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Lyapunov Exponent and Surrogation 
Analysis of Patterns of Variability: Profiles 

in New Walkers With and Without Down 
Syndrome

Beth A. Smith, Nick Stergiou, and Beverly D. Ulrich

In previous studies we found that preadolescents with Down syndrome (DS) 
produce higher amounts of variability (Smith et al., 2007) and larger Lyapunov 
exponent (LyE) values (indicating more instability) during walking than their peers 
with typical development (TD) (Buzzi & Ulrich, 2004). Here we use nonlinear 
methods to examine the patterns that characterize gait variability as it emerges, in 
toddlers with TD and with DS, rather than after years of practice. We calculated 
Lyapunov exponent (LyE) values to assess stability of leg trajectories. We also 
tested the use of 3 algorithms for surrogation analysis to investigate mathemati-
cal periodicity of toddlers’ strides. Results show that toddlers’ LyE values were 
not different between groups or with practice and strides of both groups become 
more periodic with practice. The underlying control strategies are not different 
between groups at this point in developmental time, although control strategies 
do diverge between the groups by preadolescence.

Keywords: gait, nonlinear analysis, developmental disabilities

Movement scientists have a long history of using linear methods to analyze 
movement variability. Linear tools focus on the magnitude of variability and 
assume each repetition of a behavior, such as a step, is independent from those 
preceding and following. Nonlinear methods, in contrast, focus on the structure of 
variability by examining patterns in the variability across time and are designed to 
reveal how one movement influences the next. Both the magnitude and structure 
of variability during movement can differ between persons, and each reflects a dif-
ferent characteristic of the performance (Stergiou, Harbourne & Cavanaugh, 2006; 
Sosnoff & Newell, 2006). Within a specific magnitude of variability, differences in 
structure may exist. This is important, as the structure of variability has been linked 
to the health of biological systems. Healthy systems are those that are stable yet 
adaptable. Either too much consistency across repetitions (e.g., gait cycles) with 
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extremely periodic organization of variability, or lack of consistency with random 
organization of variability has been linked to poor health in cardiac, respiratory, 
and neurologic disease (Goldberger et al., 2002; Peng, Havlin, Stanley, & Gold-
berger, 1995; Seely & Macklem, 2004). These variability states can be thought of 
as opposite ends of a continuum. In between these two ends exists a deterministic 
yet nonperiodic pattern that provides a balance between flexibility and stability 
of behavior (Stergiou, Harbourne, & Cavanaugh, 2006). This state is associated 
with maximum complexity, which is defined as the highly variable fluctuations in 
physiological processes resembling mathematical chaos.

Nonlinear analysis tools offer a way to measure the patterns of variability 
displayed by a system and researchers have begun to apply them to the study of 
walking in humans. The Lyapunov Exponent (LyE) is one specific nonlinear tool 
that has been used to explore the variability of walking kinematics. LyE measures 
divergence within the trajectories of movement trajectories by quantifying their 
exponential separation in state space (see Figure 1). Previous work has shown that 
compared with their peers with typical development (TD), preadolescents with 
Down syndrome (DS) displayed a larger magnitude of variability (Smith, Kubo, 
Black, Holt & Ulrich, 2007) and higher LyE values reflecting more divergence of 
thigh, shank and foot segmental angles (Buzzi & Ulrich, 2004) from one walking 
stride to the next. The LyE results showed that there are changes in the structure, 
in addition to the known increases in magnitude, of gait variability occur during 
walking in preadolescents with DS.

Although an increase in the magnitude of variability is often associated with 
a decrease in stability, this relationship can also be an inverse one. This is one 
reason the concept of stability is difficult to define. England and Granata (2007) 
found a differential effect for walking speed on magnitude and structure of gait 
variability. They calculated LyE values for the ankle, knee and hip angles of 
healthy adults as they walked on a treadmill. Slow walking speeds were associ-
ated with an increase in magnitude of variability and smaller LyE values (less 
divergence, more order), while at faster walking speeds both variables increased 
(England & Granata, 2007).

The uncontrolled manifold analysis (UCM) is another tool that researchers 
have used to investigate the relationship between variability and stability. In regard 
to preadolescents with DS, use of the UCM revealed that although preadolescents 
with DS demonstrated a larger magnitude of variability with respect to the posi-
tion of both the center of mass and the head at heel contact during gait, they also 
partition more variance along the manifold (UCM

//
) than preadolescents with TD. 

Variance along the manifold is that which does not compromise performance of the 
task (Black, Smith, Wu, & Ulrich, 2007). This is another example where a larger 
magnitude of variability is not necessarily related to an increase in instability.

The studies cited above and others show that the nonlinear method of LyE 
is one tool that can be successfully applied to increase our understanding of the 
patterns of variability in adult or preadolescent gait and how its structure differs 
in response to injury or disease. By using both linear measures of magnitude and 
nonlinear measures of structure of variability, we are able to understand adult 
and preadolescent control strategies for movement in a more complete manner, 
rather than using either one in isolation. Our goal here is to use LyE to examine 
control strategies in the early stages of walking in toddlers with DS, before years 
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Figure 1 — Visual analogy of what Lyapunov Exponent (LyE) calculates, using the 
variability across cycles of the knee marker of a toddler with Down syndrome (DS). 1a 
is the knee marker vertical position time series, 1b shows 3 strides extracted from the 
time series (1a) and overlaid as position vs. corresponding velocity and 1c demonstrates 
a magnified version of an isolated segment of the state space to show the divergence 
between neighboring trajectories. One important point to note is that LyE values for 
data in this manuscript were calculated in an 8-dimensional space, not the 2-dimensional 
space pictured here.
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of practice have influenced their control strategies. By preadolescence, they have 
figured out a way to allow a larger magnitude of variability in their performance 
without detracting from its success, yet we do not know if control strategies are 
different than their peers with TD at the earliest stages of walking.

Researchers have used linear methods to describe many aspects of variability 
in toddlers’ walking patterns. However, they often demonstrate a limited ability 
to identify differences between typically and atypically developing groups, often 
due to the high amount of variability inherent in toddler data. Throughout the first 
six months of walking experience, for example, DS and TD toddlers produce a 
large amount of variability in EMG data (Chang, Kubo, Buzzi, & Ulrich, 2006; 
Chang, Kubo, & Ulrich, in press), step lengths and widths (Looper, Wu, Angulo 
Barroso, Ulrich, & Ulrich, 2006), and stiffness and impulse values (Black et al., 
2009). As practice increases, variability in many of their step parameters decreases 
quantitatively. Step length variability decreases (Looper et al., 2006) as walking 
experience increases as does variability in interlimb (Clark, Whitall, & Phillips, 
1988) and intralimb lower extremity phasing (Clark & Phillips, 1993). But there 
is more to the story; toddlers also show an increase over these first six months in 
variability of some parameters, such as step width (Looper et al., 2006), walking 
speed (Bril & Brenière, 1992) and stiffness and impulse values (Black et al., 2009) 
before settling down to lower levels of variability. In theory, nonlinear measures, 
by analyzing the temporal organization of variability, have the potential to extend 
our understanding beyond linear measures for these periods of seeming contradic-
tions in emergent skill. They can discover if distinctions in underlying control exist 
between toddlers with DS and their peers with TD during early walking, despite 
both groups having high amounts of variability.

Our primary goal in this study was to use nonlinear analysis, specifically 
LyE, to compare the patterns of variability produced by toddlers with DS and TD 
at the onset of walking. We chose LyE because it allows us to assess the patterns 
of variability of the position in space of the lower extremity from one stride to the 
next, as opposed to linear measures of variability such as the standard deviation 
of stride length or knee displacement, which summarize performance but ignore 
temporal relationships. Understanding how variability is structured at the onset 
of walking will help us understand if toddlers with DS are following a similar or 
unique developmental trajectory in relation to their peers with TD. We must know 
what early patterns look like to understand the impact of and relationship between 
inherent neural and physiological characteristics and practice of the task itself. This 
knowledge may be used, ultimately, to guide intervention.

In addition to LyE, we also employed surrogation analysis to test for deter-
minism (i.e., order) in the time series. Our secondary goal was to determine when 
walking becomes sufficiently mathematically periodic to be recognizable as 
deterministic, when its pendular flexion-extension motion (the intracycle periodic 
structure) develops. We explored different surrogation techniques to address the 
inherently noisy characteristics of toddler data.

In summary, we are asking both methodological and theoretical questions 
about typical and atypical development. Fundamentally, we want to understand 
differences in control strategies as they relate to the emergence of typical or atypi-
cal walking patterns, across the first months of independent walking. We believe 



130  Smith, Stergiou, and Ulrich

nonlinear tools, in combination with linear measures, give a more complete answer 
to this question than linear tools alone. However, there are methodological concerns 
about the application of nonlinear tools to inherently noisy, short toddler data sets. 
Ultimately we hope to help other researchers understand how and when these tools 
can be applied to human movement successfully and when they are limited.

Methods

Data Collection

Participants whose data we analyzed here were part of a larger longitudinal study 
approved by the University of Michigan Institutional Review Board. Consent 
was obtained from parents before their child’s participation in the study. Parents 
brought their toddlers to the laboratory at the onset of walking (defined as 3–6 
consecutive independent steps) and at 1 month of walking experience. In addition, 
participants with DS were tested at 3, 4, 6, and 8 months of walking experience 
and participants with TD at 2, 3, 4, 5, and 6 months of walking experience. For 
this analysis, we included the treadmill-walking data of 9 toddlers with DS and 
9 toddlers with TD at 3, 4 and 6 months of walking experience. We evaluated 
treadmill walking rather than overground data because it increased the number of 
continuous strides we had available for analysis. Due to space constraints of our 
3D motion analysis calibrated volume we were often able to collect only 5 or 6 
consecutive overground strides.

When participants arrived in the laboratory, we allowed them time to play 
and get comfortable with the setting and staff. We removed clothing except for 
diapers and attached 2-cm-diameter reflective markers bilaterally at bony land-
marks of their temperomandibular joints, shoulders, elbows, greater trochanters, 
knees, midshanks, heels, and third metatarsophalangeal joints. We also collected 
EMG data for the tibialis anterior, gastrocnemius, rectus femoris, biceps femoris, 
erector spinae and rectus abdominus muscles. To minimize wire movement and 
toddlers’ attention to electrode wires, participants wore a pair of dark tights with 
holes cut out to expose their feet and the reflective markers. Results for EMG and 
resultant center of mass data (which required multiple reflective markers) will not 
be discussed further here.

Participants walked overground to their parents at a self-selected speed, over 
a GAITRite mat (CIR Systems, Havertown, PA) at visits 1 and 2. They performed 
walking trials until we collected 4 passes of 3–6 usable steps (Visit 1) or 10–15 
steps (Visit 2). At subsequent visits, toddlers walked overground as in Visit 2 and 
then walked on a motorized treadmill (Parker brand, LET Medical Systems Corp., 
Miami Lakes, FL) with close supervision. We used GAITRite software to calcu-
late the average over ground walking speed of each participant, which we used to 
adjust the belt speed for the treadmill phase of testing, during which participants 
walked on the treadmill for 30 s trials at 40%, 58%, 75%, 92%, and 110% of their 
self-selected over ground speed. We operationalized comfortable treadmill speed 
as 75% of self-selected over ground speed based on previous work from our labo-
ratory (Ulrich, Haehl, Buzzi, Kubo, & Holt, 2004), as well as subjective reports 
that comfortable speeds on a treadmill are slower than over ground (Alton, Baldey, 
Caplan, & Morrissey, 1998).
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As participants walked over the gait mat and on the treadmill, we collected 
3-dimensional joint marker position at 60 Hz using a six-camera Peak Motus real-
time system (Vicon Peak, Centennial, CO). At the end of each walking collection 
we assessed developmental milestones using the motor component of the Bayley 
Scales of Infant Development (The Psychological Corporation, San Antonio, TX) 
and measured body segment lengths, height and weight.

Data Analysis

Appling nonlinear methods to toddlers’ data presents unique challenges. In theory, 
the mathematical approach of LyE is based on an infinite amount of data (Wolf, 
Swift, Swinney, & Vastano, 1985). In practice, researchers often employ techniques 
such as LyE and surrogation, which tests for determinism in a time series, using 
data from approximately 40 s (Buzzi et al., 2003) to 9 min of continuous walking 
(Hausdorff et al., 2001). To understand how new skills are being acquired, we need 
to start as early as possible, yet we are limited by the ability of the toddlers to take 
only a few consecutive strides at walking onset. A second challenge is the fact that 
toddler data are “noisy”. Although variability is the focus of these measurement 
techniques, too much noise renders them ineffective. With surrogation analysis, for 
example, extreme noise makes it difficult to detect inherent patterns and distinguish 
them from randomly generated surrogate equivalents. Figure 2 illustrates that new 
walkers clearly produce continuous, alternating strides, yet the data are noisy making 
it more difficult, mathematically, to identify their periodicity as compared with 
more skilled behaviors. We will, therefore, investigate three available algorithms 
(as described below) to address these concerns.

After extensive pilot work, we selected the left knee marker as representa-
tive of the pendular motion of the lower extremity during walking. We wanted to 
assess the relationship of each walking stride to the next, beyond what the linear 
measures of the standard deviation of the stride length and knee displacement could 
show us. Pilot work consisted of examining the time series of all lower extrem-
ity markers for 4 participants (2 in each group, across time). We concluded that 
there was not enough displacement of the greater trochanter marker, and too much 
extraneous motion (noise) at the foot markers (See Figure 3). For each participant 
at each visit, we selected the longest segments of continuous strides for treadmill 
walking at the 75% speed. As length of data sets must be equivalent for this type 
of analysis, we shortened longer segments to 276 data points (7–8 strides) of the 
left knee marker time series for all three directions of the three-dimensional data. 
We used the Tools for Dynamics software (Applied Nonlinear Sciences, LLC and 
Randle, Inc, Del Mar, CA) to identify the embedding dimension of our data using 
the Global False Nearest Neighbor algorithm (Abarbanel, 1996). The embedding 
dimension represents the number of dimensions needed to unfold the structure of a 
given dynamical system in space (Mitra, Riley, & Turvey, 1997). Our calculations 
indicated that 8 embedding dimensions were necessary to form a valid state space 
from the toddlers’ knee time series, as compared with typical calculations of 5 for 
adult gait data (Buzzi et al., 2003; Dingwell, Cusumano, Cavanagh, & Sternad, 
2001). This finding reflects the increased noise present in toddler data. In addition, 
we chose the appropriate time delay by calculating the first local minimum of an 
average mutual information algorithm (Abarbanel, 1996). We then used Chaos Data 
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Figure 2 — Exemplar time series of knee marker data in the vertical axis across months of 
walking experience. Although the behavior is clearly periodic by observation, there is enough 
variability across strides in time, amplitude, and shape that it is difficult to identify the math-
ematical rules for defining each period (TD = typical development, DS = Down syndrome).

a
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b

Figure 2 — continued.
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Analyzer Professional Version software (Physics Academic Software, Raleigh, NC) 
to calculate the LyE values for each direction of the three-dimensional left knee 
data. LyE measures divergence within the trajectories of movement patterns by 
quantifying their exponential separation in state space (see Figure 1). Larger values 
indicate more variability in the system, more divergence and possibly randomness. 
Shifts toward smaller values indicate less variability, less divergence and possibly 
rigidity. In the case of our data, a higher LyE value indicates more divergence in the 
trajectory of the knee movement from one stride to the next, and can reflect the use 
of different underlying control strategies for the production of successive strides.

We used the procedure of surrogation to further explore the structure of the data. 
Surrogate datasets were generated for all original knee time series using MATLab 
software (The MathWorks, Inc., Natick, MA) with the algorithms described in the 
next section. We then computed LyE values for all surrogate time series and com-
pared them to the value of the original time series to test for differences between 
the original time series and its surrogate counterparts. The calculation of the LyE 
values from the surrogate data sets was performed as described above.

Surrogate Data

The process of surrogation removes any deterministic structure from the original 
data set by generating a random equivalent with the same mean and variance as the 
original data. We created surrogate data for the kinematic time series data using 
three distinct methods: the Small pseudoperiodic algorithm (Small, Yu, & Harrison, 
2001) and Theiler’s algorithms 0 and 1 (Theiler, Eubank, Longtin, Galdrikian, & 
Doyne Farmer, 1992).

The Small algorithm looks for determinism on top of inherently periodic 
data by preserving the intracycle dynamics and shuffling the intercycle dynamics 
(Miller, Stergiou, & Kurz, 2006). It tests pseudoperiodic time series data against 
the null hypothesis of a periodic orbit with uncorrelated noise. Theiler’s Algorithm 
1 generates phase-randomized surrogates of the time series by computing Fast 
Fourier transforms (FFT) of the original data, randomizing the phase spectra, and 
computing the inverse FFTs. The power spectrum and correlation function are 
preserved while the probability distribution is different. When we compare this 
surrogate data to its original form, the null hypothesis being tested is that original 
time series is linearly filtered noise (Theiler et al., 1992).

With Theiler’s Algorithm 0, the data are simply shuffled. Here we preserve 
the probability distribution; however there may be a different power spectrum and 
a different correlation function. Comparing this surrogate data to its original form 
tests the null hypothesis that the original time series is an independent and identi-
cally distributed noise (Theiler et al., 1992).

Statistical Analysis

For each direction, LyE values of the surrogate data were compared with the 
LyE values of the original data using a paired t test. For data sets with significant 
differences between original and surrogate data sets, we used a linear mixed 
model to examine fixed effects of group, time (walking experience) and a group 
by time interaction for differences in LyE values. We used an unstructured 
variance-covariance structure for the repeated measures across time (for more 
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Figure 3 — Exemplar vertical direction time series from treadmill walking for one toddler 
with typical development with 4 months walking experience (W.E.). For the hip marker, 
the cyclic motion of the leg is not clear. The toe displays cyclic motion; but noise in the 
time data, particularly in the troughs, would decrease accuracy of results. The knee marker 
displays cyclic motion with the least amount of noise.
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information see the study of Bagiella, Sloan, & Heitjan (2000). Missing data 
points were defined as missing at random (technical reasons or child/family 
related missing data) and did not exclude the toddler’s other data points from 
analysis. We used SPSS Version 15.0 (SPSS, Chicago, IL) with an alpha level 
of significance set at 0.05 to calculate all statistical tests.

Results

When using the Small algorithm for surrogation, all surrogate data sets (across 
ages and groups) produced lower LyE values than their original counterparts. 
This indicates the surrogation technique was not successful. Surrogate data, as 
purposely-generated random equivalents of the original data, should have higher 
LyE values. The Small algorithm was unable to detect determinism in the data as 
they are not periodic to begin with. The assumption that this algorithm makes that 
the data have inherent intracycle periodic dynamics is not valid as the toddlers 
have not yet developed clear pendular walking cycles. We then tested the Theiler 
algorithms and their underlying assumptions about the structure of the original 
time series.

Using Algorithm 1, which assumes the original time series are linearly filtered 
noise, we found significant differences between the original and surrogate data 
sets for the medial-lateral (mean pair difference [original—surrogate] = 0.05, t = 
9.55, df = 64, p < .01) and vertical (mean pair difference [original—surrogate] = 
0.01, t = 2.88, df = 64, p = .01) directions. However, in both cases, the LyE values 
of the surrogate data were lower than those of the original data, again indicating 
surrogation was not successful as surrogate data, as purposely-generated random 
equivalents of the original data, should have higher LyE values.

For Algorithm 0, which assumes the original time series data are an indepen-
dent and identically distributed noise, significant differences were found between 
the original data and surrogate data in all directions. Again, the LyE values of the 
surrogate data were lower than those of the original data for the anterior-posterior 
(mean pair difference [original—surrogate] = 0.09, t = 14.00, df = 64, p < .01) 
and medial-lateral (mean pair difference [original—surrogate] = 0.06, t = 6.63, df 
= 64, p < .01) directions. Results for the vertical direction (mean pair difference 
[original—surrogate] = -0.03, t = -3.66, df = 64, p = .01), however, indicated the 
fluctuations observed in the original time series were more periodic than their 
randomly derived counterparts. Consistent with its deterministic origin, the order 
and periodicity of the knee marker data in the vertical direction is recognized by 
the surrogation algorithm. Defining success by its ability to identify differences 
between surrogate and original data, this surrogation technique is more successful 
as age increases (see Figure 4).

We then calculated the LyE of the knee vertical direction data. The LyE values 
showed no significant differences between the groups (F[1,12.6] = 0.23, p = .64). 
There was not a time effect (F[2,11.5] = 0.81, p = .47) or a group by time interac-
tion (F[2,11.5] = 0.02, p = .98) see Figure 5).
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Figure 4 — Success rates of surrogation increase across time using Theiler’s Algorithm 0 
to create surrogate data. Success is defined as identifying more periodicity in knee vertical 
direction time series than in their randomly-generated surrogate counterparts (TD = typical 
development, DS = Down syndrome).

Figure 5 — Mean LyE values for the left knee vertical direction by group across time. Error 
bars represent 1 standard deviation (TD = typical development, DS = Down syndrome).
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Discussion

Our efforts to apply LyE analysis to the emergent patterns of variability in toddlers’ 
gait produced important insights into the existing limitations of this mathematical 
tool but also revealed some new information about the level of control underlying 
their early walking. Developmentalists consider walking to have emerged when 
infants “toddle” for three consecutive strides before falling. By one month of 
experience toddlers can walk across the room, stop and start, and change direc-
tions, yet even when they have been practicing this skill for six months many of 
their joint motions are not sufficiently “smooth” to be mathematically defined as 
periodic using existing mathematical algorithms. This reveals a unique contrast 
between the control issues underlying the emergence of truly novel behaviors that 
are extremely complex and difficult to acquire (as we present here) and behaviors 
that have been practiced for many years (e.g., gait in adolescents or adults), the 
latter of which have been used in most previous applications of these tools in the 
human motor control literature.

In addition, this type of analysis works best when copious amounts of data- or 
minutes worth of continuous walking cycles are analyzed. This is quite difficult 
to procure for voluntary movements during infancy and early childhood, thus the 
capacity to observe optimal performance in a comfortable and relaxed context for 
young performers is limited. Here we chose to elicit walking by placing toddlers 
on a motorized treadmill. While it allowed us to monitor more continuous strides 
per toddler than we could have for overground walking, we still had comparatively 
small numbers of strides to analyze and the treadmill itself added a cognitive chal-
lenge. Toddlers do not understand walking in place as easily as they understand 
walking overground to retrieve toys. The treadmill also provides the challenge of 
adapting to an external pace rather than driving the pace. However, we believe we 
minimized this challenge by engaging these toddlers in the game of walking in 
place with our encouragement and the pace was tailored to their individual self-
selected overground gait velocity.

By three months of walking experience, toddlers were able to produce 7–8 
consecutive strides of treadmill walking. This allowed us a small number of strides 
for LyE calculation. Our results suggest that LyE values in the vertical direction were 
not different between groups, nor did they change significantly through additional 
months of practice. It appears that after three months of practice, toddlers have 
achieved a functionally stable, although noisy, walking pattern with a minimum 
level of quantifiable stability to be able to produce continuous strides. The fact that 
it required three months or less to achieve and did not change appreciably in the 
subsequent three months suggests one of two things: 1) this is the necessary and 
sufficient “region” of stability, or 2) changing beyond this necessary “region” will 
require considerable additional practice, perhaps years.

Although LyE analysis was not able to reveal changes in the stability of 
the knee trajectory from one stride to the next as walking experience increased 
during this period of development, surrogation analysis enabled us to quantify 
periodicity. Overall, toddlers’ strides become more periodic between 3 and 6 
months of practice. Surrogation analysis was more successful as experience 
increased, indicating the vertical direction variability is becoming more periodic 
(see Figure 4).
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While movement in the vertical direction displayed variability that is stable and 
becoming more periodic, by 6 months of practice motion in the anterior-posterior 
and medial-lateral directions did not meet the criteria for successful surrogation 
analysis. This failure indicates that movement in these axes is not yet mathemati-
cally defined as periodic. In other words, the data contain too much variability 
for successful use of existing algorithms. This was a disappointing finding. In a 
similar experience, Polk and colleagues (2008) examined toddler thigh and shank 
gait phase portraits. Using linear analysis to quantify variability, the authors found 
their results to be limited by too much intra and interindividual variability (Polk 
et al., 2008). We anticipated that nonlinear analysis could succeed where linear 
analyses have not. For the moment, this is not the case.

LyE analysis does allow us to investigate further patterns of variability by 
measuring the stability of trajectories, or quality of the movement, across time. 
For example, both of our groups of new walkers showed high quantities of vari-
ability. We predicted that toddlers with DS, due to their inherent ligamentous laxity, 
hypotonia and balance difficulties, would show less stable knee motion from one 
stride to the next than toddlers with TD. Although our prediction was not sup-
ported, a significant difference does emerge by preadolescence. Eight to ten-year 
olds with DS show significantly higher quantity of variability and less structure/
more adaptability (higher LyE values) for hip, knee and ankle segmental angles 
as compared with their peers with TD (Buzzi & Ulrich, 2004). This is a similar 
to the developmental pattern of stiffness and impulse values. There is not a group 
difference in toddlers’ stiffness or impulse values (Black et al., 2009), however a 
group difference does emerge by preadolescence, when 8–10 year-olds with DS 
demonstrate higher stiffness and no significant difference in impulse when walking 
overground and higher stiffness and impulse values when walking on a treadmill 
as compared with their peers with TD (Ulrich et al., 2004).

It is also possible that the high inter and intraindividual variability merely masks 
a group difference, as it often does when comparisons are performed between typi-
cal and atypical toddler groups. As toddlers become more skilled in their behavior, 
group differences in emergent control strategies, as measured by LyE, become 
apparent and statistically significant by preadolescence (Buzzi & Ulrich, 2004). The 
overall question of whether a lack of difference in LyE values between the groups 
reflects their use of a similar control strategy, and thus similar values, or is due to 
high variability and a lack of power, is a difficult one to answer. We performed a 
power analysis on our data, which indicated that we would need 37 participants 
per group to find a difference in LyE values. In addition, an average effect size of 
0.2 indicates a small effect of the group difference. These data suggest that if a 
statistically significant population difference exists, it is very small and not likely 
to be of practical or interpretable significance.

Based on several published studies, we know that control strategies used by 
preadolescents and adults with DS are different from and more variable than that 
of their peers with TD. We also know that their energy cost for preferred move-
ment patterns is greater (Ulrich et al., 2004), but also modifiable to some extent 
(Smith et al., 2007). Understanding as much as we can about their unique patterns 
of movement and control strategies allows us to better decide when and how to 
intervene to help them learn the most efficient and functional movement patterns 
possible. Measuring structure of variability, in addition to quantity of variability, 
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gives us further insight into the emergence of their unique patterns. Our findings 
here indicate that, although some of the endpoint parameters of gait (e.g., step 
width and stride length) show differences between toddlers with DS and TD due 
to inherent differences in their systems, the underlying control strategies are not 
different between groups at this point in developmental time. Control strategies do, 
however, appear to diverge between the groups across years of walking practice 
and experience as the walkers “settle in” on preferred patterns.

Conclusion
Although the focus of nonlinear analysis is variability, current algorithms are very 
limited in their ability to analyze short sets of inherently noisy and highly variable 
new walker data. Especially in the case of toddler data, researchers should select 
variables that consist of longer, less noisy continuous movement time series that are 
believed to reflect the outcome of the toddlers’ selected control strategies. Although 
challenging to apply, especially to toddler data, we believe nonlinear analysis 
techniques have the potential to help, in a unique way, to answer questions about 
how variability is expressed in different systems and how organizational control 
emerges and changes with practice. We successfully applied nonlinear analyses to 
show that toddlers’ LyE values were not different between groups or with practice 
and strides of both groups become more periodic with practice. Preadolescents with 
DS produce larger LyE values during walking than peers with TD, a difference in 
control strategy that emerges over years of practice.
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