip on a glass, if they perceive that 106 



 5 

the glass may slip from their hands. These fine adjustments or variations made 107 

during continuous movements over time are referred as temporal structure of 108 

variability (Harbourne and Stergiou, 2009). Temporal structure of variability 109 

allows individuals to adapt their movement patterns to overcome perturbations 110 

encountered during daily tasks. Temporal structure of variability can be quantified 111 

using nonlinear measures such as approximate entropy (ApEn) (Harbourne and 112 

Stergiou, 2009). Unlike linear measures of variability, which compute variability 113 

around the mean of a movement parameter, ApEn examines the variability by 114 

evaluating all values of a movement parameter over the entire time series. Non-115 

linear measures capture the temporal structure of variability that occurs over time 116 

reflecting the adaptability of the motor system. There is limited evidence of the 117 

application of non-linear measures in UE motor impairments post stroke. 118 

Therefore, the application of non-linear measures to characterize the temporal 119 

structure of variability in UE movement may yield additional insights into impaired 120 

motor control post-stroke.  121 

Stergiou, Harbourne and Cavanaugh (2006) proposed that an optimal state 122 

of variability is associated with a healthy motor system. This model suggests that 123 

healthy states are associated with optimal movement variability and this 124 

variability reflects the adaptability of the underlying control system. The principle 125 

of optimality is demonstrated by an inverted U-shape relationship exhibited 126 

between complexity and predictability. At an optimal state of movement 127 

variability, the largest complexity lies in the intermediate region between 128 

maximum predictability and no predictability and is representative of a “healthy” 129 
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state. For a detailed description of the optimal variability model refer to figure 2 in 130 

Stergiou, Harbourne and Cavanaugh (2006). Complexity signifies the presence 131 

of chaotic temporal variations in the steady state output of a healthy biological 132 

system and represents the underlying physiologic capability to adapt to everyday 133 

stresses placed on the human body (Lipsitz and Goldberger, 1992; Lipsitz, 134 

2002). Decrease or loss of the optimal state of variability renders the system 135 

more predictable and rigid exhibiting a robotic type of motor behavior. For 136 

example, individuals with stroke often exhibit UE movements with limited 137 

dissociation between joints resulting in predictable or stereotypical movements 138 

referred as abnormal synergies. Conversely, increases beyond optimal variability 139 

render the system more noisy and unpredictable. For instance, individuals with 140 

movement disorders such as ataxia or athetosis, often demonstrate jerky, 141 

uncontrolled and less predictable movements of extremities. Both situations 142 

reveal decreased complexity, flexibility and adaptability to perturbations and are 143 

associated with impairments in ability to engage UE in meaningful tasks.   144 

Movement adaptability is an innate and fundamental feature of a healthy 145 

nervous system (Lipsitz and Goldberger, 1992; Stergiou, Harbourne and 146 

Cavanaugh, 2006). Everyday functional tasks involve continuous adaptations of 147 

reach and grasp movements to meet the dynamic demands of the tasks. 148 

Temporal structure of variability allows individuals to adapt their movement 149 

patterns to overcome perturbations encountered during daily tasks. Several 150 

changes associated with stroke, including spasticity, decreased range of motion 151 

(Cirstea and Levin, 2000), difficulty dealing with the interaction torques produced 152 
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by muscle contractions, and abnormal motor recruitment patterns, (Dewald et al., 153 

1995) might alter the temporal structure of variability in UE joints. Consequently, 154 

altered temporal structure of variability should be reflected in the altered 155 

adaptability of UE movement.  156 

Examining variability in reaching movements post-stroke provides a window 157 

to understand the impaired motor system and suggest better interventions that 158 

enhance UE movement adaptability. Therefore, the primary aim of this study was 159 

to compare the amount and the temporal structure of variability of the shoulder, 160 

elbow, wrist and proximal interphalangeal (PIP of index finger) flexion/extension 161 

joint angles during reach-to-grasp movements between healthy individuals and 162 

individuals with stroke. We hypothesized that the amount of variability of 163 

shoulder, elbow, wrist, and PIP angles would be significantly greater and the 164 

temporal structure of variability of shoulder, elbow, wrist and PIP joint angle 165 

movement patterns would be significantly reduced in individuals post- stroke as 166 

compared to in healthy individuals.  167 

2. Methods 168 

2.1. Participants 169 

The participants were 16 individuals diagnosed with stroke and nine 170 

healthy controls. The mean years of age for the participants with stroke was 67.6 171 

(SD 8.1) and for the healthy controls 57.2 (SD 6.7). Demographic information as 172 

well as lesion location and severity of stroke based upon the UE Fugl-Meyer 173 

subscale for individuals with stroke are presented in Table 1. The participants 174 

were part of a larger study investigating upper-extremity motor rehabilitation. 175 
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Participants were included if they: (1) were between the ages of 18-90 years; (2) 176 

had a single ischemic stroke at least 6 months prior to enrollment; (3) were able 177 

to follow two-step commands; (4) had no history of more than minor head 178 

trauma, subarachnoid hemorrhage, dementia or other neural 179 

disorder/dysfunction, drug or alcohol abuse, schizophrenia, serious medical 180 

illness, or refractory depression. A sample of convenience comprised of eight 181 

right hand dominant females and one left hand dominant male were recruited 182 

from the staff of the Brain Rehabilitation Research Center to serve as healthy 183 

age-matched controls.  184 

2.2. Procedures  185 

Eligible participants provided written informed consent approved by the 186 

University of Florida Institutional Review Board and North Florida/South Georgia 187 

Veterans Health System’s Research and Development Committee. Each 188 

participant was evaluated once at the Human Motor Performance Laboratory 189 

located within the Brain Rehabilitation Research Center.  190 

 Individuals with stroke reached to grasp a soda can (56 mm in diameter; 191 

208 mm circumference) with the paretic UE. Healthy controls reached with their 192 

non-dominant hand. Sixty-seven reflective markers were secured to various 193 

landmarks of the upper body as illustrated in Figure 1. Marker placements were 194 

determined using a marker set described by the Plug-In-UE marker set defined 195 

by our laboratory (Patterson et al., 2011). All participants wore dark colored 196 

sleeveless shirts and were seated on an adjustable, backless bench with knees 197 

bent at 90° flexion and feet flat on the floor. The hands were placed palm down 198 
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on a table in front of them and supported in 90° of elbow flexion by arm rests 199 

positioned flush with the table. This position was the starting position for all the 200 

trials.  201 

A soda can was placed at 80% arm’s length (Michaelsen et al., 2004) on 202 

the table directly in front of the respective shoulder of the participant. This 203 

distance has been referred to as the “critical boundary” (Mark et al., 1997). 204 

Healthy individuals use UE joints alone to reach for objects within this 205 

workspace; to obtain objects beyond this boundary; they might involve the trunk 206 

by leaning forward (Mark et al., 1997). All participants were instructed to reach for 207 

the can, lift it off the table, and put it back down as fast as possible and return to 208 

the starting position. All participants performed four trials with the first serving as 209 

a practice trial. Each trial was cued with a “go” command.  210 

2.3. Data analysis 211 

Kinematics of reaching were recorded using two different 12-camera 212 

VICON motion capture systems (Vicon 612; Oxford Metrics In., Oxford, UK). All 213 

controls and 11 individuals post-stroke were tested using a 12MX camera system 214 

and Vicon Workstation v4.6 software at a sampling frequency of 100Hz. The 215 

remaining five individuals post-stroke were tested using 12 T40 Vicon cameras 216 

and Vicon Nexus 1.5.2 software with data sampled at 200 Hz. Data collected 217 

using VICON Nexus were down sampled from 200 to 100Hz to construct 218 

comparable time series and enable appropriate comparisons. 219 

Data analysis was performed on the last three trials. The data were the 3D 220 

positional coordinates of each marker with respect to a laboratory coordinate 221 
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system throughout the movement series. The data were manually labeled and 222 

reconstructed using Vicon software, and then modeled using SIMM (4.2, Santa 223 

Rosa, CA) to calculate the shoulder, elbow, wrist and PIP angles. The start of 224 

reach was identified as the time point at which the velocity of the index finger 225 

marker exceeded 5% peak velocity and the termination of reach as the time point 226 

at which velocity of this marker fell below 5% peak velocity. One degree of 227 

freedom in the sagittal plane (flexion/extension) was used to determine shoulder, 228 

elbow, wrist and PIP joint angle. To retain the inherent temporal structure of the 229 

variability present, the kinematic data were not filtered prior to analysis (Rapp, 230 

Albano, Schmah, and Farwell, 1993). 231 

2.4 Variability of UE kinematics 232 

To measure the amount of variability, SDs of three trials of the shoulder, 233 

elbow, wrist and PIP joint angle range of motion were computed. The temporal 234 

structure of variability of shoulder, elbow, wrist and PIP joint angle time series 235 

was determined by computing approximate entropy (ApEn) with the MATLAB 236 

code (R2009a, Natick, MA) developed by Kaplan and Staffin (1996) utilizing the 237 

algorithm provided by Pincus, Gladstone, and Ehrenkranz (1991). Each joint 238 

angle time series was analyzed from the start of the reach through the entire 239 

length of the respective time series including the pauses between the three trials. 240 

This approach was adopted because ApEn is effectively a measure of 241 

probability, developed to identify whether small patterns of a time series repeat 242 

later in the entire time series. These small patterns might not be repeated in a 243 

single trial of reach-to-grasp movement. Overall, four time series were obtained 244 



 11 

(one for each joint). The most common method employed in the computation of 245 

ApEn is to identify repeating vectors of length m across the entire time series 246 

(figure 2). Biomechanical data analysis conventionally utilizes r = 0.2 times the 247 

standard deviation of the time series, lag =1 and m = 2 (Slifkin and Newell, 248 

1999). Because the length of the data could affect ApEn values, we normalized 249 

the ApEn values of each participant to the length of their time series and then 250 

multiplied the ratio with a constant equal to 100. A more detailed description of 251 

the computation of ApEn can be reviewed in the Appendix of Slifkin and Newell 252 

(1999). Generally, a vector of shorter length repeats more often than a longer 253 

one within a time series, thus the lowest possible ApEn value can be the natural 254 

logarithm of 1, which is 0. ApEn values range from 0 to 2. In a highly periodic 255 

time series, values of Cm(r) can be similar to Cm+1(r) producing ApEn = 0. 256 

Hence, smaller values characterize a more regular time series where similar 257 

patterns are more likely to follow one another. In contrast, high ApEn values, 258 

suggest a highly irregular time series, where the predictability of subsequent 259 

patterns is low and ApEn could be close to 2 (Stergiou et al., 2004). 260 

We also computed the percentage contribution of each joint to the total 261 

ApEn of UE. Total ApEn was computed by adding the ApEn from shoulder, 262 

elbow, wrist and PIP for each participant. Thereafter, the percentage contribution 263 

from each joint was obtained by multiplying the ratio of the individual joint ApEn 264 

to total ApEn by 100. Such analyses would reveal the distribution of ApEn across 265 

UE joints. 266 

 267 
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2.6. Surrogate analysis 268 

A surrogation procedure was applied prior to computing ApEn utilizing the 269 

Theiler et al. (1992) first algorithm. Surrogation procedure is a critical step to 270 

perform prior to computing ApEn to verify whether the kinematic data were 271 

deterministic in nature and not a source of noise. Theiler’s first algorithm (1992) 272 

utilizes a phase randomization technique which removes the deterministic 273 

structure from the original shoulder, elbow, wrist and PIP joint angle time series 274 

creating 20 surrogate time series of each trial with the same mean, variance, and 275 

power spectrum as the original time series. ApEn was then computed on the 276 

original as well as each of the 20 surrogate time series. Significant differences in 277 

ApEn between the original and 19 of 20 surrogate time series confirm the 278 

deterministic nature of the original data. 279 

2.7 Statistical Analysis 280 

Dependent one-tailed t-tests were conducted to compare ApEn shoulder, 281 

elbow, wrist and PIP values between the original and surrogate time series using 282 

SPSS (17.0, Chicago, IL). For the remaining analyses non-parametric statistics 283 

were employed due to the violation of assumptions of normality using SPSS 284 

(17.0, Chicago,IL). Mann-Whitney U tests were employed to investigate the 285 

differences in SD and ApEn shoulder, elbow, wrist and PIP between individuals 286 

with stroke and healthy controls. Mann-Whitney U tests were also employed to 287 

compare the percent contribution of each joint’s ApEn to total ApEn between 288 

healthy controls and individuals with stroke. Data were analyzed with statistical 289 

significance set at P<0.05. Holm’s step-down procedure was used to correct for 290 
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multiple comparisons (Holm, 1979). 291 

 292 

3. Results 293 

3.1 Determinism in joint angle time series using surrogate analysis 294 

Determinism in the joint angle time series was confirmed in both control (P 295 

= 0.001) and stroke (P = 0.000) groups which revealed significantly greater 296 

shoulder, elbow, wrist and PIP ApEn values in surrogate time series. These 297 

findings suggest that the data were deterministic in nature and not a source of 298 

noise.  299 

3.2 Amount of variability in joint angle time series 300 

Individuals with stroke had larger SDs for shoulder, elbow, wrist and PIP 301 

angles than for healthy controls. However, these differences did not reach 302 

statistical significance (P>0.05) (Table 3).  303 

3.3 Temporal structure of variability in joint angle time series 304 

Individuals with stroke exhibited significantly less (P<0.05) ApEn values 305 

across all UE joints than controls (Table 2). Additionally, the contribution of ApEn 306 

of movement at each joint to the total ApEn differed between the groups. The 307 

percent contribution of ApEn PIP joint to total ApEn was significantly greater (P = 308 

0.002) for controls than for individuals with stroke (Table 2). In contrast, 309 

individuals with stroke demonstrated a significantly greater percent contribution 310 

of ApEn elbow (P = 0.002) and wrist (P = 0.014) joints to total ApEn than controls 311 

(Table 3). However, the difference in percent contribution of ApEn shoulder joint 312 

to total ApEn was not significantly different (P = 0.803) between controls and 313 
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individuals with stroke (Table 2).  314 

 315 

4. Discussion 316 

The primary purpose of the study was to compare the differences between 317 

the amount and temporal structure of variability in UE movements between 318 

individual’s post-stroke and healthy controls. Although not statistically significant, 319 

SD values were lower across all joints in healthy controls than individuals post-320 

stroke. In contrast, ApEn values across all joints were significantly greater in 321 

healthy controls than individuals post-stroke. Based upon the optimal variability 322 

model, healthy controls exhibit an optimal nervous system, which may 323 

demonstrate chaotic temporal variations revealing optimum adaptability to meet 324 

the demands of everyday stresses placed on the human body. Deviance from the 325 

optimal variability model may suggest the presence of pathology; less than 326 

optimal variability may be representative of a more rigid, less adaptable system 327 

limiting the repertoire of movement strategies (Harbourne and Stergiou, 2009; 328 

Scholz, 1990). The results of this study suggest that temporal structure of 329 

variability is reduced in individuals post stroke, which potentially could alter the 330 

adaptability in their reach to grasp movements.  331 

In healthy controls, ApEn was significantly greater in the index finger PIP 332 

joint than the shoulder, elbow and wrist joints. Lower ApEn values characterize a 333 

more stable or regular time series whereas; high ApEn values suggest an 334 

unstable or irregular time series. Hence, lower shoulder ApEn values suggest 335 

that shoulder is utilized primarily for stabilization of the arm during reach-to-336 
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grasp. Alternatively, the PIP joint might have produced greater adjustments 337 

essential in manipulating the grasp around the can during the reach-to-grasp 338 

task. Greater ApEn values at the PIP compared to more proximal joints in the 339 

healthy controls are consistent with the current literature, which supports the 340 

versatile nature of hand (Lemon, 1993; Tallis, 2003). The advanced ability of the 341 

hand to grasp and manipulate objects of various sizes, shapes and textures is 342 

one of the key features of the human motor system (Begliomini et al., 2008).  343 

  In contrast to healthy controls, participants post-stroke demonstrated a 344 

significantly greater percent contribution from the wrist and elbow joints to total 345 

ApEn. Individuals post-stroke possibly made significantly greater adjustments 346 

with the wrist and elbow than with the PIP joint implicating an alternative 347 

compensatory strategy for accomplishing the reach-to-grasp task. The significant 348 

reduction in the percentage contribution of PIP joint ApEn values post- stroke 349 

could be due to the fact that motor neuron pools of distal UE segments are 350 

primarily innervated by the corticospinal tract, which is frequently compromised in 351 

stroke (Colebatch and Gandevia, 1989). Furthermore, Raghavan et al. (2010) 352 

also observed alternative movement strategies, where individuals with stroke 353 

compensated PIP joint flexion by increased flexion at the metacarpophalangeal 354 

joint during grasping of concave and convex shaped objects. Understanding how 355 

multiple effectors coordinate to produce a goal directed movement still remains a 356 

challenge to motor control researchers (Diedrichsen et al., 2009). Commonly 357 

referred to as the degrees of freedom problem (Bernstein, 1967), motor 358 

coordination is concerned with how work is distributed across multiple effectors 359 



 16 

(muscles, joints) when multiple options exist to perform a task. Optimal control 360 

theory suggests that an optimization process might be a potential solution to the 361 

degree of freedom problem of motor control (Diedrichsen et al., 2009). Optimal 362 

control theory proposes that the selection of effectors for a particular task is the 363 

consequence of an optimization process based upon the cost function made up 364 

of the goal and the effort required to accomplish the goal. Stroke might change 365 

the cost function for a particular movement. For individuals with moderate UE 366 

deficits post-stroke, manipulating the index finger PIP joint around the soda can 367 

might require too much effort. Thus, the compensation strategy involving the 368 

wrist and elbow joints might involve re-optimization in setting up the new cost 369 

function and redistributing work across effectors. In fact, using the wrist may 370 

have made it easier to open and close the fingers due to the biomechanical 371 

properties of the long flexors (e.g., flexor digitorum superficialis), which cross 372 

both the wrist, and fingers.  373 

We acknowledge certain limitations of this study. Given the heterogeneity 374 

observed in stroke, this sample size was relatively small, thus the lack of 375 

significant differences between groups in shoulder and elbow SD might reflect a 376 

lack of statistical power. The findings of this study are also limited to seated 377 

unimanual, discrete reach-to-grasp tasks.  Further research is necessary to 378 

understand specific neurological mechanisms contributing to the changes in 379 

variability in UE joints post-stroke compared to other kinematic and functional 380 

variables. In particular, the effects of location and size of brain lesion, severity of 381 

the lesion, integrity of the descending motor pathways, individual degree of 382 
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spontaneous recovery, and the duration of stroke onset upon temporal structural 383 

of variability of UE joints needs to be explored. Additionally, future research is 384 

warranted to determine whether or not constraining the trunk might affect the 385 

temporal structure of variability. There is also a need to determine the effects of 386 

intervention on these variables. 387 

5. Conclusion and Implications for Rehabilitation 388 

Our findings reveal that the temporal structure of variability in reach-to-389 

grasp movements is significantly reduced post-stroke. A measure of the temporal 390 

structure of variability seems to capture differences between the groups; even 391 

with a small cohort of individuals post-stroke we were able to significantly 392 

differentiate between healthy controls and individuals with stroke utilizing ApEn. 393 

In contrast, employing linear measures, such as the standard deviation, we failed 394 

to detect differences between healthy controls and individuals with stroke. 395 

Analyzing temporal structure of variability in UE movements provides a 396 

novel perspective on understanding motor impairments in individuals 397 

living with stroke. ApEn could potentially be utilized to measure the 398 

efficacy of UE rehabilitation intervention. Future research is warranted to 399 

establish the psychometric properties of ApEn prior to its use as an 400 

outcome measure.  401 

  402 
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Figure Captions 535 

Figure 1. Upper extremity marker set.  536 

Figure 2. Approximate entropy (ApEn) equation 537 

Figure 3a. Standard deviation (SD) of various UE joints between healthy controls 538 
and individuals with stroke 539 

    b. Approximate Entropy (ApEn) of various UE joints between healthy   540 
        controls and individuals with stroke (* = significant) 541 
 542 

            c. Approximate entropy (ApEn) percent of each joint to total ApEn in 543 
healthy controls and individuals with stroke (* = significant)   544 
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