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Abstract:  19 

Humans apply a minimum intervention principle to regulate treadmill walking, rapidly 20 

correcting fluctuations in the task-relevant variable (step speed: SS) while ignoring 21 

fluctuations in the task-irrelevant variables (step time: ST; step length: SL). We examined 22 

whether the regulation of fluctuations in SS and not in ST and SL relies depends on high-23 

level, executive function, processes. Young adults walked on a treadmill without a cognitive 24 

requirement and while performing the cognitive task of dichotic listening. SS fluctuations 25 

became less anti-persistent when performing dichotic listening, meaning that taxing 26 

executive function impaired the ability to rapidly correct speed deviations on subsequent 27 

steps. Conversely, performing dichotic listening had no effect on SL and ST persistent 28 

fluctuations. Findings suggest that high-level brain processes are only involved only in 29 

regulating gait task-relevant variables.  30 
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1.  Introduction 35 

In a wide range of tasks, humans apply a minimum intervention principle to regulate 36 

movement, correcting fluctuations only if they interfere with task performance [1,2]. This 37 

control holds because correcting task-irrelevant fluctuations in addition to task-relevant 38 

fluctuations has detrimental effects on the central nervous system (CNS), increasing noise 39 

and computational effort.  40 

In gait, such a principle has been demonstrated by examining the statistical 41 

persistence/anti-persistence of the stride-to-stride fluctuations during treadmill walking [3,4]. 42 

Specifically, fluctuations in stride time and stride length were found to be persistent, meaning 43 

that their values continued increasing or decreasing over several subsequent strides before 44 

reversing. CoInverselynversely, fluctuations in stride speed were anti-persistent, rapidly 45 

reversing direction on subsequent strides. Given that the treadmill walking task requires 46 

maintaining (on average) the same walking speed (to not walkavoid walking off the treadmill) 47 

and that many combinations of stride length and stride time equally achieve that speed, only 48 

task-relevant fluctuations only were therefore were immediately corrected.  49 

However, the question remains as to whether persistent and anti-persistent 50 

fluctuations stem from similar or different control processes of the CNS. Interestingly, only 51 

anti-persistence in step speed is needed to achieve the treadmill walking goal (to maintain 52 

constant walking speed [3,4]). Accordingly, high-level executive function processes, which 53 

are involved in handling goal-directed actions [5], may only play a role only in shaping anti-54 

persistent behavior. If trueso, taxing these processes by with a concurrent cognitive task 55 

during treadmill walking would alter anti-persistence in step speed while persistence in step 56 

time and step length would remain unchanged.  57 

2.  Methods 58 

Twenty healthy adults (12♀/8♂, 24.45±0.87 years, 1.73±0.02 m, 70.41±2.63 kg) 59 

participated in two experimental sessions after providing written informed consent. The 60 

experiment includedThe order of the two sessions was  counterbalanced between subjects. 61 

In one session, subjects performed the cognitive task of dichotic listening while being seated 62 

to establish baseline performance [6,7]. They had to listen and report consonant-vowel 63 

syllables (phonologically salient, but semantically meaningless) presented dichotically under 64 

three attention conditions: non-forced (NF) consisted in reporting the syllable heard best, and 65 

forced-right (FR) and forced-left (FL) the syllable heard in the right and left ear, respectively. 66 

The conditions increased in the need of for executive control, from NF to FL. In the other 67 

session, subjects walked on a treadmill at preferred speed (1.06±0.03 m/s) with markers 68 

attached at anatomical landmarks [8], first without a cognitive requirement (walking: W) and 69 

afterwards while performing dichotic listening in NF (W+NF), FR (W+FR) and FL (W+FL) (Fig. 70 
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1). In both sessions, NF was presented first and FR and FL were counterbalanced between 71 

subjects. Each condition lasted for three minutes, involving 36 different syllable pairs. E-72 

prime was used for syllable presentation and report collection. The marker movements 73 

were recorded (60 Hz) with an 8-camera Motion Analysis Eagle Digital system and low-pass 74 

filtered at 10 Hz with a zero-lag Butterworth filter.  75 

------------------------------------------- Please insert Figure 1 here -------------------------------------------  76 

Dichotic listening was scored through the laterality index (LI), which is the ratio of the 77 

difference between correct reports for the right ear and those for the left ear to the total 78 

number of correct reports, expressed in as a percentage. Step time (ST) and step length (SL) 79 

were defined as the time interval and horizontal distance between consecutive toe-off events, 80 

with the toe-off defined from the maximum backward displacement of the marker located 81 

between the second and third metatarsal phalangeal joints during each step. Step speed 82 

(SS) was defined as SS=SL/ST. The time series were shortened to 272 data points (the 83 

number of steps of the slowest subject). Persistence/anti-persistence in ST, SL and SS was 84 

examined using Detrended Fluctuation Analysis (DFA) [9,10]. DFA computes computed 85 

mean square roots of detrended residuals, F(n), of the integrated time series over a range of 86 

interval lengths, n. The scaling exponent α is was then estimated from the slope of the linear 87 

relationship between log[F(n)] and log(n). A restricted range of interval lengths was used, 88 

from n=17 steps to n=45 steps, where the slope was the most stable as determined by the 89 

DFBETA statistics [10] (Fig. 2). α<0.5 indicates anti-persistence, with fluctuations in one 90 

direction immediately followed by corrections in the opposite direction. α>0.5 indicates 91 

persistence, with fluctuations in one direction followed by fluctuations in the same direction. 92 

LI and α were subjected to two-way (session×condition) and one-way (condition) within-93 

subjects analyses of variance (ANOVAs), respectively. 94 

------------------------------------------- Please insert Figure 2 here -------------------------------------------  95 

3.  Results 96 

Cognition. There was a condition effect for LI (F2,38=32.91, p<10-9, η²=0.44), which 97 

increased from NF (11.27±3.29%) to FR (43.65±3.13%; p=0.003) and decreased from FR to 98 

FL (-9.08±4.93 %; p<0.001) (Fig. 3A). As previously found, subjects reported more correct 99 

answers at for the right ear in NF and FR, and inversely reported more correct answers at for 100 

the left ear in FL [7]. The ANOVA did not reveal a session effect for LI, meaning that 101 

cognitive performance was maintained during walking. 102 

Gait. DFA revealed anti-persistence in SS (α<0.5) and persistence in ST and SL 103 

(α>0.5). The ANOVA yielded a condition effect for α(SS) (F2,44=4.71, p=0.01, η²=0.12). 104 

Fluctuations were less anti-persistent in W+FL (α=0.45±0.04) than in W (α=0.31±0.03, 105 
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p=0.006) and W+NF (α=0.34±0.03, p=0.041). There were no significant results for α(ST) and 106 

α(SL) (Fig. 3B). 107 

------------------------------------------- Please insert Figure 3 here -------------------------------------------  108 

4.  Discussion 109 

 This study examined the origins of persistent/anti-persistent fluctuations in gait. As 110 

expected, taxing the executive function processes with dichotic listening led to less anti-111 

persistent SS, which reflected an impaired ability to rapidly correct speed deviations on 112 

subsequent steps. Therefore, executive function was involved in regulating anti-persistence 113 

in the variable relevant for achieving the treadmill walking goal (to maintain constant speed 114 

[3,4]). Interestingly, a previous model of gait dynamics reproduced anti-persistent fluctuations 115 

in ST (the task-relevant variable) during metronomically-paced walking [11,12]. The authors 116 

suggested that anti-persistence resulted from the “human consciousness” of being 117 

constrained to walk at a controlled pace by following external timing cues. Accordingly, our 118 

finding supports the proposal that anti-persistence in gait results from high-level brain 119 

processes. 120 

Conversely, decreasing the cognitive resources available had no effect on the 121 

persistence of the task-irrelevant variables for treadmill walking (ST and SL). Accordingly, the 122 

persistent fluctuations likely stem likely from low-level processes of the CNS and the inherent 123 

biomechanics of the locomotor system. This interpretation is in agreement with modelling 124 

studies that reproduced persistent fluctuations in ST using either an intra-spinal network of 125 

neurons coupled, or not, to a mechanical oscillator [9,11-14] or a biomechanical model of 126 

walking operating under minimal feedback (spinal reflex) [15]. 127 

In sum, high-level brain processes were only involved in regulating anti-persistent 128 

speed fluctuations. This finding suggests that the minimum intervention principle minimizes 129 

the cognitive cost of locomotion by tightly regulating solely only step speed, the variable that 130 

is directly relevant to achieving the task goal.  131 

 132 

Acknowledgments 133 

This research was supported by National Institutes of Health (1K99AG033684) and the 134 

Nebraska Research Initiative.  135 



 5 

References 136 
 137 
[1] Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat 138 

Neurosci 2002;5(11):1226-35. 139 

[2] Liu D, Todorov E. Evidence for the flexible sensorimotor strategies predicted by optimal 140 

feedback control. J Neurosci 2007;27(35):9354-68. 141 

[3] Dingwell JB, Cusumano JP. Re-interpreting detrended fluctuation analyses of stride-to-142 

stride variability in human walking. Gait Posture 2010;32(3):348-53. 143 

[4] Dingwell JB, John J, Cusumano JP. Do humans optimally exploit redundancy to control 144 

step variability in walking? PLoS Comput Biol 2010;6(7):e1000856. 145 

[5] Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and 146 

attention in gait. Mov Disord 2008;23(3):329-42; quiz 472. 147 

[6] Jäncke L, Shah NJ. Does dichotic listening probe temporal lobe functions? Neurology 148 

2002;58(5):736-43. 149 

[7] Hugdahl K, Westerhausen R, Alho K, Medvedev S, Laine M, Hämäläinen H. Attention 150 

and cognitive control: unfolding the dichotic listening story. Scand J Psychol 151 

2009;50(1):11-22. 152 

[8] Vaughan C, Davis B, O’Connor J. Dynamics of human gait. Cape Town, South Africa: 153 

Kiboho Publishers 1999. 154 

[9] Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL. Is walking a random walk? 155 

Evidence for long-range correlations in stride interval of human gait. J Appl Physiol. 156 

1995;78(1):349-58. 157 

[10] Damouras S, Chang MD, Sejdić E, Chau T. An empirical examination of detrended 158 

fluctuation analysis for gait data. Gait Posture 2010;31(3):336-40. 159 

[11] West BJ, Scafetta N. Nonlinear dynamical model of human gait. Phys Rev E Stat Nonlin 160 

Soft Matter Phys. 2003;67(5 Pt 1):051917.  161 

[12] Scafetta N, Marchi D, West BJ. Understanding the complexity of human gait dynamics. 162 

Chaos 2009;19(2):026108. 163 

[13] Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE, Goldberger AL. When 164 

human walking becomes random walking: fractal analysis and modeling of gait rhythm 165 

fluctuations. Physica A 2001;302(1-4):138-47. 166 

[14] Ashkenazy Y., Hausdorff JM, Ivanov PC, Stanley HE. A stochastic model of human gait 167 

dynamics. Physica A 2002;316 (1-4): 662-70. 168 

[15] Gates DH, Su JL, Dingwell JB. Possible Biomechanical Origins of the Long-Range 169 

Correlations in Stride Intervals of Walking. Physica A 2007;380:259-270. 170 

 171 
 172 
 173 



 6 

Legends 174 
 175 
 176 

Fig. 1. Experimental setup with a subject walking on the treadmill while performing the 177 

dichotic listening test. Consonant-vowel syllables /ba/, /da/, /ga/, /pa/, /ta/, and /ka/ were 178 

presented as stimulus-pairs (e.g., /ga/-/ba/) using a headphone, one syllable to the right ear 179 

(e.g., /ga/) and simultaneously the other syllable to the left ear (e.g., /ba/). The subjects were 180 

asked to freely report the consonant-vowel syllable they heard best from the dichotic syllable 181 

pair in the non-forced (NF) condition (e.g., /ga/, assuming a right ear advantage). On the 182 

other hand, they were instructed to report only the syllable presented to the right ear in the 183 

forced-right (FR) condition (e.g., /ga/) and to the left ear in the forced-left (FL) condition (e.g., 184 

/ba/). The subjects were secured into the LiteGait® harness system for a safety purposes. 185 

Reflective markers were attached to specific anatomical landmarks, including the anterior 186 

and posterior superior iliac spine, lumbosacral joint, greater trochanter of the femur, lateral 187 

mid-thigh, front lower thigh, lateral and medial epicondyles of the femur, front mid-shank, 188 

lateral lower shank, lateral and medial malleoli, lateral border of the fifth metatarsal head, 189 

medial border of the first metatarsal head, lateral and medial processes of the calcaneal 190 

tuberosity, heel, and between the second and third metatarsal phalangeal joints. 191 

 192 
 193 
Fig. 2. (A) Step length (SL), step time (ST) and step speed (SS) time series (N=272 steps) 194 

obtained from a representative subject walking at preferred speed. (B) Corresponding log-log 195 

plots of average fluctuations F(n) vs. interval lengths n, obtained using the Detrended 196 

Fluctuation Analysis. The log10[F(n)] vs. log10(n) plots were fitted with linear functions and the 197 

scaling exponents α were obtained from the slopes of these lines over the range of interval 198 

lengths n=17 to n=45. This range provided the most stable estimates of α for SL, ST, and SS. 199 

As illustrated, step-to-step fluctuations of both SL and ST time series were persistent (α>0.5) 200 

while those of SS time series were anti-persistent (α<0.5). (C) The stable interval length 201 

fitting range was determined from the distribution of the diagnostic measure DFBETA, which 202 

reflects how much the exponent α changes when sequentially removing the intervals of 203 

length n. The values presented here are means ± standard deviations of the population. For 204 

small interval lengths (n<17data points), the DFBETA values exhibited bias away from zero 205 

and were importantly dispersed, reflecting estimations of α over- or under-estimated and 206 

poorly stable, respectively. Indeed, small intervals contain few data points for fitting the 207 

trends, which likely render the α estimates inaccurate and variable. For large interval lengths 208 

(n>45 data points), the DFBETA values did not exhibit bias but were importantly highly 209 

dispersed. These interval lengths provide sufficient data for fittingto fit the trend but the 210 
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average fluctuations around the trends are more variable, making the α estimates less stable. 211 

Therefore, the restricted range of lengths 17≤n≤45 was considered for estimating α.   212 

 213 

Fig. 3. (A) Laterality indexes (LI) obtained in the dichotic listening conditions (NF: non-forced, 214 

FR: forced-right, FL: forced-left) during the sitting and walking sessions. Results from the 215 

two-way within-subjects ANOVAs (Condition×Session) indicated a significant main effect of 216 

condition for LI, with the p-value for the effect - pc - reported on the graph. (B) Exponents α 217 

obtained from step length (SL), step time (ST), and step speed (SS) time series as a function 218 

of the experimental conditions (walking: W, walking when performing dichotic listening: 219 

W+NF, W+FR, and W+FL). Results from the one-way within-subjects ANOVAs indicated a 220 

significant main effect of condition for α(SS), with the p-value for the effect - pc(SS) - reported 221 

on the graph. LI and α values are means ± standard errors of the population.   222 
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