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1. Introduction

In assembly structures or places where crowds may gather such as dance halls, theaters,
gymnasia and stadia, the loading is almost entirely caused by human activities. Structural
resonance or near resonance and the resulting vibrations causing discomfort of spectators have
often been observed during a rock concert [1] or a sporting event [2,3]. Recent research efforts
have focused on developing load models [4] to quantify the dynamic loading effects induced by
individuals and groups up to 40 people [5]. The lack of coherence of motion from a large crowd,
the so-called ‘‘group effect’’, has been quantified based on simulations [5]. The simulation results
and the load models thus developed should be verified against actual field data from assembly
structures before they are adopted into building codes and standards.

The upper deck of the University of Wisconsin Football Stadium was instrumented with three
accelerometers, and sympathetic vibrations induced by co-ordinated rhythmic jumping of
spectators have been monitored for several football seasons. In this study, spectral analyses of the
field data were conducted to identify the predominant vibrational mode shape of the upper deck
and to assess the group effect based on back-calculated load spectral densities.

Analytical computation of the dynamic responses of a structure depends upon the spatial
distribution and temporal variation of the loading, and upon the structural properties, including
mode shapes, natural frequencies and damping. The computation also requires a reliable model of
the structure to serve as a kinematic transfer function to relate the loading to the responses.

Theoretically, the loading process due to spectator activities is random and three-dimensional.
The intensity of each load component varies with the location on the structure (as defined by two
co-ordinates) as well as with time. In order to simplify the mathematical treatment of the problem,
each load component is treated as a random function of time or a time series. It is conceivable that
the three load components involved in any spectator movement are somewhat correlated,
nevertheless, they are assumed as if they were mutually statistically independent. A frequency
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response function based on a finite-element model of the upper deck was developed for correlating
the simulated loading for co-ordinated rhythmic jumping with the vibration data.

2. The University of Wisconsin Camp Randall Stadium

The upper deck of the U.W. Camp Randall Stadium was built of reinforced concrete in 1966 for
a seating capacity of 12 000. As shown in Fig. 1, it is an arc in plan with precast seating supported
on 23 large frames labelled with letters A to Z except I, O, and Q. The plane of each frame is
shown as a radial line. Each frame is h-shaped with the deck support cantilevered from the single
column as shown in Fig. 2. Note that frames H through P lack shaded portion of seating. Frames
A–X are symmetric about frame L with their front edges at a radius of 166m (545 ft) from the
center of the circular arc. Frames Y and Z were built adjacent to frame X at a reduced radius of
58.5m (192 ft). Three vertically directed, force-balance-type accelerometers were installed at the
top of frame C, bottom of frame C, and top of frame X, as shown in Fig. 1. The scale factor of the
accelerometers was 72.5V corresponding to 71 g (i.e., 9.8m/s2 or 32.2 ft/s2). The analog signals
were digitized at 50 samples/s simultaneously by a data-acquisition unit. Each record contained
1024 data points.

2.1. Modelling the upper deck

The upper deck of the U.W. Camp Randall Stadium was modelled as a space frame with plate
elements added at locations for the cast-in-place concrete slabs in the concourse area and the
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43 Fig. 1. (a) View toward the back of the University of Wisconsin Stadium and (b) plan view of the upper deck of the

U.W. Stadium.
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communication center (i.e., the press box). However, the stiffness of the precast seating units was
neglected because each L-shaped seating unit was simply supported at both ends on the main
frames and hinged to adjacent units at one-third points along the length by single angles. Each
seat-supporting (type 1) frame was idealized with 10 joints and 13 dynamic degrees of freedom
(d.o.f.) acting at five lumped masses, while each press-box (type 2) frame with 15 joints and 12
dynamic d.o.f. at five lumped masses. Thus, the dynamic behavior of the upper deck was
represented by a total of 292 dynamic d.o.f. The discretization of the type 1 and type 2 frames are
given in Fig. 3.

2.1.1. Natural frequencies and mode shapes
The natural frequencies and the associated three-dimensional mode shapes of the first seven

modes were obtained by a modal analysis. The periods, natural frequencies and modal masses of
these modes are summarized in Table 1. It was noted that the natural frequencies of the various
vibrational modes are closely spaced, making identification of the predominant mode difficult.

Typical acceleration-time histories acquired during football games are shown in Fig. 4. Fig. 4a
shows a transient vibration under random loading associated with an active event, e.g., a
touchdown, while Fig. 4b is a resonant vibration under co-ordinated rhythmic jumping of a
crowd. The highest accelerations took place due to resonance when the spectators on the upper
deck were jumping in unison to a polka beat played at about 2.2Hz and lasted for 50 s. Field
accelerations of this kind provide valuable response data, which can be used to determine the
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Fig. 2. Typical reinforced concrete frames supporting upper deck of U.W. Stadium.
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model parameters of the structure as well as to back calculate the loading. The vibration spectra
corresponding to the two acceleration-time histories are shown in Figs. 5a and b, respectively. The
resonance spectrum reveals that the structural response is almost entirely associated with a single
mode of vibration at a natural frequency of around 2.3Hz. As a result, the upper deck may be
assumed to be a single-degree-of-freedom (s.d.o.f.) structural system with little loss of accuracy in
computing its resonant behavior.

2.1.2. Modal damping
The resonant vibration of the upper deck could be approximated closely with a sinusoidal wave.

Typical exponential decay would result when the spectators stopped jumping in unison, as
depicted in Fig. 6. Damping ratios estimated from the decaying amplitudes were found to be 2–
3% of critical, corresponding to a modal natural frequency of 2.3Hz.
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Fig. 3. Finite element models of the supporting frames.

Table 1

Modal analysis results of the first seven modes

Mode Period, T (s) Natural frequency, f (Hz) Modal mass, M� (kips-s2/ft)

1 0.50 2.00 103.41

2 0.48 2.10 80.84

3 0.47 2.13 50.44

4 0.46 2.17 71.55

5 0.41 2.41 48.58

6 0.41 2.43 45.24

7 0.36 2.80 21.29
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3. Analysis of the acceleration data

The methods for analysis and presentation of vibration data, in the form of time–histories, were
discussed by Bendat and Piersol [6]. The structural vibrations induced by repetitive spectator
loading and the loading itself are further assumed herein to be stationary processes, whose
statistical properties are invariant with respect to time. The mathematical algorithms based on the
theory of random processes are included in Appendix A for quick reference.

3.1. Auto- and cross-correleations

For identification, the acceleration data acquired at the top of frame C are designated with
subscript 1, those at the bottom of frame C with 2, and those at the top of frame X with 3. The
mean-square values and mean cross-products of the acceleration data during sympathetic
vibration of the upper deck are summarized in Table 2. The positive averages of the cross-
products indicate that vibrations at the top of frame C and the top of frame X were ‘‘in-phase,’’
and the negative values indicate that vibrations at the bottom of frame C were ‘‘out-of-phase’’
with those at the top of frame C and the top of frame X. The acceleration time–history obtained at
the three locations (i.e., i ¼ 1; 2, and 3) may be expressed as
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Fig. 4. (a) Acceleration time–history (touchdown response) and (b) acceleration time–history (harmonic vibration).
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xiðtÞ ¼ Ai sinð2pft þ yÞ ð1Þ

and the auto-correlation function of xiðtÞ can be expressed as

RiðtÞ ¼
A2

i

2
cos 2pf t: ð2Þ

Since statistical analyses showed that the acceleration amplitudes Ai followed normal
distributions, the expected value or the average of Rið0Þ can be computed as

E½Rið0Þ� ¼ E
A2

i

2

� �
¼

1

2
E½A2

i � ¼
1

2
½m2

i þ s2
i �: ð3Þ

As shown in Table 3, these computed values compare very well with the averages of the mean-
square values given in Table 2.

3.2. Power spectral and cross-spectral densities

Power spectral densities S11; S22 and S33; and cross-spectral densities S12; S23 and S13 of the
acceleration data obtained during sympathetic vibrations of the 1980–1982 football games are
presented in Table 4. The phase shifts and time lags calculated by using Eqs. (A.6) and (A.7) along
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Fig. 5. (a) Response spectrum (touchdown response spectrum) and (b) Response spectrum (resonance spectrum).
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Fig. 6. A typical vibration decay curve (x ¼ 2:3%; f ¼ 2:3Hz).

Table 2

Correlations of acceleration data at zero time lag

Football game/season Mean square (0.001� g2) Mean cross-product (0.001� g2)

R1ð0Þ R2ð0Þ R3ð0Þ R12ð0Þ R23ð0Þ R13ð0Þ

Michigan ‘80 0.203139 — 0.518475 — — 0.263197

Michigan ‘80 0.204680 — 0.796001 — — 0.358824

Minnesota ‘80 0.190574 — 1.515470 — — 0.465961

Minnesota ‘80 0.287003 — 1.681420 — — 0.640119

Michigan ‘81 0.435245 0.831216 2.060340 	0.581295 	1.221430 0.889259

Michigan ‘81 0.230942 0.431770 0.570196 	0.301776 	0.390938 0.291601

UCLA ‘81 0.095023 0.191207 0.341723 	0.126444 	0.234811 0.171811

UCLA ‘81 0.110715 0.213020 0.457277 	0.143940 	0.283998 0.210565

W. Michigan ‘81 0.434728 0.889593 — 	0.602498 — —

W. Michigan ‘81 0.389686 0.838848 — 	0.547237 — —

Ohio State ‘81 0.384236 — 0.886720 — — 0.553280

Ohio State ‘81 0.371786 — 1.624600 — — 0.730980

Northwestern ‘81 0.211151 0.350632 0.551398 	0.238213 	0.350580 0.274611

Northwestern ‘81 0.266217 0.583495 1.162350 	0.370582 	0.739865 0.490155

Indiana ‘82 0.174865 0.311363 0.289930 	0.211241 	0.248843 0.183386

Indiana ‘82 0.133232 0.255280 0.506105 	0.168981 	0.319039 0.237693

Northwestern ‘82 0.140823 0.215833 — 	0.125095 — —

Northwestern ‘82 0.148455 0.271290 — 	0.174238 — —

Minnesota ‘82 0.392969 0.682235 0.298864 	0.458940 	0.327663 0.225275

Minnesota ‘82 0.358091 0.709379 0.821115 	0.483130 	0.733670 0.500283
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with the corresponding resonant frequencies are presented in Table 5. The quality of the
accelerometer data and the accuracy of spectral analyses can be readily verified by the fact that
y12 þ y23 ¼ y13 and that t12 þ t23 ¼ t13U

3.3. Identification of the mode shape

Let V1ðtÞ; V2ðtÞ and V3ðtÞ represent the vertical displacement time–histories at the accelerometer
locations on the upper deck and f1; f2 and f3 be the corresponding modal coefficients,
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Table 3

Comparison of average mean-square values

Normal

distribution

Top of frame X Bottom of frame C Top of frame X

m1 s1 m2 s2 m3 s3

0.021 g 0.007 g 0.028 g 0.011 g 0.036 g 0.013 g
1
2
½m2 þ s2� 2.450� 10	4 g2 4.525� 10	4 g2 7.325� 10	4 g2

Avg. of Rð0Þ 2.582� 10	4 g2 4.839� 10	4 g2 8.801� 10	4 g2

Table 4

Acceleration spectral densities at resonant frequency

Football game/season Power spectral density (0.01� g2/Hz) Cross-spectral density (0.01� g2/Hz)

S11 S22 S33 S12 S23 S13

C12 Q12 C23 Q23 C13 Q13

Michigan ‘80 0.5392 — 1.4253 — — — — 0.8741 0.0854

Michigan ‘80 0.6747 — 2.5170 — — — — 1.3018 0.0004

Minnesota ‘80 0.6134 — 5.0048 — — — — 1.6726 0.5221

Minnesota ‘80 1.1235 — 6.5987 — — — — 2.6395 0.6716

Michigan ‘81 0.5130 1.0054 2.0140 	0.7138 0.0811 	1.4509 	0.0730 1.0268 	0.0640

Michigan ‘81 0.3674 0.6924 1.0658 	0.5036 0.0271 	0.7983 0.3352 0.5683 	0.2751

UCLA ‘81 0.2586 0.4852 1.0630 	0.3538 0.0171 	0.7152 	0.0916 0.5241 0.0417

UCLA ‘81 0.4212 0.7808 1.7594 	0.5726 0.0316 	1.1307 	0.3096 0.8416 0.1814

W. Michigan ‘81 1.1121 2.1762 — 	1.5534 0.0918 — — — —

W. Michigan ‘81 0.8869 1.8220 — 	1.2669 0.1007 — — — —

Ohio State ‘81 0.2014 — 0.1658 — — — — 0.1011 	0.0183

Ohio State ‘81 0.5586 — 2.6700 — — — — 1.2106 0.1951

Northwestern ‘81 0.6676 1.0582 1.8402 	0.8368 0.0871 	1.3322 0.5278 1.0066 	0.5165

Northwestern ‘81 0.4892 1.1358 2.2260 	0.7397 0.0914 	1.5837 	0.0201 1.0314 	0.1176

Indiana ‘82 0.1459 0.2556 0.3596 	0.1923 0.0182 	0.3061 0.0380 0.2288 	0.0504

Indiana ‘82 0.0495 0.0829 0.1191 	0.0636 0.0022 	0.1001 	0.0404 0.0788 0.0289

Northwestern ‘82 0.1604 0.2184 — 	0.1804 0.0405 — — — —

Northwestern ‘82 0.1566 0.2692 — 	0.2038 0.0165 — — — —

Minnesota ‘82 0.2515 0.7269 0.2300 	0.6033 0.0640 	0.3318 0.1269 0.2554 	0.1286

Minnesota ‘82 0.4696 0.9180 1.1053 	0.6553 0.0414 	1.0009 0.1279 0.7094 	0.1366
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respectively, in the predominant mode shape of the sympathetic vibration. The vertical
displacements may then be expressed in terms of a generalized co-ordinate of the predominant
mode, Y ðtÞ;

V1ðtÞ ¼ fn

1Y ðtÞ; V2ðtÞ ¼ fn

2Y ðtÞ; V3ðtÞ ¼ fn

3Y ðtÞ: ð426Þ

Differentiating Eqs. (4)–(6) with respect to time twice yields the acceleration time–histories,
which would be the same as those acquired by the accelerometers. It follows that the spectral
densities of these acceleration time–histories can be expressed as

S11 ¼ f
2*
1 S .Y; S22 ¼ f

2*
2 S .Y; S33 ¼ f

2*
3 S .Y; ð7-9Þ

where S .Y is the power spectral density of the generalized acceleration amplitude evaluated at the
resonant frequency. Likewise, the coincident spectral densities of these acceleration time–histories
may be expressed as

C12 ¼ fn

1f
n

2S .Y; C23 ¼ fn

2f
n

3S .Y; C13 ¼ fn

1f
n

3S .Y: ð10-12Þ

Although explicit values of the modal coefficients f1; f2 and f3 are not known, the ratios of
these modal coefficients can be computed from the spectral densities given in Table 4:
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Table 5

Phase shifts and time lags at resonance

Football game/season (s) Resonant frequency f (Hz) Phase shift, y (deg) Time lag, t

y12 y23 y13 t12 t23 t13

Michigan ‘80 2.34 — — 5.58 — — 0.0132

Michigan ‘80 2.30 — — 0.02 — — B0

Minnesota ‘80 2.25 — — 17.34 — — 0.0428

Minnesota ‘80 2.25 — — 14.28 — — 0.0353

Michigan ‘81 2.25 	6.48 2.88 	3.57 	0.016 0.007 	0.009

Michigan ‘81 2.30 	3.08 	22.78 	25.83 	0.0074 	0.055 	0.0624

UCLA ‘81 2.30 	2.77 7.30 4.55 	0.0067 0.0176 0.0110

UCLA ‘81 2.30 	3.16 15.31 12.16 	0.0076 0.0370 0.0294

W. Michigan ‘81 2.25 	3.38 — — 	0.0083 — —

W. Michigan ‘81 2.25 	4.54 — — 	0.0112 — —

Ohio State ‘81 2.34 — — 	10.26 — — 	0.0244

Ohio State ‘81 2.25 — — 9.16 — — 0.0226

Northwestern ‘81 2.34 	5.94 	21.61 	27.16 	0.0141 	0.0513 	0.0645

Northwestern ‘81 2.25 	7.04 0.73 	6.50 	0.0174 0.0018 	0.016

Indiana ‘82 2.34 	5.41 	7.08 	12.42 	0.0128 	0.0168 	0.0295

Indiana ‘82 2.44 	1.98 21.98 20.14 	0.0045 0.0500 0.0459

Northwestern ‘82 2.44 	12.65 — — 	0.0288 — —

Northwestern ‘82 2.34 	4.63 — — 	0.0110 — —

Minnesota ‘82 2.34 	6.06 	20.93 	26.73 	0.0144 	0.0497 	0.0635

Minnesota ‘82 2.30 	3.62 	7.28 	10.90 	0.0087 	0.0176 	0.0263
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f2

f1

¼

ffiffiffiffiffiffiffi
S22

S11

r
¼

C12

S11
¼

C23

C13
;

f3

f2

¼

ffiffiffiffiffiffiffi
S33

S22

r
¼

C23

S22
¼

C13

C12
;

f3

f1

¼

ffiffiffiffiffiffiffi
S33

S11

r
¼

C13

S11
¼

C23

C12
: ð13-15Þ

These computed ratios are summarized in Table 6. Theoretically, these ratios remained
constant between events while the magnitude of S .Y varied depending upon the loading intensity.
The computed ratios strongly support the ‘‘s.d.o.f.’’ approximation and that the resonant
vibrations were stationary. The modal coefficient ratios indicate a ‘‘rocking’’ motion of the upper
deck was predominant under the rhythmic spectators jumping. The top of frame C and the top of
frame X moved in phase, while both moved out-of-phase with the bottom of frame C. The average
resonant frequency obtained from Table 6 is 2.31Hz, along with the average of f2=f1 ¼ 	1:358;
f3=f2 ¼ 	1:301; and f3=f1 ¼ 1:890: These ratios are compared against the ratios of the modal
coefficients obtained from the analytic modelling in Table 7.

It is well known that an eigenvalue modal analysis may produce spurious mode shapes and
natural frequencies from an analytic model of a massive structure such as a football stadium,
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Table 6

Ratios of mode shape coefficients at resonance

Football game/

season

Resonant

frequency

f (Hz)

f2=f1 f3=f2 f3=f1

	

ffiffiffiffiffiffiffi
S22

S11

r
C12

S11

C23

C13
	

ffiffiffiffiffiffiffi
S33

S22

r
C23

S22

C13

C12

ffiffiffiffiffiffiffi
S33

S11

r
C13

S11

C23

C12

Michigan ‘80 2.34 — — — — — — 1.626 1.621 —

Michigan ‘80 2.30 — — — — — — 1.931 1.929 —

Minnesota ‘80 2.25 — — — — — — 2.856 2.737 —

Minnesota ‘80 2.25 — — — — — — 2.423 2.349 —

Michigan ‘81 2.25 	1.400 	1.391 	1.413 	1.415 	1.443 	1.438 1.981 2.002 2.033

Michigan ‘81 2.30 	1.373 	1.371 	1.405 	1.241 	1.153 	1.128 1.703 1.547 1.585

UCLA ‘81 2.30 	1.370 	1.368 	1.365 	1.480 	1.474 	1.481 2.027 2.027 2.022

UCLA ‘81 2.30 	1.362 	1.359 	1.344 	1.501 	1.448 	1.470 2.044 1.998 1.975

W. Michigan ‘81 2.25 	1.399 	1.397 — — — — — — —

W. Michigan ‘81 2.25 	1.433 	1.428 — — — — — — —

Ohio State ‘81 2.34 — — — — — — 0.907 0.502 —

Ohio State ‘81 2.25 — — — — — — 2.186 2.167 —

Northwestern ‘81 2.34 	1.259 	1.253 	1.323 	1.319 	1.259 	1.203 1.660 1.508 1.592

Northwestern ‘81 2.25 	1.524 	1.512 	1.535 	1.400 	1.394 	1.394 2.133 2.108 2.141

Indiana ‘82 2.34 	1.324 	1.318 	1.338 	1.186 	1.198 	1.190 1.570 1.568 1.592

Indiana ‘82 2.44 	1.294 	1.285 	1.270 	1.199 	1.207 	1.239 1.551 1.592 1.574

Northwestern ‘82 2.44 	1.167 	1.125 — — — — — — —

Northwestern ‘82 2.34 	1.311 	1.301 — — — — — — —

Minnesota ‘82 2.34 	1.700 	2.399 	1.299 	0.563 	0.456 	0.423 0.956 1.016 0.550

Minnesota ‘82 2.30 	1.398 	1.395 	1.411 	1.097 	1.090 	1.083 1.534 1.511 1.527
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especially when there are closely spaced frequencies. In the model used in this study, the mass
distribution was approximate due to the ‘‘lumping’’ process while the stiffness distribution of the
structure was preserved. Furthermore, the distribution of the loading (i.e., the spectators) may
have excited a mode other than the fundamental mode. A careful review of the mode shapes
indicates the sixth mode would match the field data most closely with a natural frequency of
2.43Hz. A qualitative sketch of this mode shape is depicted in Fig. 7. The power spectral density
S .Y was found to average 7.67� 10	2 g2/Hz with the largest magnitude being about
16.5� 10	2 g2/Hz, if the coefficients of the sixth mode were used.

4. Response of the upper deck by modal analysis

The upper deck of the U.W. Camp Randall Stadium is a multiple-degrees-of-freedom (m.d.o.f.)
system, and as such the displacements at any point may be obtained by modal superposition. For
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Fig. 7. Qualitative sketch of the sixth modal shape.

Table 7

Comparison of modal coefficients

Mode F f1 f2 f3 f2=f1 f3=f2 f3=f1

1 2.00 0.6795 	0.6806 0.3735 	1.00 	0.55 0.55

2 2.10 	0.6047 0.6173 0.8387 	1.02 1.36 	1.39

3 2.13 0.7890 	0.8079 0.0399 	1.02 	0.05 0.05

4 2.17 	0.4535 0.4695 	0.4086 	1.04 	0.87 0.90

5 2.41 	0.1537 0.1666 1.0000 	1.08 6.00 	6.51

6 2.43 	0.2813 0.3115 	0.6688 	1.11 	2.15 2.38

7 2.80 	0.4041 0.0059 	0.0460 	0.02 	7.80 0.01

Field 2.31 — — — 	1.358 	1.301 1.890
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instance, the vertical displacement at point i; ViðtÞ; can be expressed as

ViðtÞ ¼ fi1Y1ðtÞ þ fi2Y2ðtÞ þ?þ fimYmðtÞ; ð16Þ

where fim is the modal coefficient in the mth mode shape corresponding to that displacement, if
only the first m modes are retained in the analysis. YmðtÞ is the normal co-ordinate or modal
amplitude of the mth mode.

The generalized forcing function for the mth mode is the sum of the contributions from the
discrete loadings applied at all the applicable dynamic d.o.f.’s:

FmðtÞ ¼
X

j

fjmPjðtÞ; j ¼ dynamic d:o:f :; ð17Þ

where PjðtÞ may be a horizontal or a vertical force, fjm are the modal coefficients in the mth mode
in the directions of the corresponding forces PjðtÞ: It follows that the power spectral densities of
the generalized forcing function of the mth mode can be computed from the power and cross-
spectral densities of the discrete loadings PlðtÞ and PnðtÞ; with the participating modal coefficients

SFm
ð %oÞ ¼

X
l

X
n

flmfnmSPlPn
ð %oÞ; ð18Þ

where l and n are dummy indices each of which corresponds to a dynamic d.o.f. of the structural
system.

4.1. Loading due to rhythmic jumping of a crowd

If the contribution to resonant vibration from the horizontal forces were negligible and the
vertical forces were uniformly distributed and coherently applied over the seating deck, the
correlation of the loading with the acceleration data can be assessed.

4.1.1. Load models
Tuan [7] proposed a load spectral density model based on a linear regression analysis of load

data from rhythmic jumping at about 2Hz,

PSDðlb2=HzÞ ¼ 19:6151� c2
x ðlb

2Þ 	 82570:624; ð19Þ

where c2
x is the mean-square value of the load time–history. The expectation of the mean-square

value where n people are jumping in perfect synchronism may be expressed as

E c2
x

� �
¼ 18 188� n þ ð180:3Þ2 � Cðn; 2Þ: ð20Þ

Allen et al. [8] used repeated triangles separated by zero-load intervals to approximate the
jumping forces produced by a group of people. Dynamic load factor (defined as peak force
amplitude/static weight) of 1.62 was obtained for a ‘‘well-co-ordinated’’ small group of jumpers
and 1.31 for a large exercise class, both associated with 1.5–3Hz forcing frequency. Ebrahimpour
and Sack [4,5] measured the periodic jumping forces produced by groups of up to 40 people
jumping at 2 and 3Hz. Based on a loading area of 3.5 ft2 (0.33m2) and average weight of 160 lb
(712N) per person, they recommend using 172 lb (763N) for one person and 112 lb (498N) for 10
people for sinusoidal jumping force amplitude per person. These proposed load models with
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associated group effects are compared in Table 8, using only the first dominant harmonic of the
loading (i.e., for natural frequency of 2.3Hz).

4.1.2. Estimation of spectator loading based on the field data
The vertical loads acting on the joints 6, 7 and 10 of the mathematical model of the main frames

are proportionated according to the tributary seating areas to be P; 0.3P and 0.4P; respectively, as
previously shown in Fig. 2. Using Eq. (17), the generalized forcing function F ðtÞ was calculated to
be 0.28P: Using Eqs. (A.8) and (A.11), the power spectral density of F ðtÞ is related to that of the
normal co-ordinate Y ðtÞ by

SY ð %oÞ ¼
SF ð %oÞ

K2 1 þ ð4x2 	 2Þ � %o=o
� 	

þ %o=o
� 	4h i; ð21Þ

where %o is a loading frequency, o the modal frequency, and K the modal stiffness (K ¼ Mo2).
The damping ratio x was calculated to be 2% of critical from a vibration decay curve, and the
modal mass was calculated to be 45 kips-s2/ft.

Due to the stationarity of resonant vibration, Eq. (21) can be combined with Eq. (A.12) to yield

S .Yð %oÞ

ð %oÞ4
¼

SF ð %oÞ

M2o4 1 þ ð4x2 	 2Þ � %o=o
� 	

þ %o=o
� 	4h i: ð22Þ

With SF ð %oÞ ¼ ð0:28Þ2SPð %oÞ; the power spectral density of PðtÞ can be evaluated for the case of
resonance (i.e., %o ¼ o) with S .Y ¼ 16:5� 10	2 g2=Hz as follows:

ð32:2Þ2 � ð16:5 � 10	2Þ ¼
ð0:28Þ2SPð %oÞ

ð45Þ2ð1	 1:9984þ 1Þ
; ð23Þ

where (32.2)2 is required to convert g2/Hz to ft2/s3. As a result, the power spectral density of PðtÞ is
calculated to be 7070 kips2/Hz. This spectral density would correspond to the vertical loading
produced by rhythmic jumping of a group of 150 spectators in perfect synchronism.

On the other hand, the loading PðtÞ acting on joint six of the mathematical model would
correspond to a 11.3m (37 ft) by 8.2m (27 ft) or 92.9m2 (1000 ft2) of seating area. For a typical
stadium, each spectator is provided with a seat 46 cm (18 in) of length and 71 cm (28 in) of tread,
or 0.33m2 (3.5 ft2) of seating area. As a ritual, the upper deck was always full of enthusiastic
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Table 8

Comparison of load models for rhythmic jumping

Load model Peak load amplitude (lb) Mean square (lb2) Dynamic load factor Group effect

1 person 10 people 1 person 10 people Small group Large crowd

Ref. [10] 197 — 19460 — 1.32 — 0.53a

Ref. [1] — — — — 1.62 1.31 0.81

Ref. [6] 172 112 14720 6272 1.08 0.70 0.65

Notes: Values are given on per person basis; 1 lb=4.45N.
aGroup effect is back calculated from the vibration data.
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students jumping to the polka beat played by the marching band to ‘‘rock’’ the stadium, shortly
after each football game. Hence, the tributary area would accommodate about 285 spectators.
This result indicates that there is a reduction factor of 0.53 associated with the ‘‘group effect,’’
which means that perfect synchronism is not likely to be achieved. A review of live loads due to
human movements [9] revealed that the 1932 ASA Bulletin [10] recognized this ‘‘group effect,’’
stating that a reduction of horizontal forces exists when many people attempt swaying motion
together. It was recommended that a factor of 0.75 be applied to account for this effect and that a
large crowd could exert no more than 80% of its full strength. However, reduction in dynamic
loading due to rhythmic jumping from a large crowd would be quite substantial. The results from
the spectral analysis presented herein thus lend support to the load model proposed by
Ebrahimpour and Sack [5], with a factor of 0.65 to account for the group effect.

5. Conclusions

The resonant vibrations of the upper deck of the U.W. Camp Randall Stadium induced by
coherent jumping of spectators were investigated. Spectral densities of the field accelerations
sampled during several football seasons were correlated with a live load spectrum using a three-
dimensional finite-element model of the upper deck. Field data were used to identify the
predominant mode shape in the structural response and to back calculate the probable load
reduction due to the ‘‘group effect’’ in co-ordinated periodic jumping.

The amplitude of the total loading induced from coherent movements of a group of people is
likely to be less than the sum of the amplitudes of the constituent loading because of the ‘‘group
effect.’’ Results from the spectral analysis of the vibration data suggested a reduction factor of
0.53 in loading to be used for periodic jumping from a large crowd. This factor would correspond
to the worst-case scenario that the upper deck was fully occupied by the jumpers. The factor
would be higher than 0.53 if the deck was only partially full. Therefore, this finding is consistent
with the 0.65 factor from the experimental data reported by Ebrahimpour and Sack [5].

Appendix A. Review of random vibrations

A.1. Correlation and spectral density functions

A.1.1. Auto- and cross-correleation functions

The auto-correlation function, RxðtÞ; of a time–history xðtÞ is the average of the product of the
quantity at time t with the quantity at time t þ t for an observation period T ; where t is a delay in
time. If the time–history is stationary, the auto-correlation function is a function of t only.
Mathematically, the auto-correlation function is expressed as

RxðtÞ ¼
1

T

Z T

0

xðtÞnxðt þ tÞ dt; T-N: ðA:1Þ

The cross-correlation of two different stationary time–histories obtained simultaneously, xðtÞ
and yðtÞ; is the average of the product of x at time t and y at time t þ t for an observation period
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T ;

RxyðtÞ ¼
1

T

Z T

0

xðtÞnyðt þ tÞ dt; T-N: ðA:2Þ

Auto- and cross-correlation functions detect the existence of strong dependence of the one
time–history upon the other at specific time lapses t: It follows that Rxð0Þ is simply the mean-
square value of the time–history xðtÞ: In Eqs. (A.1) and (A.2), the observation period T ¼ nh;
where n ¼ 1024 is the number of data points in xðtÞ; and h ¼ 0:02 s is the sampling time interval.

A.1.2. Power spectral and cross-spectral density functions
These functions define the frequency composition of the data. As the auto-correlation and the

power spectral density functions are Fourier transform pairs, so are the cross-correlation and
cross-spectral density functions. The power spectral density function is computed as

Sxðf Þ ¼ 4

Z T

0

RxðtÞ expð	i2pf tÞ dt; 0pfo
1

2h
; ðA:3Þ

and the cross-spectral density function is computed as

Sxyðf Þ ¼ 4

Z T

0

RxyðtÞ expð	i2pf tÞ dt; 0pfo
1

2h
; ðA:4Þ

where i ¼
ffiffiffiffiffiffiffi
	1

p
: Eqs. (A.3) and (A.4) are computed using the discrete fast Fourier transform

algorithm developed by Cooley and Tukey [11] over a finite range of time lag T : The power
spectral density of xiðtÞ is a real-valued continuous function of frequency which depicts the
distribution of the mean-square value of xiðtÞ over a frequency range. The cross-spectral density of
two time–histories, xiðtÞ and yiðtÞ sampled simultaneously, is a complex-valued continuous
function of frequency

Sxyðf Þ ¼ Cxyðf Þ 	 iQxyðf Þ; ðA:5Þ

where the real part, Cxyðf Þ; is called the coincident spectral density function or cospectrum, and
the imaginary part, Qxyðf Þ; is called the quadrature spectral density function or quad-spectrum.
The coincident spectral density function depicts the distribution of the average product xiðtÞ and
yiðtÞ over a frequency range. The quadrature spectral density determines the time lags between
xiðtÞ and yiðtÞ as a function of frequency. Specifically, the phase shift of xiðtÞ with respect to yiðtÞ is
obtained by

yxyðf Þ ¼ tan	1 Qxyðf Þ
Cxyðf Þ

ðA:6Þ

and the corresponding time lag is computed by

t ¼
yxyðf Þ
2pf

: ðA:7Þ

The cross-spectral density functions Sxyðf Þ and Syxðf Þ form a complex conjugate pair.
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A.2. Analysis of s.d.o.f. response through the frequency domain

The complex frequency response function of a s.d.o.f. system with mass M; coefficient of
viscous damping C and stiffness K is given as

Hði %oÞ ¼
1

K ½ð1	 b2Þ þ 2ixb�
; ðA:8Þ

where x is the damping ratio

x ¼
C

2Mo
; ðA:9Þ

o is the undamped natural frequency of the s.d.o.f. system

o ¼

ffiffiffiffiffiffi
K

M

r
ðA:10Þ

and b is the ratio of the loading frequency %o to the system’s natural frequency o:
The magnitude of a complex frequency response function is the ‘‘gain’’ or the ‘‘transfer

function’’ of the system. It can be shown that, for a s.d.o.f. system, the power spectral density of
the displacement SY ð %oÞ is related to that of the loading SF ð %oÞ by

SY ð %oÞ ¼ jHði %oÞj2 � SF ð %oÞ: ðA:11Þ

Because of stationarity of the resonant vibration, the power spectral density of acceleration can
be obtained by

S .Yð %oÞ ¼ %o4SY ð %oÞ: ðA:12Þ
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