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Sensory Information Utilization  

and Time Delays Characterize  

Motor Developmental Pathology  

in Infant Sitting Postural Control

Joan E. Deffeyes, Regina T. Harbourne,  

Wayne A. Stuberg, and Nicholas Stergiou

Sitting is one of the first developmental milestones that an infant achieves. Thus 
measurements of sitting posture present an opportunity to assess sensorimotor 
development at a young age. Sitting postural sway data were collected using a 
force plate, and the data were used to train a neural network controller of a model 
of sitting posture. The trained networks were then probed for sensitivity to position, 
velocity, and acceleration information at various time delays. Infants with typical 
development developed a higher reliance on velocity information in control in 
the anterior-posterior axis, and used more types of information in control in the 
medial-lateral axis. Infants with delayed development, where the developmental 
delay was due to cerebral palsy for most of the infants in the study, did not develop 
this reliance on velocity information, and had less reliance on short latency control 
mechanisms compared with infants with typical development.

Keywords: cerebral palsy, developmental delay, infant, artificial neural network, 
postural sway, sitting

Cerebral palsy is due to a brain injury that occurs early in life, where “cerebral” 
indicates involvement of the cerebrum, and “palsy” indicates a movement disorder. 
Thus impairment in motor function is a hallmark of the disorder, but impairments 
in sensory function are also prevalent, perhaps as a result of injury to thalamocorti-
cal pathways (Hoon, et al., 2009). Sensory impairment can include proprioception 
(Goble, Hurvitz, & Brown, 2009) and cutaneous sensation (Lesny, Stehlik, Tomasek, 
Tomankova, & Havlicek, 1993; Sanger & Kukke, 2007), and sensory deficits and/
or deficits in sensory integration likely contribute both to impairment in motor 
performance (Bumin & Kayihan, 2001; Bumin & Kavak, 2008; Hadders-Algra, 
van der Fits, Stremmelaar, & Touwen, 1999) and motor development (Wilke & 
Staudt, 2009). Sitting is an important motor control skill that infants learn early in 
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life, at about age 6–8 months. Stable sitting allows the infant to reach for objects 
in his environment, and allows visual inspection of the environment. In addition, 
sitting is a major developmental milestone. A strong correlation between ability 
to sit independently by age 2 years and ability to walk independently by 3–5 years 
age has been found in children with spastic diplegic or triplegic cerebral palsy 
(Fedrizzi, et al., 2000). Thus sitting is not only important in itself, but can serve 
as a window into the sensorimotor system of the developing infant, and provide 
insight into deficits in motor control in infants with developmental delay.

The control of sitting posture, like standing posture, requires maintaining the 
center of mass within the base of support. To achieve this goal both in sitting and 
standing, information from various sensory modalities, including visual information, 
vestibular information, proprioceptive information, and cutaneous information, is 
used to provide feedback for various postural control mechanisms (Horak, 2006). 
Much of the research on postural control in standing is focused on understanding 
the contributions of these different modes of sensory information, which is accom-
plished by blocking or altering various sensory modalities, such as closed eyes/
open eyes to investigate the importance of vision in postural sway (Kiemel, Oie, & 
Jeka, 2002), altering visual surround movement to provide false visual information 
(Peterka, 2002), using vibration to alter touch information to investigate the impor-
tance of cutaneous sensory input (Kiemel, Oie, & Jeka, 2002), or use of galvanic 
stimulation to investigate vestibular function in postural sway (Ali, Rowen, & Iles, 
2003). However, when one sensory modality is altered, the information from other 
modalities is used more for control; i.e., sensory reweighting occurs such that the 
control dynamics may not be representative of the control dynamics under more 
typical conditions. For example, in normal adult standing, about a third of the 
information used for control is from visual information (Peterka, 2002), but in the 
blindfolded condition used as an experimental manipulation of sensory input for 
postural control, vestibular information and proprioceptive information become 
more heavily weighted (Horak, 2006).

A different strategy in the study of postural control is to apply mechanical 
perturbations to the subject, and characterize the response, to gain insight into 
the postural control mechanism. Perturbation methods have been applied to adult 
sitting (Granata, Slota, & Bennett, 2004) and to infant sitting (Harborne, Giuliani, 
& Neela, 1993; Hedberg, Carlberg, Forssberg, & Hadders-Algra, 2005; Hedberg, 
Forssberg, & Hadders-Algra, 2004; Hirschfeld & Forssberg, 1994). These studies 
characterize the response to extreme events that may not represent typical control 
mechanisms in unperturbed sitting. For example, stretch reflexes might be trig-
gered by a strong perturbation during sitting (Granata, Slota, & Bennett, 2004), 
but it is not clear from that result whether stretch reflexes are important in control 
of unperturbed sitting. While understanding sensory reweighting and response to 
external perturbations are important goals, it is also important to understand normal 
postural control, i.e., postural control without experimentally altered sensory input 
or external perturbations. Normal postural control serves as a baseline with which 
to compare experimental manipulations of postural control, and is relevant to pos-
tural control in many everyday situations. Thus it is desirable to develop methods 
to study normal postural control, and analysis of center of pressure (COP) data 
from unperturbed sitting with no sensory manipulation is one such method, and it 
is the method we have chosen to investigate infant sitting.
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The mechanism for control of upright posture is not known, but a leading 
hypothesis is that a control parameter is the time to contact of the perimeter of 
the base of support (Slobounov, Cao, Jaiswal, & Newell, 2009). To calculate the 
time to contact parameter, position, velocity and acceleration information must be 
known. The various sensory modalities provide different types of sensory informa-
tion. Visual information may include position, velocity and acceleration (Thiel, 
Greschner, Eurich, Ammermuller, & Kretzberg, 2007). The vestibular labyrinth 
is particularly suited to sensing acceleration information (Kandel, Jessell, & 
Schwartz, 2000, p. 802–803). Proprioceptive feedback includes position, velocity 
and acceleration information (Schouten et al. 2008). Stretch receptors in the skin 
also contribute information for postural control (Kandel, Jessell, & Schwartz, 2000, 
p 443). These multiple modes of sensory information must be interpreted and inte-
grated by the central nervous system in order for postural control mechanisms to 
maintain upright posture (Horak, 2006). While estimations of position information, 
velocity information, and acceleration information are all available from integrated 
sensory input, it is not known which information is actually used for infant sitting 
postural control. Velocity information is thought to be more accurately estimated 
than position or acceleration from sensory input, and that it is the predominate type 
of information used for standing postural control in healthy adults (Jeka, Kiemel, 
Creath, Horak, & Peterka, 2004). It is unclear if infant sitting postural control can 
benefit from relying more heavily on the more accurately estimated velocity infor-
mation, compared with position or acceleration information, or if the time-to-contact 
calculation requires equal use of all three types of information. In addition, it is 
not known if infants with developmental delay will use the same types of sensory 
information on a delayed developmental schedule, or if they will adaptively find 
alternate ways to use sensory information to compensate for sensorimotor deficits.

Postural control, just like any motor control task, is accomplished by contraction 
of the appropriate muscles at the appropriate time. If sensory information indicates 
an acceleration in a particular direction is needed, then a motor command is executed 
to provide that acceleration. At a given point in time, the sensory system may detect 
position, velocity, and acceleration information, but there is a time lag before that 
information can be acted upon. The time lag is due to nerve conduction time for 
the sensory information to flow to the central nervous system (CNS), processing 
of the sensory signal by the CNS, motor command flow back to the muscle, and 
muscle activation time. There are a range of delay times that have been measured 
in adult postural control, including stretch reflex time delay with a latency on the 
order of about 30 msec and rise time of about 70 msec (Granata, Slota, & Bennett, 
2004), vestibular control time delay on the order of 60–100 msec (Ali, Rowen, & 
Iles, 2003), and visual control time delay on the order of about 500–750 msec (van 
den Heuvel, Balasubramaniam, Daffertshofer, Longtin, & Beek, 2009). Multiple 
postural control mechanisms exist (Horak, 2006), resulting in multiple time scales 
associated with postural control, as the various control mechanisms have different 
time delays associated with them. Thus time delay is a critical parameter in analy-
sis of postural sway data. In investigating how infants use position, velocity, and 
acceleration information, it is necessary to also investigate the time delay associated 
with the utilization of that information.

Conceptually, to maintain upright sitting posture, a control signal is generated 
by biological neural networks within the central nervous system, with sensory infor-
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mation as the input. The output of the biological controller is a motor control signal 
that initiates muscle activation. Muscles produce forces and joint torques, which 
are proportional to accelerations via Newton’s second law, often written as F = ma 
for a system of constant mass. Due to finite nerve conduction velocities and muscle 
activation response times, there is a time delay between the activation of sensory 
neurons, and the acceleration of the body that occurs following the sensory input. 
Thus the biological system has sensory input from which, after sensory integration, 
includes position, velocity and acceleration information, and the output is a muscle 
activation that causes an acceleration at time delay τ. As a model of the biological 
control system in this work, we will use a simple artificial neural network (ANN) 
controller. The input to the ANN is position, velocity and acceleration at time t, and 
the output is an acceleration at time t+τ. By training the ANN with position, velocity, 
and acceleration information form experimental COP data from infant sitting, and 
then probing the response of the network with a sensitivity analysis, the importance 
of position, velocity and acceleration information to the postural control can be 
evaluated. Using this model of the biological control system, we asked the follow-
ing questions: 1. Was position, velocity, or acceleration information important for 
infant sitting postural control, and on what time scale is this information used? 2. 
Did infants with developmental delay use different information, or use information 
on different time scales, than infants with typical development?

We hypothesized that infants use velocity information more than position or 
acceleration information for sitting postural control, based upon velocity information 
utilization in adult standing postural sway (Jeka et al. 2004) We also hypothesized 
that infants with delayed development use sensory information differently compared 
with infants with typical development (Hoon, et al., 2009; Goble, Hurvitz, & Brown, 
2009; Lesny, Stehlik, Tomasek, Tomankova, & Havlicek, 1993; Sanger & Kukke, 
2007), rather than simply being delayed in development (Chen & Woollacott, 2007). 
This hypothesis was based on sensory deficits in infants with cerebral palsy, which 
compromise the majority of the sample with atypical development in our study.

Method

Research Methods Overview

The method involved four steps, 1. the collection of postural sway data from infants 
with typical and with delayed development, once when they could just sit for 10 s 
(early sitting), and again about 3 months later (late sitting), 2. Calculation of veloc-
ity and acceleration from the measured postural sway position data, 3.Training an 
artificial neural network using the position, velocity, and acceleration information, 
and probing the train networks for sensitivity to position, velocity, and accelera-
tion, and 4. Repeated-measures ANOVA on the sensitivities. Each of these steps 
is discussed in more detail below.

Infant Participants and Data Collection

Thirty infants with developmental delay (age = 14.05 months, std = 5.33 months, 
for early sitting and age = 18.06 months, std = 5.09 months, for late sitting) and 33 
infants with typical development (age = 4.92 months, std = 0.57 months, for early 
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sitting, and age = 7.92 months, std = 0.60 months, for late sitting) participated in 
the study. Recruitment was done through newsletters, flyers, and pediatric physical 
therapists employed at the University. Infants in the developmentally delayed group 
were diagnosed with cerebral palsy, or else were developmentally delayed and at 
risk for cerebral palsy. Obtaining a firm diagnosis of cerebral palsy at this young 
age is often not possible. Because a definitive diagnosis of cerebral palsy had not 
always been made, we refer to these infants as developmentally delayed, because 
all scored greater than 1.5 standard deviations below the mean for their corrected 
age on the Peabody Developmental Gross Motor Scale (Folio & Fewell, 2000). 
However, the development is likely not just delayed, but also atypical (Chen & 
Wollacott, 2007). A consent form was signed by a parent or guardian of all infant 
participants, and all procedures were approved by the University of Nebraska 
Medical Center Institutional Review Board.

Inclusion criteria for entry into the study for the typically developing infants 
were: a score on the Peabody Developmental Gross Motor Scale of greater than 
0.5 SD below the mean, age of five months at the time of initial data collection, 
and sitting skills as described below in beginning sitting. Exclusion criteria for 
the sample of infants who were typically developing were: a score on the Peabody 
Developmental Gross Motor Scales greater than 0.5 SD below the mean, diagnosed 
visual deficits, or diagnosed musculoskeletal problems. If a typically developing 
infant was found to be less than 0.5 SD below the mean, and did not qualify for 
the study, the parents were informed of the score, the possibility of error in the 
measurement, and advised to have the infant reevaluated within the next 3 months. 
Operational definitions of beginning sitting were used to determine the infant’s 
readiness for entry into the study. Beginning sitting was defined as (a) head control 
such that when trunk is supported at the midtrunk, head is maintained for over 
one minute without bobbing; (b) infant can track an object across midline without 
losing head control; (c) infant may prop hands on floor or legs to lean on arms, 
but should not be able to reach and maintain balance in the prop sit position; (d) 
when supported in sitting can reach for toy; (e) can prop on elbows in the prone 
position for at least 30 s. Each infant was tested when they entered into the study 
based on the ability to sit for about 10 s (early sitting), and then again 3–4 months 
later (late sitting).

For the infants with developmental delay the inclusion and exclusion criteria 
were as follows. Inclusion criteria were: age from five months to two years, score 
greater than 1.5 SD below the mean for their corrected age on the Peabody Devel-
opmental Gross Motor Scales, and sitting skills as described above for beginning 
sitting. Exclusion criteria were: age over two years, a score less than 1.5 SD below 
the mean for their corrected age on the Peabody Developmental Gross Motor 
Scale, a diagnosed visual impairment, or a diagnosed hip dislocation or subluxation 
greater than 50%.

For all data collection sessions, the infants were allowed time to get used to the 
laboratory setting, and were at their parent’s side or on their lap for preparation and 
data collection. All attempts were made to maintain a calm, alert state by allow-
ing the infant to eat if hungry, be held by a parent for comforting, or adapting the 
temperature of the room to the infant’s comfort level. A blanket was placed over the 
plate for warmth and was securely adhered with double-sided tape on the ground. 
The baby was held in the sitting position in the middle of the plate to start. Once the 
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examiner could completely let go of the infant, data were collected for 10 s while 
the infant attempted to maintain sitting postural control. Trials were performed 
until we had collected three trials, or until the infant was no longer interested in 
sitting, i.e., was crying or agitated and could not be calmed. At any time the infant 
became irritated; the session was halted for comforting by the parent or a chance 
for feeding, and then resumed only when the infant was again in a calm state. We 
attempted to collect three trials at each of the two sessions, but could not always 
get that many, depending on the infant’s behavior.

For data acquisition (Figure 1), infants sat on an AMTI force plate (Watertown, 
MA), interfaced to a computer system running Vicon data acquisition software 
(Lake Forest, CA). Center of pressure (COP) data were acquired at 240 Hz using 
the Vicon software. Trials were recorded including force plate data and video data 
from the back and side views. Afterward segments were selected by viewing the 
corresponding video. Segments of data with 2000 time steps were selected from 
these trials by examination of the video. Acceptable segments were required to 
have no crying or long vocalization, no extraneous items (e.g., toys) on the force 
platform, neither the assistant nor the mother were touching the infant, the infant 
was not engaged in rhythmic behavior (e.g., flapping arms), and the infant had to 
be sitting and could not be in the process of falling.

Figure 1 — Postural sway COP data were collected as an infant sits on a force plate. COP 
data were used to train the neural network.

Calculation of Position, Velocity and Acceleration  

from COP Data

The time delay in a sensory feedback system is an important parameter. Since 
the goal is to model actual infant sitting, the delay from one time step to the next 
should be appropriate for human motor control. The data in this study was acquired 
at 240 Hz, meaning there were 240 data points collected each second, or a time 
lag of 4.2 msec between points. To investigate time lags of different lengths, the 
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time series data were sectioned into nonoverlapping windows sized from 33 msec 
(8 data points) to 750 msec (180 data points). Position data for each window was 
calculated as the average position for that window. Velocity data were calculated 
by differencing the position data in that window, and calculating the average, and 
similarly differencing the position data twice and averaging gave the acceleration for 
that window. Thus from the original time series, three time series were calculated: 
position time series, velocity time series, and acceleration time series.

Because the effect of the three different information types were to be compared, 
all of the input data to the model needed to be comparable in magnitude for the 
comparison with be meaningful. Each point of the position data were then normal-
ized by subtracting the mean and dividing by the standard deviation for all position 
data. Likewise, all the velocity data were normalized using mean and standard 
deviation for velocity, and acceleration data normalized using mean and standard 
deviation for acceleration. The normalization process was used in order that each 
type of data had a mean of zero and a standard deviation of 1, and thus the weights 
from the ANN would be related to the importance of that type of information, and 
not influenced by the different units on position, velocity and acceleration.

Neural Network Model

A simple neural network model was created with 3 neurons in the input layer, one 
each for position, velocity, and acceleration; a hidden layer with 6 neurons, and 
an output layer with one neuron (Figure 2). All neurons used a simple sigmoidal 
function for activation (Duda, Hart, & Stork, 2001), which has an output of [0, 1], 
so the acceleration for comparison with the model output was normalized to be in 

Figure 2 — Model of infant as a sitting on a force plate with a neural network controller. 
Force plate is indicated as a black box that outputs COP data, which is differentiated to get 
velocity and acceleration sensory information, the input to the neural network. The output 
of the network is a control signal that drives muscles to maintain upright sitting posture 
of the infant. We measured COP with the force plate to derive the position, velocity, and 
acceleration sensory data for the model, whereas the infant relies on visual, vestibular, 
proprioceptive, and cutaneous sensory input for this information.
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the range [0,1]. Each neuron in the model summed the input from the preceding 
layer, and the applied the sigmoidal function in Equation 1 to calculate output,

where σ is a steepness parameter, that was set equal to one for this model, and 
netj is the summation of input to the neuron j. The output of a sigmoid neuron is 
between zero and one, so all the desired output calculated from the infant posture 
data were scaled to be between zero and one.

Back propagation of error was used to train the network, where error calculated 
in each time step was back-propagated based on the current weights of the network, 
allowing new weights to be calculated (Duda, Hart, & Stork, 2001). Initial weights 
were randomly generated. Iteration was terminated when the error reached below a 
threshold value, and if the algorithm did not converge, new random weights were 
chosen, and the training repeated. The network was trained using the inputs posi-
tion, velocity and acceleration at time (t), and trained to calculate acceleration at 
the next time window (t+1). The contribution of position, velocity and acceleration 
were ascertained by propagating [p,v,a], through the trained network, where p is a 
position value, v is a velocity value, and a is an acceleration value. For example, 
propagation of [1,0,0] through the trained network results in an output that indi-
cates the response of to a positive position, and neutral velocity and acceleration, 
i.e., what acceleration would the infant’s muscles and gravity provide if the infant 
were leaning 1 standard deviation away from the mean in the positive direction. 
The output of the network is in the range [0,1], where a value of 0.5 corresponds 
to no acceleration, an output close to 0 corresponds to a negative acceleration, and 
a value near 1 corresponds to a positive acceleration. In this manner, for each time 
series, the contribution of position, velocity, and acceleration were determined for 
each time series by propagation of [1,0,0], [0,1,0], and [0,0,1], respectively.

Statistical Analysis

A mixed repeated-measures ANOVA analysis was performed with 2 levels of time 
(early and late sitting), two axes (anterior-posterior and medial-lateral), 3 levels of 
ANN input (position, velocity, and acceleration), and 11 window sizes (spanning 
33.3 msec to 750 msec). The between subjects factor was the developmental group, 
delayed versus typical. The significance level for the ANOVA was set at 0.05.

To evaluate whether a control effect was observed, the output of the network was 
compared with 0.5 for each group and condition combination. For a perturbation, 
whether it is position, velocity, or acceleration, the correct response is acceleration 
in the opposite direction to correct for the perturbation. Since we tested the network 
with a positive perturbation (either [1,0,0] for position, [0,1,0] for velocity, or 
[0,0,1] for acceleration), the correct response of the network is a value below 0.5, 
indicating that the acceleration in the next time step is in the opposite direction to the 
perturbation. Thus one-tailed, independent t tests were used test whether the output 
results were below 0.5. For each window size, infants with typical development 
and infants with delayed development, at early sitting and late sitting, in each of 
two axes (anterior-posterior and medial-lateral), are evaluated for the effect of three 
different types of posture control information (position, velocity and acceleration), 
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resulting in 2 × 2 × 2 × 3 = 24 comparisons for each window size used. Because 11 
window sizes were examined, 24*11= 264 conditions were tested. A conservative 
Bonferroni correction for multiple comparisons would require setting the alphacritical 
= 0.05/264 = 0.000189, which is quite difficult to meet. If we had knowledge 
of the one best window size for posture control in infants sitting, then only 24 
conditions would have been examined, and alphacritical = 0.05/24 = 0.0021 would 
be used. Because of the exploratory nature of this work, we relaxed the criteria for 
significance from the Bonferroni standard, and we chose to examine two critical 
values, alphacritical = 0.01 and alphacritical =0.0021. To get an idea of the effect of the 
relaxed criteria, using an alphacritical value of 0.01 means we expect to reject the null 
hypothesis when in fact it is true for 1% of the comparisons. For 264 comparisons, 
we expect about 0.01*264 = 2.64 comparisons to appear as significant, even if the 
results are actually random. Similarly, for alphacritical = 0.0021, we expect about 0.6 
comparisons to be evaluated as significant when in fact they are not.

Results

The repeated-measures ANOVA analysis did not reveal any significant differences 
for group, nor did it find a main effect for the repeated measures, time, axis, per-
turbation type, or window size. However, within subject contrasts found significant 
interactions in perturbation type x group (p = .044), window size x axis (p = .034), 
window size x day x axis (p = .041), window size x axis x perturbation type x 
group (p = .019), and window size x time x axis x perturbation type x group (p = 
.014), where the p value shown represents the best p value for each type of contrast 
(i.e., lowest among linear, quadratic, etc). Note that the last interaction with all 5 
conditions and group is significant, and has the lowest p value, so there is no simple 
interpretation of these results, as all interactions must be considered.

To help interpret the interactions, there is an additional consideration about the 
results that will be helpful, namely the comparison of the neural network output 
to the neutral value of 0.5 for each condition. As described previously, the output 
of the network is a normalized acceleration, with a value ranging from 0 to 1, 
where a value of 0 indicates a maximum acceleration in the negative direction, a 
value of 1 indicates a maximum acceleration in the positive direction, and a value 
of 0.5 indicates no acceleration in response to the input. If the network is tested 
with a positive perturbation, the appropriate response is in the negative direction, 
i.e., in the opposite direction to the perturbation, which corresponds to an output 
significantly less than 0.5 If the output of the network for a positive perturbation 
is not significantly less than 0.5 for that time lag and input perturbation type (i.e., 
position, velocity, or acceleration), that indicates that the time lag/information type 
combination is not contributing significantly to control. To statistically test this, 
one-sample t tests were used to compare the output for each condition to 0.5, for 
inputs designed to test the trained networks sensitivity to position [1,0,0], velocity 
[0,1,0], and acceleration [0,0,1] (Table 1). The tests were two-tailed t tests, but the 
mean values for all conditions that are significantly different than 0.5 are less than 
0.5, consistent with the output of the network having useful function for control. 
Using a criteria of statistical significance of 0.01, 44 conditions/group combina-
tions were found to be significantly lower than 0.5, out of 264 tested, compared 
with only about 3 combinations would be expected to be significantly different if 
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Table 1 Results of One Sample t-Tests with the Output of the ANN Less 

than the Neutral Value of 0.5

ANN input Axis Time
Window           
(msec) Mean

Standard 
Deviation

Typical development (n = 33)

Position medial-lateral late sitting 33.3 0.448 0.116 0.0076
Position medial-lateral early sitting 83.3 0.412 0.155 0.0014*
Velocity medial-lateral early sitting 83.3 0.407 0.173 0.0021*
Acceleration medial-lateral early sitting 83.3 0.410 0.164 0.0018*
Velocity anterior-posterior late sitting 83.3 0.431 0.129 0.0023
Position anterior-posterior early sitting 133.3 0.431 0.157 0.0084
Position medial-lateral early sitting 133.3 0.411 0.189 0.0053
Velocity medial-lateral early sitting 133.3 0.411 0.198 0.0074
Acceleration medial-lateral early sitting 133.3 0.406 0.191 0.0041
Position medial-lateral late sitting 133.3 0.430 0.150 0.0056
Velocity medial-lateral late sitting 133.3 0.425 0.166 0.0070
Acceleration medial-lateral late sitting 133.3 0.425 0.154 0.0042
Position medial-lateral early sitting 187.5 0.410 0.161 0.0016*
Velocity medial-lateral early sitting 187.5 0.423 0.160 0.0046
Acceleration medial-lateral early sitting 187.5 0.418 0.174 0.0053
Position medial-lateral late sitting 250.0 0.438 0.131 0.0053
Acceleration medial-lateral late sitting 250.0 0.433 0.152 0.0080
Position anterior-posterior early sitting 500.0 0.414 0.153 0.0015*
Velocity anterior-posterior early sitting 500.0 0.398 0.172 0.0009*
Acceleration anterior-posterior early sitting 500.0 0.391 0.176 0.0006*
Position medial-lateral early sitting 500.0 0.412 0.186 0.0054
Velocity medial-lateral early sitting 500.0 0.405 0.178 0.0021
Velocity anterior-posterior late sitting 500.0 0.423 0.174 0.0082
Position medial-lateral late sitting 750.0 0.418 0.154 0.0022
Velocity medial-lateral late sitting 750.0 0.418 0.166 0.0040

Delayed development (n = 30)

Position medial-lateral early sitting 133.3 0.420 0.125 0.0008*
Velocity anterior-posterior early sitting 187.5 0.406 0.169 0.0025
Acceleration anterior-posterior early sitting 187.5 0.419 0.172 0.0075
Acceleration anterior-posterior early sitting 250.0 0.428 0.152 0.0070
Velocity anterior-posterior late sitting 250.0 0.416 0.167 0.0050
Acceleration anterior-posterior late sitting 250.0 0.420 0.158 0.0046
Position medial-lateral late sitting 250.0 0.413 0.178 0.0060
Velocity medial-lateral late sitting 250.0 0.413 0.179 0.0063
Velocity anterior-posterior early sitting 333.3 0.409 0.194 0.0081
Acceleration anterior-posterior early sitting 333.3 0.409 0.177 0.0043
Position medial-lateral early sitting 375.0 0.410 0.161 0.0023
Acceleration medial-lateral early sitting 375.0 0.410 0.163 0.0025
Acceleration anterior-posterior late sitting 375.0 0.415 0.153 0.0025
Position anterior-posterior early sitting 500.0 0.424 0.124 0.0011*
Acceleration anterior-posterior late sitting 500.0 0.432 0.142 0.0068
Velocity anterior-posterior early sitting 750.0 0.405 0.171 0.0024
Position medial-lateral late sitting 750.0 0.407 0.189 0.0058
Velocity medial-lateral late sitting 750.0 0.403 0.160 0.0012*
Acceleration medial-lateral late sitting 750.0 0.396 0.174 0.0014*

Note: Only conditions with p < .01 are included in the table, and * indicates conditions with p < .0021. The p 
values are for a one-sided t test with null hypothesis mean = 0.5 for each condition/ANN input combination. 
Comparisons with p > .01 are not shown.
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the results were random. Using a criterion of statistical significance of 0.0021, 11 
conditions/group combinations were found to be significantly lower than 0.5, out 
of 264 tested, compared with only about 1 combination that would be expected to 
be significantly different if the results were random.

The significant results (Table 1) were organized by group, day, and axis (Table 
2) to facilitate comparisons. Typically developing infants have a wide range of 
time windows contributing to control in the medial-lateral axis. In addition, posi-
tion, velocity and acceleration are all contributing to control in the medial-lateral 
axis for infants with typical development. In contrast, the anterior-posterior 
axis for late sitting for infants with typical development is very dependent on 
velocity information. The infants with delayed development have no short time 
window contributions to control, as there are no significant contributions from 
time windows less that 100 msec for infants with delayed development, and for 
late sitting no significant contribution from a time window less that 250 msec.  

Table 2 Information Type and Window Times (msec) for Significant Output 

of Infant Sitting ANN

Delayed development Typical development

Medial-lateral Anterior-posterior Medial-lateral Anterior-posterior

Early Sitting

P 133* P 500* P 83* P 133

P 375 V 187 P 133 P 500*

A 375 V 333 P 187* V 500*

V 750 P 500 A 500*

A 187 V 83*

A 250 V 133

A 333 V 187

V 500

A 83*

A 133

A 187

Late Sitting

P 250 V 250 P 33 V 83

P 750 A 250 P 133 V 500

V 250 A 375 P 250

V 750* A 500 P 750

A 750* V 133

V 750

A 133

A 250

Note. P = position sensitivity of ANN, V = velocity sensitivity of ANN, A = acceleration sensitivity of ANN. 
Numerical value is window size in msec. * indicates ANN output was significantly different from 0.5 with p < 
0.0021, and values without * were significantly different from 0.5 with p < 0.01, as indicated in Table 1.
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In addition, infants with delayed development have more equal lag/information 
types contributing to control for the anterior-posterior axis and medial-lateral 
axis, compared with the infants with delayed development who have more in the 
medial-lateral axis and fewer in the anterior-posterior axis.

Discussion

Our first hypothesis was that velocity information would be more heavily used in 
infant sitting posture control. We found this to be true, but only for infants with 
typical development, and then only for control in the anterior-posterior axis for late 
sitting. That late sitting should use velocity information more heavily is consistent 
with the sensory integration capabilities of the infants becoming more nearly adult 
like later in development. In adult standing posture control, Jeka, Kiemel, Creath, 
Horak, and Peterka, (2004) find that velocity information is more heavily used than 
position or acceleration. They point out that the proprioceptive, cutaneous, and visual 
systems are all velocity sensitive, due to the sensor physiology being more sensitive to 
changes in position rather than absolute position. They mentioned that the vestibular 
system, a source of acceleration information, is relied on under conditions where 
sway referenced support has altered normal sensory input. They argue that under 
normal postural sway conditions, the vestibular system is likely not sensitive enough 
to contribute greatly to postural control. However, the study by Jeka, et al. (2004) 
only examined control in the anterior-posterior axis and not in the medial-lateral axis. 
Just because velocity is more heavily used for control of adult standing posture in 
the anterior-posterior axis, does not imply that the same is true in the medial-lateral 
axis, as sensory information is used differently for control in the two different axes. 
For example, a study by O’Connor and Kuo (2009) found that normal adult standing 
postural sway is more influenced by visual perturbations in the anterior-posterior axis 
than in the medial-lateral axis, while the sensitivity is higher in the medial-lateral 
direction if the feet are placed in tandem rather than side-by-side. As infants learn to 
sit they must learn to appropriately use sensory information based on task demands.

Our second hypothesis was that infants with developmental delay use sensory 
information differently than infants with typical development. The infants with 
developmental delay were found to lack the short time delay contributions to posture 
control that the infants with typical development demonstrated. Infants with devel-
opmental delay were found to not simply be delayed in the development of sitting, 
but were less able to use short latency sensory information in postural control than 
infants with typical development, instead relying on longer delay time mechanisms 
for postural control. One short delay time control mechanism that might be used in 
postural control is the stretch reflex (Granata, Slota, & Bennett, 2004). Infants with 
spastic cerebral palsy have altered stretch reflex activity and greater stiffness of the 
musculoskeletal system, and thus this mechanism may not be as useful for postural 
control for infants with cerebral palsy compared with infants with typical develop-
ment. Perhaps an adaptive strategy for maintaining upright posture for infants with 
altered short latency control, possibly altered stretch reflexes, is a more complete 
reliance on higher level control mechanisms, which necessarily have a longer delay 
time. With a reduced number of postural control strategies available, the motor 
control system has fewer synergies to invoke, so the motor control development 
becomes atypical as well.
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Children with cerebral palsy have been found to have an increased time to 
produce a given amount of force in lower extremity movements (Downing, Ganley, 
Fay, & Abbas, 2009), and adults with dystonia have slower reaction times in a visual 
stimulus and button-pushing task (Jahanshahi, Rowe, & Fuller, 2001). The slow 
response time of the neuromuscular control system, and the necessary reliance on 
longer time lag control mechanisms, has important implications for postural con-
trol. One model of postural control is the inverted pendulum model, where a mass 
remains positioned above the ground on a vertical rod due to actuators controlled by 
a feedback controller. If the delay time of the feedback controller exceeds a critical 
time delay, then the upright position cannot be maintained. The critical time is given 
by: tc= sqrt(2*L/3*g), where L is the distance from ground to the center of mass of 
the pendulum, and g is the acceleration of gravity, which works out to 260 msec for 
adult standing (Milton et al. 2009) . From this formula, the critical delay time for 
control of an inverted pendulum depends on the size of the pendulum, with taller 
pendulums able to be controlled using slower response times. For an infant, with a 
center of mass about 20 cm above the ground, the critical control time is 117 msec. 
None of the significant control time delays for infants with delayed development 
meet this criterion (Table 2). While the inverted pendulum is a very crude model 
of infant sitting postural control (Kyvelidou, Stuberg, Harborne, Deffeyes, Blanke, 
& Stergiou, 2009), and ignores what are likely important contributions from the 
viscoelastic properties of the infant’s body as well as the pelvis and spine joints, 
the inverted pendulum model suggests that an infant who is not able to use fast 
latency control mechanisms may have a more difficult control problem to solve 
than infants with typical development.

This study investigated control of normal postural sway, where no external 
mechanical perturbations are applied, and no sensory alteration is used. While 
an important feature of this study is that the results apply to normal, unperturbed 
posture control with normal sensory weighting, a weakness of this study is that the 
specific sensory modalities involved in estimation of position, velocity, and accel-
eration cannot be identified. This study used a very simple ANN to model postural 
control, which is a complicated control process with multiple control mechanisms 
interacting to maintain upright posture (Horak, 2006). The ANN topology might 
be improved by inputting position, velocity and acceleration information for 
multiple time delays information simultaneously (larger ANN input layer), or by 
having more processing nodes (larger ANN hidden layer), or by having output to 
multiple muscles with various different time delays (larger ANN output layer). The 
probes that we use to test the network sensitivity to position, velocity, and accelera-
tion were also very simple, but more complex, nonlinear combinations of inputs 
might be important for posture control, as might be expected if the time-to-contact 
hypothesis (Slobounov, Cao, Jaiswal, & Newell, 2009) is correct. A combination 
of velocity and acceleration may also be useful for infant sitting postural control, 
as muscle activity in adult standing postural control has been shown to correlate 
with perturbation acceleration and velocity (Welch & Ting, 2009). Additional work 
is needed to address these issues.

Dynamic system theory, as used in the field of developmental psychology, 
accepts that an important aspect of motor development is the development of 
perception-action coupling, as a result of exploring a wide variety of coordina-
tion patterns, and eventually selecting those best suited to a particular motor 
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task. Thelen (2000) has emphasized the close relationship between cognition and 
action-perception during development. An important aspect of perception is the 
cognitive task of sensory integration that must occur to use the information content 
of the sensory input. Visual, vestibular, proprioceptive, and cutaneous sensory data 
must be integrated to estimate position, velocity, and acceleration information to 
be used for posture control. Although there is no theoretical guidance on whether 
position, velocity, or acceleration information would be most useful for postural 
control, work with adult standing anterior-posterior postural control indicates that 
velocity information is most useful (Jeka, Kiemel, Creath, Horak, & Peterka, 2004), 
and we have noted in this work that infants with typical development use velocity 
information more heavily in posture control in the anterior-posterior direction. 
Thus the infants with typical development appear to develop toward using sensory 
information in a manner similar to adult posture, with the underlying assumption 
that the infant is developing on a trajectory that will eventually led to the adult pat-
tern of use of sensory information. However, this analysis may be overly simplistic. 
There is no reason to assume a linear trajectory in infant development (Adolph, 
Robinson, Young, & Gill-Alvarez, 2008). Development of proprioceptive sensory 
integration is not mature even in adolescents (Viel, Vaugoyeau, & Assaiante, 
2009), so attainment of a fully adult response in infants, even in later sitting, is not 
likely. Instead, the use of velocity information for control in the anterior-posterior 
direction may emerge independently in both infant sitting and adult standing, as 
an efficient means of control for those particular postures, given the anatomical 
and physiological constraints of each of those systems. In discussing the anterior-
posterior and medial-lateral differences in sensory information utilization in adult 
standing, O’Connor and Kuo (2009) stated that the task direction with the greatest 
instability requires more feedback, and applying this logic to our results suggests 
that control in the medial-lateral axis is less stable than the anterior-posterior axis, 
as more types of sensory information are used for control in that axis, for infants 
with typical development.

In summary, we find that late sitting for infants with typical development is 
characterized by a high reliance on velocity information in control in the anterior-
posterior axis, as is adult standing posture control (Jeka, Kiemel, Creath, Horak, 
& Peterka, 2004), with relatively more complicated control in the medial-lateral 
axis utilizing a wider range of information types. Infants with delayed develop-
ment did not show the same reliance on velocity information within the time limits 
of our study, although this may occur later in development. Infants with delayed 
development have less reliance on short latency control mechanisms compared 
with infants with typical development, perhaps due to altered stretch reflexes or 
generally slower sensorimotor dynamics, necessitating an adaptive switch to other 
longer latency control mechanisms.
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