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Abstract and key terms 

Gait variability in the context of a deterministic dynamical system may be quantified using 

nonlinear time series analyses that characterize the complexity of the system. Pathological 

gait exhibits altered gait variability. It can be either too periodic and predictable, or too 

random and disordered, as it is the case with aging. While gait therapies often focus on 

restoration of linear measures such as gait speed or stride length, we propose that the goal 

of gait therapy should be to restore optimal gait variability, which exhibits chaotic 

fluctuations and is the balance between predictability and complexity. In this context, our 

purpose was to investigate how listening to different auditory stimuli affects gait variability. 

Twenty-seven young and 27 elderly subjects walked on a treadmill for 5 minutes while 

listening to white noise, a chaotic rhythm, a metronome, and with no auditory stimulus. 

Stride length, step width, and stride intervals were calculated for all conditions. Detrended 

Fluctuation Analysis was then performed on these time series. A quadratic trend analysis 

determined that an idealized inverted-U shape described the relationship between gait 

variability and the structure of the auditory stimuli for the elderly group, but not for the 

young group. This proof-of-concept study shows that the gait of older adults may be 

manipulated using auditory stimuli. Future work will investigate which structures of 

auditory stimuli lead to improvements in functional status in older adults.     

 

Key terms: Detrended Fluctuation Analysis, chaos, fractal scaling, metronome, walking, 

locomotion, complexity 
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Introduction 

 Human movement variability is now recognized as an important construct in contemporary 

literature, having previously been dismissed as unwanted noise in the movement signal. It can be 

described as the normal variations that occur in motor performance across multiple repetitions of 

a task (33). Gait variability refers to the natural stride-to-stride fluctuations that are present during 

locomotion. These fluctuations have been described in terms of fractal and chaotic dynamics. The 

temporal structure of gait variability in healthy people exhibits deterministic processes where each 

step is correlated with an earlier and a later step, producing long-range correlations over large time 

series (fractal dynamics) (11). As well as being deterministic, healthy gait variability can also be 

described as complex (30). Our gait is not bound by determinism; rather it is capable of 

reorganizing quickly and seamlessly in unpredictable ways in response to changes in our 

environment (deterministic chaos). Gait variability in the context of a deterministic dynamical 

system may be quantified using nonlinear time series analyses that characterize the complexity of 

the system. The complexity of human physiology has been characterized using fractal measures 

and their dynamics. Fractals are considered as the natural outcome of complex dynamical systems 

behaving at the frontier of chaos (21).  

 This optimal combination of predictability and complexity of gait enables us to navigate 

our environment in a stable but flexible manner. The study of complexity in gait has shown that 

pathological gait, on the other hand, can be either too periodic and predictable, or too random and 

disordered (22,23). Hausdorff and colleagues (9) have shown that complexity of stride dynamics 

matures as a child develops. At the other end of the age spectrum they have shown a degradation 

of fractal scaling in the gait of older adults. Karmaker et al. (18) have shown that older adults at 

risk of falls exhibit reduced complexity of foot-ground clearance while walking compared to 
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healthy elderly. Thus, there appears to be an optimal level of complexity that is associated with 

healthy and proficient locomotion. This is the theory of Optimal Movement Variability (32,33), 

which is based on observations from other biological systems such as the cardio-respiratory 

systems (8,26,27), and adapted to human movement. Optimal complexity of a physiological 

system is thought to represent an underlying capability that enables effective cooperation between 

the participating subsystems which enhances the system’s ability to adapt to changing task 

demands (28,32). Thus, while gait therapies often focus on the restoration of linear measures such 

as standard deviations of gait speed and spatio-temporal parameters to normative levels, we 

propose that the goal of gait therapy should be to restore optimal gait variability i.e. the balance 

between predictability and complexity (32,33) in those populations who exhibit suboptimal 

patterns of gait variability.  

 Auditory cueing has recently emerged as a promising tool for rehabilitation of gait 

disorders (29,36). Typically, the patient is instructed to walk in time to a metronome, which emits 

a periodic, invariant beat. Whilst improvements in stride length, cadence and gait asymmetry have 

been observed in these experimental conditions, we submit that this approach is not ideal. Training 

patients to walk to a metronomic beat with no variability runs contrary to the natural stride-to-

stride fluctuations that are known to exist in human gait (1). These fluctuations exhibit a chaotic 

structure where a rich repertoire of locomotor patterns is available when required (20). Elimination 

of these fluctuations may have implications for reduced ability to interact adaptively and safely to 

a continuously changing environment, where often our gait must be adjusted in a matter of 

milliseconds. 

 The purpose of this proof-of-concept study was therefore to investigate how listening to 

different auditory stimuli affects gait variability. Each auditory stimulus had a different structure: 
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white noise, an auditory stimulus based on a chaotic rhythm, and a metronome. The ability of 

humans to entrain movement to an external rhythm has been demonstrated even when there is a 

high degree of rhythmic complexity and ambiguity (37). Our experimental design is based upon a 

theoretical model that describes an inverted-U relationship between complexity and predictability 

of gait, with optimal gait variability residing at the apex of the inverted U (figure 1). We sought to 

investigate the underlying trend between auditory stimuli with varying temporal structures that 

spanned the predictability continuum, and the resulting complexity of spatio-temporal gait 

parameters. We hypothesized that this would change depending on the structure of the stimulus, 

in accordance with our theoretical model (figure 1). Previous research by the authors has shown 

that optimal gait variability degrades with ageing, compared to healthy young adults (1). Changes 

in gait variability have been associated with an increased risk of falling in older adults (13). We 

therefore sought to investigate if gait variability can be manipulated using auditory stimuli in a 

sample of older adults, as well as healthy young subjects. In addition to the three auditory stimuli, 

we also included a condition where the subjects walked with no auditory stimulation (“No 

stimulus”). We expected the young and elderly groups to exhibit slightly different trends with 

respect to the “no stimulus” condition in terms of where it would lie on the inverted-U shaped 

curve. While we hypothesized that both groups would demonstrate a curvilinear trend similar to 

figure 1, we expected older adults’ gait variability in the “no stimulus” condition to exhibit a trend 

towards lower levels of complexity than when listening to the chaotic auditory stimulus, due to the 

changes in gait variability associated with ageing. We did not expect to see this trend in the young 

group. 
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Materials and Methods 

Participants 

 Twenty-seven young subjects and twenty-seven elderly subjects participated in this study 

(Table 1). All subjects were free of any pathological condition that directly affected the 

musculoskeletal system such as rheumatoid arthritis, arterial disease, neuropathy or myopathy, vertigo, 

scoliosis, joint replacement, diabetes, stroke, pulmonary diseases, asthma, recent surgery, acute illness, 

or a history of pulmonary, cardiac, or locomotor disorders. All subjects were required to fill out a 

medical history questionnaire. Before participating in the study all subjects signed an informed consent 

approved by the institutional review board of the University’s Medical Center.  

 

Experimental Procedures 

 A Northern Digital 3D Investigator (Northern Digital Inc. Waterloo, Ontario, Canada) six 

camera system was used to capture spatiotemporal data while subjects walked on a treadmill (Bertec 

Corporation, Columbus, OH). This active motion capture system was used to collect kinematic data at 

100 Hz using the NDI First Principles software. Lightweight, wireless smart markers were tracked by 

the system, and recorded in 3D space. The markers were arranged in groups of three creating a rigid 

body. Three such rigid bodies were placed on the lateral aspect of the legs and foot: above the knee on 

the upper thigh, above the ankle on the lower shank, on the midfoot of the shoe and on the sacrum. The 

3D unfiltered position data from individual markers were exported and processed with custom made 

software developed in MatLab (Mathworks Inc., MA). The position data were used to calculate stride 

length, step width, and stride interval.  

 Prior to data collection, subjects were asked to walk on a treadmill for a maximum of 8 minutes 

to accommodate to treadmill walking. During the eight minute warm-up a self-selected speed was 
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determined for each subject. This speed represented the most comfortable and natural walking speed 

for the subject. After the warm-up period, a total of four walking conditions were implemented while 

walking on the treadmill at the self-selected speed: walking while listening to white noise, to a chaotic 

rhythm, and to a metronome, and walking without listening to any stimulus. Each condition lasted for 

six minutes. At the beginning of each condition, each subject walked for a minute with the specified 

auditory stimulus for familiarization. After this one minute of familiarization, a five-minute 

recording period began. The order of the conditions was randomized.  

The auditory stimuli were delivered through headphones with adjustable volume for the 

subjects’ comfort (Turtle Beach, Voyetra Turtle Beach Inc., Elmsford, NY).  The chaotic music was 

created from the WolframTones website (http://tones.wolfram.com) using Rule 30 as it is a class III 

rule that generates chaos which is found in nature (39). It is a complex system based on simple rules 

that is robust to small perturbations, but produces very different behavior when larger perturbations are 

introduced, typical of a chaotic system. White noise was downloaded from whitenoisemp3.com. The 

metronome beat was delivered via a portable metronome (Boss Dr. Beat DB-30 metronome, Roland 

Corporation, Los Angeles, CA). To determine the frequency of the metronome, the cadence of the self-

selected pace was calculated. This cadence was calculated from the last minute of the eight minute 

warm-up period and the metronome was set to this frequency. The headphones were plugged directly 

into the metronome to produce the sound for the subject. Lastly, for the ‘no stimulus’ condition, 

subjects were still asked to wear the headphones but nothing was played through the headphones in 

this condition. The subjects were not explicitly instructed to walk to the beat of the rhythm. 

Data Analysis  

 Treadmill data from the three-dimensional marker trajectories were exported and processed 

in custom software using MATLAB (MathWorks Inc., Natick, MA). This software was used to 

http://tones.wolfram.com/
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calculate the stride length, step width, and stride interval time series. Stride length was defined as 

the distance between two consecutive heel contacts of the same leg. To calculate step width, first the 

midpoint between the heel and the toe for each foot was determined during the walking trial. Step 

width was then defined as the distance between the midpoints of one foot during its stance phase and 

the subsequent midpoint of the opposing foot stance phase. Stride interval was defined as the time 

between two consecutive heel contacts of the same leg. Stride length, step width, and stride intervals 

were calculated from 151 continuous strides for all conditions. Detrended Fluctuation Analysis (DFA) 

was then performed on these time series. Previous research has similarly used five minutes of walking 

to investigate the fractal scaling of stride interval time series (17), however Damouras et al. (3) suggest 

that upwards of 600 strides are required to estimate the DFA scaling exponent α with an accuracy 

of ±0.1. Naturally, longer data series are more representative of the variable under investigation. 

However, since this investigation is not concerned with the absolute α-value, but rather the trend 

exhibited by the data as the subjects are exposed to different auditory conditions, we deemed this 

data length to be appropriate.  

Many dynamic systems generate outputs with fluctuations characterized by 1/f-like scaling 

of the power spectra, S(f) where f is the frequency (16). The 1/f spectrum in the fluctuations is 

thought to result from the presence of many components interacting over a wide range of time or 

space scales (7). Fluctuations exhibiting 1/f-like behavior are often termed “complex,” since they 

obey a scaling law indicating a hierarchical fractal organization of their frequency time scale 

components rather than being dominated by a single frequency (16). DFA has been proposed as a 

method to quantify the complexity of a physiological signal. It evaluates the presence of long-

range, power-law correlations as part of multifractal cascades that exist over a wide range of time 

scales. Many biological signals are noisy, heterogeneous and exhibit nonstationarities which can 
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affect the correlation properties of the signal. One of the main advantages of using this method is 

that it allows for the detection of long-range power-law correlations in noisy signals with 

embedded polynomial trends that can match the true correlation in the fluctuation of the signal (2). 

The DFA algorithm was implemented in MATLAB according to the methods used by Peng 

et al. (26). This method first forms an accumulated sum of the time series, sectioning it into 

windows, and then the log of the average size of fluctuation for a given window size is plotted 

against the log of the window size. In brief, if B(i) is the ith interval and Bave is the average interval 

then:   

  Equation 1 

Thus, the time series is divided into boxes of equal length, n. In each box of length n, a least-

squares line is fit to the data. The y coordinate of the straight-line segments is denoted by yn(k). 

The time series is detrended, y(k), by subtracting the local trend, yn(k), in each box and then the 

root mean square fluctuation of this integrated and detrended time series is calculated by equation 

2. This calculation is repeated across the entire times series to provide a relationship between F(n), 

the average fluctuation as a function of box size, and the box size n. A linear relationship on a 

double log graph indicates the presence of scaling. The fluctuations can be characterized by the 

scaling exponent α, the slope of the line relating log F(n) to log n (26). 

2    Equation 2 

The α-value resulting from DFA is described in the time series framework as follows: α > 

0.5 indicates that an increasing trend in the past is likely to be followed by an increasing trend in 

the future e.g. a long stride length is correlated with a long stride length. The series is said to be 

persistent. Conversely, α<0.5 signifies that an increasing trend in the past is likely to be followed 

by a decreasing trend in the future e.g. a long stride length is followed by a short stride length. The 
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series is then said to be anti-persistent (5); α=0.5 suggests a random, or uncorrelated, time series 

i.e. white noise.  

  

Statistical Analysis 

 The mean α-values for each condition were calculated for stride length, step width, and 

stride interval time series. Linear and quadratic trend analyses (19) were performed for the young 

and elderly group. This is a theoretically driven analysis that evaluates the trend components that 

describe the data. The independent variable represents different amounts of a single common 

variable i.e. predictability.  The variables are ordered conceptually along the x-axis in terms of the 

levels of predictability that they represent. This approach provides information about the form of 

the relationship between the independent and dependent variables, and thus enables us to test our 

inverted-U hypothesis. The analysis begins with an assessment of the linear component to see if 

the simplest mathematical function will describe the data. We do not expect this to be the case, 

and will therefore proceed to test for the more complex quadratic trend component. A quadratic 

trend is one that displays concavity e.g. an inverted u-shape. Trend analysis enables us to determine 

whether an idealized inverted-U shape is present in our data. Young and elderly groups were 

examined separately as slightly different trends with respect to the “no stimulus” condition were 

expected. The independent variable was auditory stimulus with four conditions – white noise, 

chaotic auditory stimulus, no stimulus, and metronome – ordered along the predictability 

dimension illustrated in figure 1. The trend analysis enabled us to examine the form of the 

relationship between the auditory stimuli and the α-value, as a measure of complexity. Our 

hypothesis stated that this relationship should take the form of an inverted-U (Figure 1), indicating 

that gait variability may be manipulated using auditory stimuli in accordance with the theory of 
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Optimal movement variability. We therefore expected the test for a linear trend to be non-

significant, and the test for a quadratic trend to be significant for all gait parameters. Significance 

was set at an alpha value of 0.05. Coefficients for the linear trend were (-3, -1, 1, 3) and coefficients 

of quadratic trend analysis were (1, -1, -1, 1). Analysis of variance was not implemented as it is 

based on linear modeling, whereas our hypothesis was of a curvilinear nature. 
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Results 

 In the elderly group, the linear trend analysis did not reveal any significant trends for the 

three gait parameters. The quadratic trend analysis on the other hand, revealed significant trends 

for stride length (F(3,104):2.79;  p=0.044), step width (F(3,104):4.88; p=0.003), and stride interval 

(F(3,104):9.54; p=0.0001). These results suggest that an inverted-U shaped relationship exists 

between the temporal structure of auditory stimuli ordered along the predictability continuum, and 

the complex structure of gait variability (figure 2). As expected, walking with the chaotic auditory 

stimulus resulted in a trend towards more complex gait than when walking with no stimulus in this 

group. In contrast, no significant linear or quadratic trends were observed in our young group of 

subjects for any of the three gait parameters (Figure 3).   Quadratic trend results were as follows: 

stride length (F:1.42; df:3,104; p=0.242), step width (F:4.88; df:3,104; p=0.154), and stride 

interval (F:0.48; df:3,104; p=0.69). This suggests that the younger subjects were not as sensitive 

to the effect of the auditory stimuli as their older counterparts.  
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Discussion 

 This was a proof-of-concept study that aimed to investigate the effect of different auditory 

stimuli on gait variability. The study was based on the theory of Optimal Movement Variability 

that proposes an inverted-U shaped relationship between predictability and complexity of gait. We 

sought to determine if such an inverted-U shaped relationship exists when gait is manipulated 

using auditory stimuli with differing temporal structures. Our results show significant quadratic 

trends for all three gait parameters in the elderly group, indicating that the structure of gait 

variability can be manipulated using auditory stimulation. Furthermore, the auditory condition that 

produced optimal gait variability for all parameters (i.e. at the apex of the inverted-U shaped curve) 

was the stimulus with the chaotic structure. Thus, we accept our hypothesis concerning the elderly 

group. In contrast, we reject our hypothesis that relates to the young group, as significant quadratic 

trends were not observed in any gait parameter.  As expected, no consistent trend was observed in 

terms of the chaotic stimulus and no stimulus conditions, as outlined in the introduction. Unlike 

the elderly group, who consistently exhibited a trend towards less complex gait in the no stimulus 

condition compared to the chaotic condition, no such trend was observed in the young. We propose 

a possible explanation for these findings. 

 The subjects were not explicitly instructed to walk to the beat of the rhythm. It is possible 

that rather than synchronizing with the auditory stimuli, subjects adopted a strategy whereby they 

ignored the auditory stimuli. Following the protocol, the subjects reported that the white noise in 

particular was distracting. They may therefore have tried to make a conscious effort not to attend 

to the stimuli. The increased use of portable electronic devices in the younger population suggests 

that walking and listening to auditory stimulation may be an accustomed activity for some 

individuals. If this is the case, then the younger subjects may have been more successful in ignoring 
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the auditory stimuli. A recent study by Neider et al. (24) showed that dual-task costs were largely 

absent in a younger adult group when asked to cross a busy road while listening to auditory stimuli, 

compared to an older group. Younger adults may therefore have dedicated less attentional 

resources to the auditory stimuli in this study, perhaps due to habituation of similar tasks in their 

daily lives.  This speculation cannot be proven at this time however, as we did not record previous 

history of listening device usage in this study.  We have since developed our research paradigm 

by designing a chaotic auditory stimulus that is individualized according to each person’s natural 

stride cadence. This stimulus is embedded into familiar music with a stronger beat than the 

stimulus used in the current study. This significant modification appears to enhance the auditory-

motor coupling in young adults. 

 One observation that does appear consistent across gait parameters and groups (with the 

exception of stride length in the elderly group) is that the metronome condition yielded the lowest 

α-value compared to the other three auditory conditions. While all of our data fell within the α-

values larger than 0.5 range (i.e. persistent correlations) (Table 2), the consistently lower values 

for the metronome condition suggests a trend towards less complex walking behavior. This trend 

supports our suggestion that a metronomic beat may not be the optimal temporal structure for a 

rhythmic auditory stimulus, commonly used in gait rehabilitation. In contrast, for the elderly group, 

α-values for the chaotic auditory stimulus were located around the apex of the inverted-U shaped 

curve, above the level of their normal walking in the no stimulus condition.  Fractal properties are 

indicative of intrinsic stability within a complex system that emerges from a subtle cooperation 

between the many components of that system (4). A degradation of this cooperation within the 

locomotor system is likely to have negative consequences for the individual such as poor control 

of gait. Previous research has reported a degradation of long-range correlations in gait parameters 
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when listening to a metronome (12,15,35,38), yet Deligneres and Torre (4) have concluded that 

the intrinsic complexity of the system is still at work in metronomic conditions, but simply 

expressed differently: in the asynchronies to the metronome. Unfortunately, our experimental 

design did not facilitate the calculation of asynchronies to the beats, so we were not able to explore 

this notion in our study. However, previous research has shown elderly adults with low fractal 

scaling (as was the case in this study when walking to a metronome)  are more likely to fall than 

those with a high fractal scaling, and this index is a better predictor of falling than other indices  

(14). 

 While the consistently lower α-values for the metronome condition indicated a less 

persistent gait pattern compared to the other conditions, all α-values remained above 0.5. This 

result is at odds with some recent literature that has demonstrated a strong anti-persistent pattern 

(i.e. α < 0.5) in the control variable when walking to an auditory metronome  (31,34).  A possible 

explanation for this difference is that the subjects in our study were not instructed to walk in time 

to the metronome beat.  The modality of gait control in this case may have remained in the more 

automated/unconscious mode resulting in a persistent pattern across strides, compared to when 

subjects are consciously trying to walk to a beat, which tends to produce an anti-persistent pattern 

(as proposed by Terrier and Deriaz (34)). Another possible explanation for the discrepancy may 

relate to the nature of metronomic walking.  If walking to a metronome leads to a breakdown of 

power law behavior, then any measurement of an alpha value is, by definition, spurious and 

potentially unreliable.  

While it is important to determine what precise nonlinear dynamics are at play when 

walking to a metronome, the broader and arguably more important question is how this relates to 

motor learning and function. Our study has shown that the fractal scaling of gait follows a trend 
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towards less complexity when listening to a metronomic beat in a group of elderly adults. Future 

work needs to investigate if using a metronome for gait rehabilitation in populations with declining 

gait capabilities has better or worse functional outcomes than using a chaotic auditory stimulus. A 

recent study has applied similar concepts to those described here to the rehabilitation of gait in 

Parkinson’s disease (PD) patients (15). This worked showed that the fractal scaling of PD patients' 

gait may be temporarily restored with short-term carry-over effects after synchronizing with 

nonlinear auditory rhythms. Another exciting outcome of this study was that the PD patients 

reported greater perceived stability when synchronizing to the nonlinear rhythms compared to a 

stimulus with fixed temporal structure. A subjective feeling of stability such as this would have 

important implications for older adults with fear of falling, which results in activity curtailment 

and other psycho-social problems (25).  

 The α-values reported in this study were somewhat different than previous studies. 

Hausdorff and colleagues reported values between 0.76 and 0.87 for healthy young adults, and 

0.68 for elderly for stride interval time series (11,12), compared to 0.60 for healthy adults and 0.84 

for elderly in the current study (table 2). These differences may be due to the fact that overground 

walking was analyzed in other studies as opposed to treadmill walking in this study, where the gait 

velocity is controlled. Dingwell and Cusumano (6) have investigated the effect of the treadmill on 

stride-to-stride fluctuations using DFA. They developed a model that shows that individuals 

constantly adapt their instantaneous speed to the treadmill speed. As a result, if individuals are 

subjected to auditory stimuli while walking on a treadmill, it is possible that they have to adapt 

their gait to two different constraints, i.e. the speed constraint and the auditory constraint. 

Additionally, the short time series used in this study may account for the differences. Continuous 

data series in excess of 600 data points have been recommended for accurate DFA (3), and while 
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this not consistently observed in the gait literature (10), it may be seen as a limitation in this study.  

Finally, stride time intervals were determined based on a sampling rate of 100 Hz. The temporal 

resolution is hence quite low for measures of gait variability since most stride interval values are 

expected to fall within 0.1 seconds, which suggests a temporal resolution of 10 samples. Our 

subsequent work has addressed these limitations by performing a similar experiment on 

overground walking, sampling a stride analyzer at higher sampling frequencies. Our preliminary 

results are very promising, showing even stronger outcomes than what are reported here. 

 This study has presented a new perspective in gait variability, where sensory inputs 

can be manipulated to influence the nonlinear dynamics of the locomotor system. We have 

reinforced the theory of Optimal Movement Variability by demonstrating a curvilinear 

relationship between gait variability and the temporal structure of auditory stimuli. This 

proof-of-concept study shows that the gait of older adults may be manipulated using auditory 

stimuli. Future work will investigate which structures of auditory stimuli in terms of fractal 

scaling will lead to improvements in functional status in populations with impaired gait.     
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Table 1: Subject demographics 

Table 2: DFA α-values, mean(SD), for elderly and young groups across all four conditions, for 

stride interval, stride length and step width. 
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  Age (yrs) Height (cm) Weight (kg) Speed m/s 

Elderly 71.4 ± 4.4 172.88 ± 

11.15 

74.64 ± 13.38 0.75 ± 0.22 

Young 25.7 ± 3.0 175.96 ± 8.71 72.89 ± 12.38 0.89 ± 0.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 23 

 

23 

 

Table 2. 

 

White Chaotic No 

Stimulus 

Metronome 

     

Stride 

Interval 

    

Elderly 0.769 (0.21) 0.882 (0.26) 0.846 (0.23) 0.721 (0.32) 

Young 0.600 (0.20) 0.589 (0.20) 0.600 (0.20) 0.535 (0.21) 

     

Stride Length     

Elderly 0.691 (0.19) 0.803 (0.22) 0.758 (0.27) 0.741 (0.28) 

Young 0.797 (0.23) 0.823 (0.23) 0.775 (0.19) 0.699 (0.24) 

     

Step Width     

Elderly 0.679 (0.20) 0.764 (0.22) 0.740 (0.23) 0.655 (0.23) 

Young 0.706 (0.17) 0.737 (0.18) 0.757 (0.23) 0.688 (0.20) 
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Figure Captions 

Figure 1: Schematic illustrating how our hypothesis maps to the theory of Optimal Movement 

Variability. The white noise stimulus will produce a disordered and unpredictable gait pattern. 

Movement will lack any organization, therefore complexity is low. The metronomic stimulus will 

produce a highly predictable, periodic gait pattern that lacks flexibility. The beat is one-

dimensional, therefore the complexity is low. The chaotic auditory stimulus will produce an 

optimally complex and predictable gait pattern that contains a repeated pattern at multiple levels 

of organization.  

Figure 2: Quadratic Trend Analysis results for the elderly group presented within the Optimal 

Movement Variability framework. The α-value exhibited a significant quadratic trend (i.e. the 

actual trend matched the predicted quadratic trend) for all gait parameters, confirming the 

presence of an inverted-U relationship between predictability and complexity, driven by the 

auditory stimuli.  

Figure 3: Quadratic Trend Analysis results for the young group presented within the Optimal 

Movement Variability framework. The α-value did not exhibit a significant quadratic trend (i.e. 

the actual trend did not match the predicted quadratic trend) in any gait parameter.  
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Figure 1 (Kaipust)  
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Figure 2 (Kaipust) 
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Figure 3 (Kaipust)  
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