
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2005

Cmodels for Tight Disjunctive Logic Programs
Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Lierler, Yuliya, "Cmodels for Tight Disjunctive Logic Programs" (2005). Computer Science Faculty Proceedings & Presentations. 22.
https://digitalcommons.unomaha.edu/compsicfacproc/22

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/22?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages

Cmodels for Tight Disjunctive Logic Programs�

Yuliya Lierler

AI, Erlangen-Nürnberg Universität,
yuliya.lierler@informatik.uni-erlangen.de

1 Introduction

Disjunctive logic programming under the stable model semantics [GL91] is a new
answer set programming (ASP) methodology for solving combinatorial search
problems. It is a form of declarative programming related to logic programming
languages, such as Prolog, where the solutions to a problem are represented by
answer sets, and not by answer substitutions produced in response to a query as
in convential logic programming. Instead of Prolog systems, this programming
method uses answer set solvers, such as smodels

1, smodelscc2, cmodels
3,

dlv
4, and gnt

1. These systems made it possible for ASP to be successfully
applied in such areas as planning, bounded model checking, and space shuttle
control. dlv and gnt are more general as they work with the class of disjunc-
tive logic programs, while other systems cover nondisjunctive programs. System
cmodels uses SAT solvers as search engines, which allows it to take advantage
of rapid progress in the area of SAT. cmodels proved to be an efficient sys-
tem in providing the solution to the wire-routing problem [EW04], and to the
problem of reconstructing probable phylogenies in the area of historical linguis-
tics [BEMR05]. In this work we extend cmodels [GLM04] to tight disjunctive
programs. Complexity of finding a solution for such programs is NP, as in the
case of nondisjunctive programs. Extending the syntax of the input language of
cmodels to tight disjunctive programs permits the knowledge engineer to be
more flexible with the encoding of the problems in the NP complexity class. Ex-
perimental analyses demonstrate that the approach is computationally promising
and may advance applications of disjunctive logic programming.

2 Theory, Implementation, Usage, Experiments

We base our work on the relationship between the completion [Cla78] and answer
set semantics for logic programs. For the large class of tight programs the answer

� I would like to thank V. Lifschitz for many valuable suggestions for the format of
this paper and E. Giunchiglia, G. Görz, J. Lee, and M. Maratea for the comments
related to the subject.

1 http://www.tcs.hut.fi/Software/ .
2 http://www.ececs.uc.edu/~ schlipf/ .
3 http://www.cs.utexas.edu/users/tag/cmodels .
4 http://www.dbai.tuwien.ac.at/proj/dlv/ .

% Sample graph encoding, i.e. graph contains 3 nodes, and 3 edges:

% edges between nodes 1 and 2, 2 and 3, 3 and 1.

node(1..3). edge(1,2).edge(2,3).edge(3,1).

% Declaration of three colors

col(red). col(green). col(blue).

% Disjunctive rule: stating that node has some color

colored(X,red) | colored(X,green) | colored(X,blue) :- node(X).

% Neighboring nodes should not have the same color

:- edge(X,Y), colored(X,C), colored(Y,C), col(C).

Fig. 1. Encoding of tight 3-colorability problem for grounder lparse: 3-col.lp

sets of the program are the same as the models of its completion, and hence SAT
solvers can play the role of answer set enumerators. [LL03] introduced the notion
of completion and tightness for disjunctive programs. A disjunctive program Π

is a set of disjunctive rules of the form A ← B, F where A is the head of the rule,
and is either a disjunction of atoms or symbol ⊥, B is a conjunction of atoms,
and F is a formula of the form not a1, . . . , not am. We identify the disjunction of
atoms A with the set of the atoms occurring in A. The completion of Π [LL03]
is the set of propositional formulas that consists of the implication B ∧ F ⊃ A

for every rule in Π , and the implication a ⊃
∨

A←B,F∈Π; a∈A

(B ∧F ∧
∧

p∈A\{a}

¬p)

for each atom a ∈ Π . The positive dependency graph of Π is directed graph G

such that the vertices of G are the atoms occurring in Π , and for every rule in
Π , G has an edge from each atom in A to each atom in B. Program Π is tight
if its positive dependency graph is acyclic.
Theorem. [LL03] For any tight disjunctive program Π and any set X of atoms,
X is an answer set for Π iff X satisfies the completion of Π .

Figure 1 presents the tight disjunctive program 3-col.lp based on the encoding
of 3-colorabilty problem provided at the dlv web page.

We based our implementation on systems lparse --dlp and cmodels. lparse

--dlp takes a disjunctive logic program with variables as an input and grounds
the program. In order to use cmodels for solving disjunctive programs flag
-dlp should be used. In the process of its operation, cmodels -dlp first veri-
fies that the program is tight, by building the positive dependency graph and
using a depth first search algorithm to detect a cycle in it. This step may be
omitted from the execution sequence using flag -t. Second, cmodels -dlp forms
the program’s completion, and last it calls a SAT solver to find the models of
the completion. Flags number, -si, -rs, -mc are available, where number is an
integer that stands for a number of solutions to find (0 stands for all solutions,
1 is a default), and -mc (default), -si, -rs specify that SAT solver chaff, simo,
relsat, respectively, is invoked during the search. For example, command line

lparse --dlp 3-col.lp | cmodels -dlp

produces one answer set for the program in Figure 1:
Answer set: colored(1,red) colored(2,green) colored(3,blue)

It is worth noticing that 3-col.lp program is syntactically identical to the
3-colorability program with choice rules supported by systems smodels, smod-

elscc and cmodels. The disjunctive rule of program 3-col.lp is interpreted as
the choice rule by these systems. Semantically, the rules are nevertheless differ-
ent. The choice rule encodes the exclusive disjunction in the head of this rule.
In case of 3-colorabilty problem this is acceptable interpretation of a rule and
this allows us to find answer sets of the program also by means of nondisjunctive
answer set programming.

For experimental analyses we used the encoding of the 3-colorability problem
as in Figure 1. We compared the performance of cmodels –dlp with systems
dlv, gnt on disjunctive program and also smodels, smodelscc and cmodels

on choice rule encoding of a problem. All experiments were run on Pentium 4,
CPU 3.00GHz and presented in Figures 2 and 3.

In Figure 2 we show the results of running cmodels with simo and dlv

on the disjunctive programs, and smodels on the corresponding program with
choice rules. The instances of Ladder graphs presented in the table were taken
from the dlv web page. Columns lparse –dlp, cmodels, dlv and smodels

present the running times of the systems in seconds. dlv running time also
includes the time spent by the system on grounding the program. We can see that
cmodels outperforms two other systems by more than an order of magnitude.

In Figure 3 we present the experiments with harder instances of the graphs.
Letters L, S in the names of the graph instances stand for ladder and simplex,
while the number stands for the number of nodes divided by 1000 in the lad-
der graphs, and the number of levels in the simplex graphs. smodels, dlv and
gnt were not able to terminate on our test programs within the 30 minutes
cutoff time. Columns lparse, cmodels simo,cmodels chaff, and smodelscc
present the running times of the systems in seconds. The numbers before and
after ”\” stand for invocation of lparse --dlp, cmodels -dlp on disjunctive
programs, and lparse, cmodels on corresponding programs with choice rules,
respectively. The second and the third columns demonstrate that the ground dis-
junctive program is smaller than the corresponding ground program with choice
rules: lparse encodes disjunctive rules more economically than choice rules.
cmodels -dlp, in its turn, takes an advantage of a smaller ground program and
produces fewer clauses. For example, the performance of cmodels -dlp simo
on the disjunctive program saves 18 to 29% of running time in comparison
with cmodels simo performance on the program with choice rules. cmodels

-dlp simo also outperforms smodelscc on ladder graphs by an order of magni-
tude. In case of simplex graph instances cmodels -dlp chaff also outperforms
smodelscc. Capability of using different search engines may prove to be useful
in practical applications.

3 Conclusions and Future Work

The evaluation of cmodels -dlp shows that it is a promising approach that
might advance the use of the disjunctive answer set programming paradigm in

of nodes lparse -dlp cmodels simo smodels dlv

1080 0.06 0.10 2.42 4.00
1320 0.07 0.12 3.74 6.00
1680 0.10 0.17 5.94 9.53
1920 0.12 0.19 7.91 12.46
2400 0.14 0.25 11.97 19.98

Fig. 2. 3-colorability problem on Ladder graphs: cmodels -dlp with SAT solver simo

on disjunctive program vs. smodels on choice rule program and dlv

Pr. lparse # rules ∗10−4 # clauses ∗10−4
cmodels simo cmodels chaff smodelscc

disj\ch disj\ch disj\ch disj\ch disjunctive choice

L32 2\3 25\38 44\51 10\15 27 105
L64 4\6 51\76 89\102 36\51 157 417
L120 8\11 96\144 168\192 122\165 727 1460
L240 16\24 192\288 336\384 496\701 - -
S480 14\17 161\207 230\253 174\213 20 26
S600 21\27 251\323 359\395 378\490 35 46

Fig. 3. 3-colorability problem on large Ladder and Simplex graphs: cmodels -dlp

with SAT solvers simo and chaff on disjunctive programs vs. cmodels with simo

and smodelscc on choice rule programs

practice. [LZ02] provided the theoretical base for using SAT solvers for com-
puting answer sets for nontight nondisjunctive programs. Systems assat [LZ02]
and cmodels [GLM04] are the implementations that demonstrated promising
experimental results. [LL03] extended the theory used by the approach to the
case of nontight disjunctive programs. Future work is to add the capability to
cmodels to find answer sets for nontight disjunctive programs.

References

[BEMR05] D. R. Brooks, E. Erdem, J. W. Minett, and D. Ringe. Character-based
cladistics and answer set programming. In Proc. PADL’05, pages 37–51,
2005.

[Cla78] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[EW04] E. Erdem and M.D.F. Wong. Rectilinear steiner tree construction using
answer set programming. In Proc. ICLP’04, pages 386–399, 2004.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–385,
1991.

[GLM04] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Sat-based answer
set programming. In Proc. AAAI-04, pages 61–66, 2004.

[LL03] Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic
programs. In Proc. ICLP-03, pages 451–465, 2003.

[LZ02] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic
program by SAT solvers. In Proc. AAAI-02, pages 112–117, 2002.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	2005

	Cmodels for Tight Disjunctive Logic Programs
	Yuliya Lierler
	Recommended Citation

	11541.218,UIB_2005-01.pdf

