
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2005

CMODELS – SAT-based Disjunctive Answer Set
Solver
Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Lierler, Yuliya, "CMODELS – SAT-based Disjunctive Answer Set Solver" (2005). Computer Science Faculty Proceedings & Presentations.
4.
https://digitalcommons.unomaha.edu/compsicfacproc/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232747556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/4?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


CMODELS – SAT-based Disjunctive Answer Set Solver

Yuliya Lierler

Erlangen-Nürnberg Universität
yuliya.lierler@informatik.uni-erlangen.de

Introduction

Disjunctive logic programming under the stable model semantics [GL91] is a new
methodology called answer set programming (ASP) for solving combinatorial search
problems. This programming method uses answer set solvers, such as DLV [Lea05],
GNT [Jea05], SMODELS [SS05], ASSAT [LZ02], CMODELS [Lie05a]. Systems DLV and
GNT are more general as they work with the class of disjunctive logic programs, while
other systems cover only normal programs. DLV is uniquely designed to find the an-
swer sets for disjunctive logic programs. On the other hand, GNT first generates possi-
ble stable model candidates and then tests the candidate on the minimality using system
SMODELS as an inference engine for both tasks. Systems CMODELS and ASSAT use
SAT solvers as search engines. They are based on the relationship between the com-
pletion semantics [Cla78], loop formulas [LZ02] and answer set semantics for logic
programs. Here we present the implementation of a SAT-based algorithm for finding
answer sets for disjunctive logic programs within CMODELS. The work is based on the
definition of completion for disjunctive programs [LL03] and the generalisation of loop
formulas [LZ02] to the case of disjunctive programs [LL03]. We propose the necessary
modifications to the SAT based ASSAT algorithm [LZ02] as well as to the generate and
test algorithm from [GLM04] in order to adapt them to the case of disjunctive programs.
We implement the algorithms in CMODELS and demonstrate the experimental results.

1 Syntax of CMODELS

A Disjunctive program (DP) is a set of rules with expressions that have the form

A ← B, F (1)

where A is the head of the rule and is a disjunction of atoms or symbol ⊥, B is a
conjunction of atoms, and F is a formula of the following form

not A1, . . . , not Am, not not Am+1, . . . , not not An

where Ai are atoms. We call such rules disjunctive. If a head of a rule does not contain
disjunction, we call such a rule normal. If the formula F of the rule (1) contains an
expression of the form not not Ai then the rule is nested, otherwise the rule is non-
nested. If all rules of a DP are normal we call the program normal.



Our implementation – system CMODELS – uses the program LPARSE --dlp-choice
for grounding disjunctive logic programs. The input of CMODELS may include rules of
three types. It allows (i) non-nested disjunctive rules, (ii) choice rules that have the form

{A0, ...Ak} ← Ak+1, . . . , Al, not Al+1, . . . , not Am (2)

where Ai are atoms, and (iii) weight constraints of the form

A0 ← L[A1 = w1, . . . , Am = wm, not Am+1 = wm+1, . . . , not An = wn] (3)

where A0 is an atom or symbol⊥; A1, . . . , An are atoms; L (lower bound); and w1 . . . wn

(weights) are integers.
The concept of an answer set for programs containing rules (2) and (3) was intro-

duced in [NS00]. The original rules given to the front end LPARSE --dlp-choice allow
lower and upper bounds for choice rules and upper bounds for weight rules. They also
allow use of literals (negated atoms) in place of atoms. LPARSE --dlp-choice translates
all the rules to the forms specified above. In CMODELS, choice rules are translated into
normal nested rules, and weight constraints are translated with the help of auxiliary
variables into normal non-nested rules.[FL05]

Note that CMODELS is the first answer set programming system that allows use of
disjunctive and choice rules in the same program.

2 Details on the Modified Algorithms and the Implementation

The implementation is based on definitions of completion, tightness and loop formula
for DP introduced in [LL03]. We also refer the reader to [LL03] for formal definitions
of a set of atoms satisfying a program, answer set, reduct, and positive dependency
graph of DP. The implementation exploits the relationship between completion seman-
tics, loop formulas and answer set semantics for DP. For class of programs called tight
models of completion and answer sets are the same. For nontight programs the dif-
ference in semantics is due to the cycles (loops) in the program. Loop formulas serve
a role of an extension to completion so that the semantics coincide again. Number of
loop formulas is exponential and therefore precomputing all loop formulas at once is
not feasible, and iterative approach is explored. The correctness of algorithms encoded
in CMODELS follows from two theorems.
Theorem for Tight Programs. [LL03] For any tight DP Π and any set X of atoms, X
is an answer set for Π iff X satisfi es program’s completion comp(Π).
Theorem 1. Let Π be a DP, M be a model of its completion comp(Π), set of atoms
M ′ |= ΠM , such that M ′ ⊂ M . There must be a loop of Π under M \M ′, s.t. M does
not satisfy its loop formula.

Deciding whether a model of the completion is an answer set of disjunctive program
is co-NP-complete. Within this implementation of CMODELS we verify that a model
of the completion is indeed an answer set by using the minimality requirement of an
answer set. We invoke a SAT solver on formula ΠM∪M−∪¬M , where (i) ΠM denotes
the reduct of Π under M , s.t. its rules are represented as propositional formulas with
the comma understood as conjunction, and A ← B as the material implication B ⊃ A;



(ii) M− denotes the conjunction of negation of the atoms in Π that do not belong to
M ; and (iii) ¬M denotes the negation of the conjunction of atoms in M . If this formula
is unsatisfied then M is indeed an answer set of Π otherwise some model M ′ ⊂ M

is returned. Note that M ′ |= Π . We call this procedure minimality test. It is similar to
the procedure introduced in [JNSY00]. [KLP03] introduced a more sophisticated way
of verifying whether a model is an answer set using SAT solvers by exploiting some
modularity property of the program, that permits splitting verification step on the whole
program into verification on its parts. It is a direction of future work to research the
applicability of the approach to the case of nested programs.

CMODELS’ algorithm is enhanced to verify the tightness of DP at first. In case when
a program is tight it performs a completion procedure on the program and uses a SAT
solver for enumerating its answer sets, avoiding invocation of minimality test proce-
dure. This way we allow efficient use of SAT solvers in ASP, by analysing program
syntactically and identifying in advance disjunctive program involving lower computa-
tional complexity.

For nontight programs we adapt ASSAT algorithm [LZ02] to the case of disjunctive
programs based on Theorem 2. The modified algorithm follows — DP-assat-Proc:

1 Let T be the Completion of Π — Comp(Π)
2 Invoke SAT solver SAT-A to find a model M of T . If there is no such model then

terminate with failure.
3 Invoke the minimality test procedure on program Π , and model M with SAT solver

SAT-B to find model M ′. If there is no such model then exit with an answer set M .
If there is a model M ′ then M is not an answer set of Π .

4 Build the subgraph GM\M ′ of the positive dependency graph of Π induced by
M \ M ′. Look for loop L in GM\M ′ , s.t. M �|= FL, where FL is a loop formula of
L.

5 Let T be T ∪ FL, and go back to step 2.

The implementation also adapts another SAT-based answer set programming gen-
erate and test algorithm from [GLM04] to the case of nontight disjunctive programs.
State-of-the-art SAT solvers are enhanced by the ability of performing backjumping
and learning within standard SAT Davis-Logemann-Loveland (DLL) procedure. Back-
jumping and learning techniques are due to providing DLL procedure with a certain
clause. We retrieve the necessary clause from some loop formula of a program that
allows us to enhance SAT solver inner computation. The enhanced generate and test
algorithm for DP — DP-generate-test-enhanced-Proc:

1 Compute completion of Π — Comp(Π)
2 Initiate SAT solver SAT-A with the completion Comp(Π). Invoke DLL to find

model M of Comp(Π). If there is no such model then terminate with failure.
3,4 The same as Step 3,4 of DP-assat-proc.

5 Calculate a clause Cl implied by FL such that M �|= Cl.
6 Return control to the SAT-A procedure DLL by giving Cl as a clause to backjump

and learn. Find the next model M of the completion. If there is no such model then
terminate with failure. Go back to step 3.



instance sat dlv.5.02.23 cmodels+mchaff cmodels+zchaff cmodels+simo gnt2
qbf7 SAT 15.67 0.01 (23) 0.01 (16) 0.14 (5) -
qbf8 SAT 92.45 0.01 (23) 0.01 (5) 0.09 (4) -
qbf9 SAT 7.50 0.01 (33) 0.01 (12) 0.09 (5) 25.77
qbf1 UNSAT 19.81 0.21(10) 0.01 (16) 0.01 (37) 0.001
qbf2 UNSAT 5.43 - 823.98 (19928) 239.68 (26523) 1466.30
qbf3 UNSAT 5.27 - 1779.28 (28481) 193.69 (21260) -
qbf4 UNSAT 6.83 memory 10.55 (137) 33.64 (663) -

Fig. 1. CMODELS using MCHAFF, ZCHAFF, SIMO vs. DLV, and GNT on 2QBF benchmark

3 Experimental Analyses

Details on the performance of system CMODELS in case of tight disjunctive programs
can be found in [Lie05b]. For experimental analysis of CMODELS’ performance on non-
tight programs we shall specify the algorithmic differences of SAT solvers’ invocations.
Algorithm DP-assat-Proc is implemented in CMODELS using SAT solver MCHAFF1 in
Step 2. Algorithm DP-generate-test-enhanced-Proc is implemented in CMODELS with
SAT solver SIMO2 or ZCHAFF1 invoked in place of SAT-A in the procedure. In case of
DP-generate-test-enhanced-Proc implementation of Step 6 when control is given back
to the SAT solver, SIMO and ZCHAFF behave differently. SIMO continues its work with
the same search tree it obtained in previous computations, while ZCHAFF starts building
a new search tree. In all cases ZCHAFF is used for minimality test procedure.

The first experiment that we demonstrate is 2QBF benchmark. The problem is Σ
p
2 -

hard. The encoding and the instances of the problem where obtained at the web-site of
the University of Kentucky 3. Figure 1 presents the results. The experiments were run
on Pentium 4, CPU 3.00GHz. The columns 3 through 7 present the running times of
the systems in seconds with 30 minutes cutoff time. Number in parentheses specifies
how often CMODELS invoked the minimality test procedure during its run. In case of
satisfiable instances of the problem we can see the payoff in using CMODELS in place
of other disjunctive ASP solvers. The picture changes when unsatisfiable instances of
the problem come into play. Implementation of DP-assat-Proc reaches time limit twice
and in case of one instance reaches the memory limit. Implementation of DP-generate-
test-enhanced-Proc shows better results but as a rule is slower than DLV running time
by two orders of magnitude. If we pay attention to the number of minimality test proce-
dure invocations, the slow performance is not surprising. The number of models of the
completion is large in case of unsatisfiable instances qbf2, qbf3 instances and hence all
found models must be verified and denied by the minimality test procedure.

The second experiment that we present is the Strategic Company benchmark. The
problem is Σ

p
2 -hard. We used the encoding and the instances of the problem provided

by the benchmark system for answer set programming – Asparagus 4. Figure 2 presents
1 http://www.princeton.edu/∼chaff/
2 http://www.star.dist.unige.it/∼sim/simo/
3 http://www.cs.uky.edu/ai/benchmark-suite/
4 http://asparagus.cs.uni-potsdam.de/



running times of systems obtained from Asparagus, machine AMD Athlon 1.4GHz PC
with 512MB RAM and cutoff time 15 minutes. All given instances are satisfiable. In
case of strategic company benchmark there is no clear winner in the performance, but
GNT and DLV are in general faster.

inst- dlv.4 gnt2 cmodels cmod-s cmod-s inst- dlv.4 gnt2 cmodels cmod-s cmod-s
ance 5.23 zchaff mchaff simo ance 5.23 zchaff mchaff simo
160.1 0.64 1.08 0.33 0.40 0.34 125.45 9.03 41.02 - - -
160.3 0.87 1.23 0.34 0.40 0.34 105.38 15.55 79.99 315.41 404.72 580.23
75.37 0.51 6.78 1.20 2.49 1.49 155.0 26.15 16.56 - - -
150.2 6.66 41.25 1.52 2.10 5.04 135.11 49.01 8.00 191.89 62.25 577.12
150.26 2.24 5.64 5.99 27.04 14.27 155.3 144.00 188.14 43.11 755.12 215.46

Fig. 2. CMODELS using ZCHAFF, MCHAFF, SIMO vs. DLV, GNT on Strategic Company.

References

[Cla78] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[FL05] Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. The-
ory and Practice of Logic Programming, 5:45–74, 2005.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365–385, 1991.

[GLM04] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Sat-based answer set pro-
gramming. In Proc. AAAI-04, pages 61–66, 2004.

[Jea05] T. Janhunen and et al. GnT (Generate’n’Test): A Solver for Disjunctive Logic Pro-
grams. 2005. Available under http://www.tcs.hut.fi/Software/gnt/.

[JNSY00] T. Janhunen, I. Niemela, P. Simons, and J.H. You. Unfolding partiality and disjunc-
tions in stable model semantics. In Proc. KR, 2000.

[KLP03] C. Koch, N. Leone, and G. Pfeifer. Enhancing disjunctive logic programming systems
by sat checkers. Artificial Intelligence, 151:177–212, 2003.

[Lea05] N. Leone and et al. A disjunctive datalog system DLV (2005-02-23). 2005. Available
under http://www.dbai.tuwien.ac.at/proj/dlv/.

[Lie05a] Y. Lierler. CMODELS – a tool for computing answer set using SAT solvers. 2005.
Available under http://www.cs.utexas.edu/users/tag/cmodels.

[Lie05b] Yu. Lierler. Cmodels for tight disjunctive logic programs. In 19th Workshop on (Con-
straint) Logic Programming W(C)LP, 2005.

[LL03] Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic programs.
In Proc. ICLP-03, pages 451–465, 2003.

[LZ02] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. In Proc. AAAI-02, 2002.

[NS00] Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality and
weight constraints. In Logic-Based Artificial Intelligence, pages 491–521. 2000.

[SS05] P. Simons and T. Syrjaenen. SMODELS and LPARSE – a solver and a grounder for
normal logic programs. 2005. http://saturn.hut.fi/pub/smodels/.


	University of Nebraska at Omaha
	DigitalCommons@UNO
	2005

	CMODELS – SAT-based Disjunctive Answer Set Solver
	Yuliya Lierler
	Recommended Citation


	lpnmrSys05.pdf

