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Parsing Combinatory Categorial Grammar with Answer Set
Programming: Preliminary Report

Yuliya Lierler1 and Peter Schüller2

1 Department of Computer Science, University of Kentucky
yulia@cs.uky.edu

2 Institut für Informationssysteme, Technische Universität Wien
ps@kr.tuwien.ac.at

Abstract. Combinatory categorial grammar (CCG) is a grammar formalism used for natural language
parsing. CCG assigns structured lexical categories to words and uses a small set of combinatory rules
to combine these categories to parse a sentence. In this work we propose and implement a new ap-
proach to CCG parsing that relies on a prominent knowledge representation formalism, answer set
programming (ASP) — a declarative programming paradigm. We formulate the task of CCG parsing
as a planning problem and use an ASP computational tool to compute solutions that correspond to
valid parses. Compared to other approaches, there is no need to implement a specific parsing algo-
rithm using such a declarative method. Our approach aims at producing all semantically distinct parse
trees for a given sentence. From this goal, normalization and efficiency issues arise, and we deal with
them by combining and extending existing strategies. We have implemented a CCG parsing tool kit —
ASPCCGTK— that uses ASP as its main computational means. The C&C supertagger can be used as a
preprocessor within ASPCCGTK, which allows us to achieve wide-coverage natural language parsing.

1 Introduction

The task of parsing, i.e., recovering the internal structure of sentences, is an important task in natural lan-
guage processing. Combinatory categorial grammar (CCG) is a popular grammar formalism used for this
task. It assigns basic and complex lexical categories to words in a sentence and uses a set of combinatory
rules to combine these categories to parse the sentence. In this work we propose and implement a new
approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set pro-
gramming (ASP) — a declarative programming paradigm. Our aim is to create a wide-coverage3 parser
which returns all semantically distinct parse trees for a given sentence.

One major challenge of natural language processing is ambiguity of natural language. For instance,
many sentences have more than one plausible internal structure, which often provide different semantics to
the same sentence. Consider a sentence

John saw the astronomer with the telescope.

It can denote that John used a telescope to see the astronomer, or that John saw an astronomer who had a
telescope. It is not obvious which meaning is the correct one without additional context. Natural language
ambiguity inspires our goal to return all semantically distinct parse trees for a given sentence.

CCG-based systems OPENCCG [23] and TCCG [1, 3] (implemented in the LKB toolkit) can provide
multiple parse trees for a given sentence. Both use chart parsing algorithms with CCG extensions such
as modalities or hierarchies of categories. While OPENCCG is primarily geared towards generating sen-
tences from logical forms, TCCG targets parsing. However, both implementations require lexicons4 with
specialized categories. Generally, crafting a CCG lexicon is a time–consuming task. An alternative method
to using a (hand-crafted) lexicon has been developed and implemented in a wide-coverage CCG parser —
C&C [6,7]. C&C relies on machine learning techniques for tagging an input sentence with CCG categories
as well as for creating parse trees with a chart algorithm.As training data, C&C uses CCGbank— a corpus

3 The goal of wide-coverage parsing is to parse sentences that are not within a controlled fragment of natural language,
e.g., sentences from newspaper articles.

4 A CCG lexicon is a mapping from each word that can occur in the input to one or more CCG categories.



of CCG derivations and dependency structures [17]. The parsing algorithm of C&C returns a single most
probable parse tree for a given sentence.

In the approach that we describe in this paper we formulate the task of CCG parsing as a planning
problem. Then we solve it using answer set programming [19, 20]. ASP is a declarative programming
formalism based on the answer set semantics of logic programs [15]. The idea of ASP is to represent a
given computational problem by a program whose answer sets correspond to solutions, and then use an
answer set solver to generate answer sets for this program. Utilizing ASP for CCG parsing allows us to
control the parsing process with declarative descriptions of constraints on combinatory rule applications
and parse trees. Moreover, there is no need to implement a specific parsing algorithm, as an answer set
solver is used as a computational vehicle of the method. Similarly to OPENCCG and TCCG, in our ASP
approach to CCG parsing we formulate a problem in such a way that multiple parse trees are computed.

An important issue inherent to CCG parsing are spurious parse trees: a given sentence may have many
distinct parse trees which yield the same semantics. Various methods for eliminating such spurious parse
trees have been proposed [6, 9, 24]. We adopt some of these syntactic methods in this work.

We implemented our approach in an ASPCCGTK toolkit. The toolkit equips a user with two possibilities
for assigning plausible categories to words in a sentence: it can either use a given (hand-crafted) CCG
lexicon or it can take advantage of the C&C supertagger [7] for this task. The second possibility provides us
with wide-coverage CCG parsing capabilities comparable to C&C. The ASPCCGTK toolkit computes best-
effort parses in cases where no full parse can be achieved with CCG, resulting in parse trees for as many
phrases of a sentence as possible. This behavior is more robust than completely failing in producing a parse
tree. It is also useful for development, debugging, and experimenting with rule sets and normalizations. In
addition to producing parse trees, ASPCCGTK contains a module for visualizing CCG derivations.

A number of theoretical characterizations of CCG parsing exists. They differ in their use of specialized
categories, their sets of combinatory rules, or specific conditions on applicability of rules. An ASP approach
to CCG parsing implemented in ASPCCGTK can be seen as a basis of a generic tool for encoding different
CCG category and rule sets in a declarative and straightforward manner. Such a tool provides a test-bed
for experimenting with different theoretical CCG frameworks without the need to craft specific parsing
algorithms.

The structure of this paper is as follows: we start by reviewing planning, ASP, and CCG. We describe
our new approach to CCG parsing by formulating this task as a planning problem in Section 3. The imple-
mentation and framework for realizing this approach using ASP technology is the topic of Section 4. We
conclude with a discussion of future work directions and challenges.

2 Preliminaries

2.1 Planning

Automated planning [5] is a widely studied area in Artificial Intelligence. In planning, given knowledge
about

(a) available actions, their executability, and effects,
(b) an initial state, and
(c) a goal state,

the task is to find a sequence of actions that leads from the initial state to the goal state. A number of special
purpose planners have been developed in this sub-area of Artificial Intelligence. Answer set programming
provides a viable alternative to special-purpose planning tools [10, 18, 20].

2.2 Answer Set Programming (for Planning)

Answer set programming (ASP) [19, 20] is a declarative programming formalism based on the answer set
semantics of logic programs [15, 16]. The idea of ASP is to represent a given computational problem by a
program whose answer sets correspond to solutions, and then use an answer set solver to generate answer



sets for this program. In this work we use the CLASP5 system with its front-end (grounder) GRINGO [13],
which is currently one of the most widely used answer set solvers.

A common methodology to solve a problem in ASP is to design GENERATE, DEFINE, and TEST [18]
parts of a program. The GENERATE part defines a large collection of answer sets that could be seen as
potential solutions. The TEST part consists of rules that eliminate the answer sets that do not correspond to
solutions. The DEFINE section expresses additional concepts and connects the GENERATE and TEST parts.

A typical logic programming rule has a form of a Prolog rule. For instance, program

p.
q ← p, not r.

is composed of such rules. This program has one answer set {p, q}. In addition to Prolog rules, GRINGO
also accepts rules of other kinds — “choice rules” and “constraints”. For example, rule

{p, q, r}.

is a choice rule. Answer sets of this one-rule program are arbitrary subsets of the atoms p, q, r. Choice rules
are typically the main members of the GENERATE part of the program. Constraints often form the TEST
section of a program. Syntactically, a constraint is the rule with an empty head. It encodes the conditions
on the answer sets that have to be met. For instance, the constraint

← p, not q.

eliminates the answer sets of a program that include p and do not include q.
System GRINGO allows the user to specify large programs in a compact way, using rules with schematic

variables and other abbreviations. A detailed description of its input language can be found in the online
manual [13]. Grounder GRINGO takes a program “with abbreviations” as an input and produces its propo-
sitional counterpart that is then processed by CLASP. Unlike Prolog systems, the inference mechanism of
CLASP is related to that of Propositional Satisfiability (SAT) solvers [14].

The GENERATE-DEFINE-TEST methodology is suitable for modeling planning problems. To illustrate
how ASP programs can be used to solve such problems, we present a simplified part of the encoding of a
classic toy planning domain blocks world given in [18]. In this domain, blocks are moved by a robot. There
are a number of restrictions including the fact that a block cannot be moved unless it is clear.

Lifschitz [18] models the blocks world domain by means of five predicates: time/1, block/1, location/1,
move/3, on/3; a location is a block or the table. The constant maxsteps is an upper bound on the length of
a plan. States of the domain are modeled by the ground atoms of the form on(b,l,t) stating that block b is
at location l at time t. Actions are modeled by ground atoms move(b,l,t) stating that block b is moved to
location l at time t.

The GENERATE section of a program consists of a single rule

{move(B,L, T )} ← block(B), location(L), time(T ), T < maxsteps.

that defines a potential solution to be an arbitrary set of move actions executed before maxsteps.
The fact that moving a block to a position at time T forces a block to be at this position at time T+1 is

encoded in DEFINE part of the program by the rule

on(B,L, T+1)←move(B,L, T ), block(B), location(L), time(T ), T<maxsteps.

The rule below specifies the commonsense law of inertia for a predicate on stating that unless we know that
the block is no longer at the same position it remains where it was:

on(B,L, T+1)← on(B,L, T ), not ¬on(B,L, T+1), block(B), location(L),
time(T ), T < maxsteps.

5 http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/


The following constraint in TEST encodes the restriction that a block cannot be moved unless it is clear

← move(B,L, T ), on(B1 , B, T ), block(B), block(B1 ),
location(L), time(T ), T < maxsteps.

Given the rest of the encoding and the description of an initial state and of the goal state, answer sets of
the resulting program represent plans. The ground atoms of the form move(b,l,t) present in an answer set
form the list of actions of a corresponding plan.

2.3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [22] is a linguistic grammar formalism. Compared to other gram-
mar formalisms, CCG uses a comparatively small set of combinatory rules – combinators – to combine
comparatively rich lexical categories of words.

Categories in CCG are either atomic or complex. For instance, noun N , noun phrase NP , propositional
phrase PP , and sentence S are atomic categories. Complex categories are functors that specify the type
and direction of the arguments and the type of the result. A complex category

S\NP

is a category for English intransitive verbs (such as walk, hug), which states that a noun phrase is required
to the left, resulting in a sentence. A category

(S\NP)/NP

for English transitive verbs (such as like and bite) specifies that a noun phrase is required to the right and
yields the category of an English intransitive verb, which (as before) requires a noun phrase to the left to
form a sentence.

Given a sentence and a lexicon containing a set of word-category pairs, we can replace words in the
sentence by appropriate categories. For example, for a sentence

The dog bit John (1)

and a lexicon containing pairs

The - NP/N ; dog - N ; bit - (S\NP)/NP ; John - NP (2)

we obtain
The

NP/N

dog

N
bit

(S\NP)/NP
John
NP .

Words may have multiple categories, e.g., “bit” is also an intransitive verb and a noun. For presentation
of parsing we limit each word to one category. Our framework is able to handle multiple categories by
considering all combinations of word categories.

To parse English sentences a number of combinators are required [22]: forward and backward appli-
cation (> and <, respectively), forward and backward composition (>B and <B), forward and backward
type raising (>T and <T), backward cross composition, backward cross substitution, and coordination.
Specifications of some of these combinators follow:

A/B B

A
>

A/B B/C

A/C
>B

A
B/(B\A)

>T

B A\B
A

<
B\C A\B

A\C <B
A

B\(B/A)
<T

where A, B, C are variables that can be substituted by CCG categories such as N or S\NP . An instance
of a CCG combinator is obtained by substituting CCG categories for variables. For example,

NP/N N

NP
>

(3)



is an instance of the forward application combinator (>).
A CCG combinatory rule combines one or more adjacent categories and yields exactly one output

category. To parse a sentence is to apply instances of CCG combinators so that the final category S is
derived at the end. A sample CCG derivation for sentence (1) follows

The
NP/N

dog

N

NP
>

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

. (4)

Section 3.1 gives a formal definition of the CCG parsing task.

Type Raising and Spurious Parses: CCG restricted to application combinators generates the same lan-
guage as CCG restricted to application, composition, and type raising rules [8, 21]. One of the motivations
for type raising are non-constituent coordination constructions6 that can only be parsed with the use of
raising [2, Example (2)].

Unrestricted applications of composition and type raising combinators often create spurious parse trees
which are semantically equivalent to parse trees derived using application rules only. Eisner [9, Exam-
ple (3)] presents a sample sentence with 12 words and 252 parses but only 2 distinct meanings. An example
of a spurious parse for sentence (1) is the following derivation

The
NP/N

dog

N

NP
>

S/(S\NP)
>T

bit
(S\NP)/NP

S/NP
>B John

NP

S
>

(5)

which utilizes application, type raising, and composition combinators. Both derivations (4) and (5) have the
same semantic value (in a sense, the difference between (4) and (5) is not essential for subsequent semantic
analysis).

In this work we aim at the generation of parse trees that have different semantic values so that they
reflect a real ambiguity of natural language, and not a spurious ambiguity that arises from the underlying
CCG formalism. Various methods for dealing with spurious parses have been proposed such as limiting type
raising only to certain categories [6], normalizing branching direction of consecutive composition rules by
means of predictive combinators [24] or restrictions on parse tree shape [9]. We combine and extend these
ideas to pose restrictions on generated parse trees within our framework. Details about normalizations and
type raising limits that we implement are discussed in Section 3.3.

3 CCG Parsing via Planning

3.1 Problem Statement

We start by defining precisely the task of CCG parsing. We then state how this task can be seen as a
planning problem.

A sentence is a sequence of words. An abstract sentence representation (ASR) is a sequence of cat-
egories annotated by a unique id . Recall that given a lexicon, we can replace words in the sentence by
appropriate categories. As a result we can turn any sentence into ASR using a lexicon. For instance, for
sentence (1) and lexicon (2) a sequence

[NP/N1, N2, (S\NP)/NP3, NP4]. (6)
6 E.g, in the sentence “We gave Jan a record and Jo a book”, neither “Jan a record” nor “Jo a book” is a linguistic

constituent of the sentence. With raising we can produce meaningful categories for these non-constituents and
subsequently coordinate them using “and”.



is an ASR of (1). We refer to categories annotated by id ’s as annotated categories. Members of (6) are
annotated categories.

Recall that an instance of a CCG combinator C has a general form

X1, . . . , Xn

Y
C.

We say that the sequence [X1, . . . , Xn] is a precondition sequence of C, whereas Y is an effect of applying
C. The precondition sequence and the effect of instance (3) of the combinator > are [NP/N,N ] and NP ,
respectively. Given an instance C of a CCG combinator we may annotate it by (i) assigning a distinct id to
each member of its precondition sequence, and (ii) assigning the id of the left most annotated category in
the precondition sequence to its effect. We say that such an instance is an annotated (combinator) instance.
For example,

NP/N1 N2

NP1
>

(7)

is an annotated instance w.r.t. (3).
We say that an annotated instance C of a CCG combinator is relevant to an ASR sequence A if the

precondition sequence of C is a substring of A. An annotated instance C is applied to an ASR sequence A
by replacing the substring of A corresponding to the precondition sequence of C by its effect. For example,
annotated instance (7) is relevant to ASR (6). Applying (7) to (6) yields ASR [NP1, (S\NP)/NP3,NP4].
In the following we will often say annotated combinator in place of annotated instance.

To view CCG parsing as a planning problem we need to specify states and actions of this domain. In
CCG planning, states are ASRs and actions are annotated combinators. So the task is given the initial ASR,
e.g., [X1

1 , . . . , X
n
n ], to find a sequence of annotated combinators that leads to the goal ASR — [S1].

Let C1 denote annotated combinator (7), C2 denote

(S\NP)/NP 3 NP4

S\NP3
>
,

and C3 denote
NP1 S\NP3

S1
>
.

Given ASR (6) a sequence of actions C1, C2, and C3 forms a plan:

Time 0: [NP/N1, N2, (S\NP)/NP3, NP4]
action: C1

Time 1: [NP1, (S\NP)/NP3, NP4],
action: C2

Time 2: [NP1, S\NP3],
action: C3

Time 3: [S1].

(8)

This plan corresponds to parse tree (4) for sentence (1). On the other hand, a plan formed by a sequence of
actions C2, C1, and C3 also corresponds to (4).

In planning the notion of serializability is important. Often given a plan, applying several consecutive
actions in the plan in any order or in parallel does not change the effect of their application. Such plans
are called serializable. Consequently, by allowing parallel execution of actions one may represent a class
of plans by a single one. This is a well-known optimization in planning. For example, plan

Time 0: [NP/N1, N2, (S\NP)/NP3, NP4]
actions: C1, C2

Time 1: [NP1, S\NP3],
action: C3

Time 2: [S1]



may be seen as an abbreviation for a group of plans, i.e., itself, plan (8), and a plan formed by a sequence
C2, C1, and C3. In CCG parsing as a planning problem, we are interested in finding plans of this kind, i.e.,
plans with concurrent actions.

We note that the planning problem that we solve is somewhat different from the one we just described
as we would like to eliminate (“ban”) some of the plans corresponding to spurious parses by enforcing
normalizations.

3.2 ASP Encoding

In an ASP approach to CCG parsing, the goal is to encode the planning problem presented above as a logic
program so that its answer sets correspond to plans. As a result answer sets of this program will contain the
sequence of annotated combinators (actions, possibly concurrent) such that the application of this sequence
leads from a given ASR to the ASR composed of a single category S. We present a part of the encoding
ccg.asp7 in the GRINGO language that solves a CCG parsing problem by means of ideas presented in
Section 2.2.

First, we need to decide how we represent states — ASRs — by sets of ground atoms. To this end,
we introduce symbols called “positions” that encode annotations of ASR members. In ccg.asp, relation
posCat(p, c, t) states that a category c is annotated with (position) p at time t. Relation posAdjacent(pL,
pR, t) states that a position pL is adjacent to a position pR at time t. In other words, a category annotated
by pL immediately precedes a category annotated by pR in an ASR that corresponds to a state at time t
(intuitively, L and R denote left and right, respectively.) These relations allow us to encode states of a
CCG planning domain. For example, given an ASR (6) as the initial state, we can encode this state by the
following set of facts

posCat(1, rfunc(“NP”, “N”), 0). posCat(2, “N”, 0).
posCat(3, rfunc(lfunc(“S”, “NP”), “NP”), 0). posCat(4, “NP”, 0).
posAdjacent(1, 2, 0). posAdjacent(2, 3, 0). posAdjacent(3, 4, 0).

(9)

Next we need to choose how we encode actions by ground atoms. The combinators mentioned in
Section 2.3 are of two kinds: the ones whose precondition sequence consists of a single element (i.e., >T
and <T) and of two elements (e.g., > and <)8. We call these combinators unary and binary respectively.
Reification of actions is a technique used in planning that allows us to talk about common properties of
actions in a compact way. To utilize this idea, we first introduce relations unary(a) and binary(a) for
every unary and binary combinator a respectively. For a unary combinator a, a relation occurs(a, p, c, t)
states that a type raising action a occurring at time t raises a category identified with position p (at time t)
to category c. For a binary combinator a a relation occurs(a, pL, pR, t) states that an action a applied to
positions pL and pR occurs at time t. For instance, given the initial state (9)

– occurs(ruleFwdTypeR, 4, (S\NP)/NP , 0) represents an application of the annotated combinator

NP4

(S\NP)/NP4 >T

to (9) at time 0,
– occurs(ruleFwdAppl , 1, 2, 0) represents an application of (7) to (9) at time 0.

Given an atom occurs(A,P,X, T ) we sometimes say that an action A modifies a position P at time T .
The GENERATE section of ccg.asp contains the rules of the kind

{occurs(ruleFwdAppl , L,R, T )} ← posCat(L, rfunc(A,B), T ), posCat(R,B, T ),
posAdjacent(L,R, T ),
not ban(ruleFwdAppl , L, T ),
time(T ), T < maxsteps.

7 The complete listing of ccg.asp is available at
http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/ccg.asp

8 In fact, coordination combinator is of the third type, i.e., its precondition sequence contains three elements. Present-
ing the details of its encoding is out of the scope of this paper.

http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/ccg.asp
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for each combinator. Such choice rules describe a potential solution to the planning problem as an arbitrary
set of actions executed before maxsteps. These rules also captures some of the executability conditions
of the corresponding actions. For example, posCat(L, rfunc(A,B), T ) states that the left member of the
precondition sequence of the forward application combinator ruleFwdAppl is of the form A/B. At the
same time, posAdjacent(L,R, T ) states that ruleFwdAppl may be applied only to adjacent positions. A
relation ban(a, p, t) specifies when it is impossible for an action a to modify position p at time t. Often
there are several rules defining this relation for a combinator. These rules form the main mechanism by
which normalization techniques are encoded in ccg.asp. For instance, a rule defining ban relation

ban(ruleFwdAppl , L, T )← occurs(ruleBwdRaise, L,X,TLast−1),
posLastAffected(L,TLast , T ), time(TLast),
time(T ), T < maxsteps.

states that a forward application modifying a position L may not occur at time T if the last action modifying
L was backward type raising (posLastAffected is an auxiliary predicate that helps to identify the last action
modifying an element of the ASR). This corresponds to one of the normalization rules discussed in [9].

There are a number of rules that specify effects of actions in the CCG parsing domain. One such rule

posCat(L,A, T+1)← occurs(ruleFwdAppl , L,R, T ),
posCat(L, rfunc(A,B), T ), time(T ), T < maxsteps.

states that an application of a forward application combinator at time T causes a category annotated by L
to be X at time T+1.

The following rule characterizes an effect of binary combinators and defines the posAffected concept
which is useful in stating several normalization conditions described in Section 3.3:

posAffected(L, T+1)← occurs(Act, L,R, T ), binary(Act),
time(T ), T < maxsteps.

Relation posAffected(L, T+1) holds if the element annotated by L in the ASR was modified by a combi-
nator at time T . Note that this rule takes advantage of reification and provides means for compact encoding
of common effects of all binary actions. Furthermore, posAffected is used to state the law of inertia for the
predicate posCat

posCat(P,C, T+1)← posCat(P,C, T ), not posAffected(P, T+1),
time(T ), T < maxsteps.

In the TEST section of the program we encode such restrictions as no two combinators may modify the
same position simultaneously and the fact that the goal has to be reached. We allow two possibilities for
specifying a goal. In one case, the goal is to reach an ASR composed of a single category S by maxsteps .
In another case, the goal is to reach the shortest possible ASR sequence by maxsteps .

Finally we pose additional restrictions, which ensure that only a single plan is produced when multiple
serializable plans correspond to the same parse tree. Note that applying a CCG rule r at a time t creates
a new category required for subsequent application of another rule r′ at a time t′>t. We request that r′ is
applied at t′=t+1. Furthermore, in ccg.asp we enforce the condition that combinators are applied as
early as possible: by requesting that a rule applied at time t uses at least one position that was modified at
time t−1.

Given ccg.asp and the set of facts describing the initial state (ASR representation of a sentence) and
the goal state (ASR containing a single category S), answer sets of the resulting program encode plans
corresponding to parse trees. The ground atoms of the form occurs(a, p, c, t) present in an answer set form
the list of actions of a matching plan.

3.3 Normalizations

Currently, ccg.asp implements a number of normalization techniques and strategies for improving effi-
ciency and eliminating spurious parses:



• One of the techniques used in C&C to improve its efficiency is to limit type raising to certain categories
based on the most commonly used type raising rule instantiations in sections 2-21 of CCGbank [6]. We
adopt this idea by limiting type raising to be applicable only to noun phrases, NP , so that NP can be raised
using categories S, S\NP , or (S\NP)/NP . This technique reduces the size of the propositional (ground)
program for ccg.asp and subsequently the performance of ccg.asp considerably. We plan to extend
limiting type raising to the full set of categories used in C&C that proved to be suitable for wide-coverage
parsing.
• We normalize branching direction of subsequent functional composition operations [9]. This is realized
by disallowing functional forward composition to apply to a category on the left side, which has been
created by functional forward composition. (And similar for backward composition.)
• We disallow certain combinations of rule applications if the same result can be achieved by other rule
applications as shown in the following
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X
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Y
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⇒
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where the left-hand side is the spurious parse and the right-hand side the normalized parse. These two nor-
malizations (plus analogous normalizations for backward composition and backward type raising) elimi-
nate spurious parses like (5) and have been discussed in similar form in [3, 9].

4 ASPCCG Toolkit

We have implemented ASPCCGTK— a python9 framework for using ccg.asp. The framework is avail-
able online10, including documentation and examples.

Figure 1 shows a block diagram of ASPCCGTK. We use GRINGO and CLASP for ASP solving and
control these solvers from python using a modified version of the BioASP library [11]. BioASP is used for
calling ASP solvers as subtasks, parsing answer sets, and writing these answer sets to temporary files as
facts.

Input for parsing can be (a) a natural language sentence given as a string, or (b) a sequence of words
and a dictionary providing possible categories for each word, both given as ASP facts. In the first case, the
framework uses C&C supertagger11 [7] to tokenize and tag this sentence. The result of supertagging is a
sequence of words of the sentence, where each word is assigned a set of likely CCG categories. From the
C&C supertagger output, ASPCCGTK creates a set of ASP facts representing the sequence of words and a
corresponding set of likely CCG categories. This set of facts is passed to ccg.asp as the initial state. In
the second case (b) the input can be processed directly by ccg.asp. The maximum parse tree depth (i.e.,
the maximum plan length – maxsteps) currently has to be specified by the user. Auto detection of useful
depth values is subject of future work.

ASPCCGTK first attempts to find a “strict” parse which requires that the resulting parse tree yields a
category S (by maxsteps). If this is not possible, we do “best-effort” parsing using CLASP optimization
features to minimize the number of categories left at the end. For instance, consider a lexicon that provides
a single category for “bit”, namely (S\NP)/NP , then the following derivation

The dog bit

NP/N N (S\NP)/NP
>

NP
>T

S/(S\NP)
>B

S/NP

(10)

corresponds to a best-effort parse.

9 http://www.python.org/
10 http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/
11 http://svn.ask.it.usyd.edu.au/trac/candc

http://www.python.org/
http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/
http://svn.ask.it.usyd.edu.au/trac/candc


Answer sets resulting from ccg.asp represent parse trees. ASPCCGTK passes them to a visualiza-
tion component, which invokes GRINGO+CLASP on another ASP encoding ccg2idpdraw.asp.12 The
resulting answer sets of ccg2idpdraw.asp contain drawing instructions for the IDPDraw tool [25],
which is used to produce a two-dimensional image for each parse tree. Figure 2 demonstrates an image
generated by IDPDraw for parse tree (4) of sentence (1). If multiple parse trees exist, IDPDraw allows to
switch between them.

C&C supertagger

GRINGO + CLASP

GRINGO + CLASP

+ IDPDraw

Sequence of words + category tags for each word

Parser answer sets

Sentence (string)

OR

Sequence of words
+

Dictionary

Visualisation

ccg.asp

ccg2idpdraw.asp

ASPCCGTK

Fig. 1. Block diagram of the ASPCCG framework. (Arrows indicate data flow.)

Fig. 2. Visualization of parse tree (4) for sentence (1) using IDPDraw.

5 Discussion and Future Work

Preliminary experiments on using the C&C supertagger as a front-end of ASPCCGTK yielded promising
results for achieving wide-coverage parsing. The supertagger of C&C not only provides a set of likely
category assignments for the words in a given sentence but also includes probability values for assigned
categories. C&C uses a dynamic tagging strategy for parsing. First only very likely categories from the
tagger are used for parsing. If this yields no result then less likely categories are also taken into account. In
the future, we will implement a similar approach in ASPCCGTK.

We have evaluated the efficiency of ASPCCGTK on a small selection of examples from CCGbank [17].
In the future we will evaluate our parser against a larger corpus of CCGbank, considering both parsing
efficiency and quality of results as evaluation criteria. Experiments done so far are encouraging and we are
convinced that wide-coverage CCG parsing using ASP technology is feasible.

12 This visualization component could be put directly into ccg.asp. However, for performance reasons it has proved
crucial to separate the parsing calculation from the drawing calculations.



To increase parsing efficiency we consider to reformulate the CCG parsing problem as a “configuration”
problem. This might improve performance. At the same time the framework would keep its beneficial
declarative nature. Investigating applicability of incremental ASP [12] to enhance system’s performance is
another direction of future research.

Creating semantic representations for sentences is an important task in natural language processing.
Boxer [4] is a tool which accomplishes this task, given a CCG parse tree from C&C. To take advantage of
this advanced computational semantics tool, we aim at creating an output format for ASPCCGTK that is
compatible with Boxer.

As our framework is a generic parsing framework, we can easily compare different CCG rule sets with
respect to their efficiency and normalization behavior. We next discuss an idea for improving scalability
of ccg.asp that is based on an alternative combinatory rule set to the one currently implemented in
ccg.asp. Type raising is a core source of nondeterminism in CCG parsing and is one of the main reasons
for spurious parse trees and long parsing times. In the future we would like to evaluate an approach that
partially eliminates type raising by pushing it into all non-type-raising combinators. A similar strategy has
been proposed for composition combinators by Wittenburg [24].13 Combining CCG rules this way creates
more combinators, however these rules contain fewer nondeterministic guesses about raising categories.
The reduced nondeterminism should improve solving efficiency without losing any CCG derivations.
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