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Global stability for a 2n + 1 dimensional HIV/AIDS epidemic model with
treatments+

Olusegun Michael Otunuga*

Department of Mathematics,
Marshall University,

One John Marshall Drive, Huntington, WV, USA.

Abstract

In this work, we derive and analyze a 2n+1-dimensional deterministic differential equation modeling the transmission

and treatment of HIV (Human Immunodeficiency Virus) disease. The model is extended to a stochastic differential

equation by introducing noise in the transmission rate of the disease. A theoretical treatment strategy of regular HIV

testing and immediate treatment with Antiretroviral Therapy (ART) is investigated in the presence and absence of

noise. By defining R0,n, Rt,n and Rt,n as the deterministic basic reproduction number in the absence of ART treatments,

deterministic basic reproduction number in the presence of ART treatments and stochastic reproduction number in the

presence of ART treatment, respectively, we discuss the stability of the infection-free and endemic equilibrium in the

presence and absence of treatments by first deriving the closed form expression for R0,n, Rt,n and Rt,n. We show that

there is enough treatment to avoid persistence of infection in the endemic equilibrium state if Rt,n = 1. We further

show by studying the effect of noise in the transmission rate of the disease that transient epidemic invasion can still

occur even if Rt,n < 1. This happens due to the presence of noise (with high intensity) in the transmission rate, causing

Rt,n > 1. A threshold criterion for epidemic invasion in the presence and absence of noise is derived. Numerical

simulation is presented for validation.

Keywords: Susceptible; Infection; Treatment; HIV; Stochastic model; Stability; Reproduction number

1. Introduction

HIV and AIDS remain a persistent problem for the United States and countries around the world. According to a

report by the Center for Disease Control and Prevention, (CDC), [3] ” HIV disease continues to be a serious health
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issue for parts of the world. Worldwide, there were about 1.8 million new cases of HIV in 2016. About 36.7 million

people were living with HIV around the world in 2016, and 19.5 million of them were receiving medicines to treat

HIV, called antiretroviral therapy (ART). An estimated 1 million people died from AIDS-related illnesses in 2016.

Sub-Saharan Africa, which bears the heaviest burden of HIV and AIDS worldwide, accounts for about 64% of all new

HIV infections. Other regions significantly affected by HIV and AIDS include Asia and the Pacific, Latin America and

the Caribbean, and Eastern Europe and Central Asia.” Without treatment of HIV/AIDS with Antiretrovial medicine,

HIV infection advances into several stages and individuals with AIDS typically survive about 3 years [3]. The stages

and phases of HIV/AIDS starts with the primary infection stage (the stage where an individual first become infected

with HIV virus), the Seroconversion illness stage (the stage where individual develop symptoms before the appearance

of antibodies to HIV in the blood), the Seroconversion stage ( the stage where HIV replicates rapidly and build up HIV

anti-bodies), the window period (the time it takes for a person who has been infected with HIV to produce antibodies

to the virus), the asymptomatic infection stage (the period after testing positive for HIV), the symptomatic infection

stage (the period the immune system becomes weakened by HIV), the advanced HIV disease (AIDS) stage, and so on

[2].

Although it is currently known that there is no cure for HIV infection, the ART treatment only help individuals

with HIV from advancing to the next stage of the infection, thereby making them to live longer and reducing the risk of

transmission. According to the United States Department of Health and Human Services [23], without proper or any

antiretroviral therapy (ART), most HIV-infected individuals will eventually develop progressive immunodeficiency

marked by CD4 T lymphocyte (CD4) cell depletion and leading to AIDS-defining illnesses and premature death. The

primary goal of ART is to prevent HIV-associated morbidity and mortality. Proper stages of the ART administration

must be followed to maximally inhibit HIV replication and sustain plasma HIV-1 RNA (viral load) below limits of

quantification. This shows the need to study how to reduce the disease infection or eliminate the transmission of the

disease by studying different stages of the disease, especially from high endemic countries.

Several mathematical models [6, 7, 8, 9, 11, 15, 17, 20, 22] have been developed in order to understand the disease

transmission as well as to discuss the impact of treatment/intervention strategies and also discuss conditions under

which transmission rate is eliminated. In this paper, we discuss transmission and treatment of the HIV/AIDS by

constructiong a deterministic and stochastic differential equation describing progression of susceptible populations

through n stages of infection and treatments, and uptake and dropping out of treatments. We note here that the

deterministic model described in this work is the extension of the work of Granich et al. [7] and Kretzschmar et

al. [15]. We analyze the dynamics of the epidemic model when the transmission rate displays Gaussian white noise

fluctuations around its mean value. The effects of fluctuations on dynamics of epidemics have been widely explored
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in the work of Hattaf et al. (2018) [8], Horsthemke et al. [10], Keeling et al. [12], Mendez et al. [18] and Tornatore

et al. [22]. According to the work of Mendez et al. [18], demographic noise or internal fluctuations are due to the

discrete nature of the constituents of the system (in this case, the susceptible and infected individuals). External noise

appears multiplicatively in our model and it is able to modify the mean dynamical behavior of the population [10, 18].

We assume, following the argument mabe by Mendez et al. that external fluctiations may be caused by variability in

the number of contacts between infected and susceptible individuals and such random variations can be modeled by a

white noise [18].

The paper is organized as follows.

In Section 2, we present a deterministic HIV epidemic model describing the transmission and spread of HIV as

well as its treatment. In Section 3, the existence and stability of the equilibrium points in the absence of Antiretroviral

treatments are analyzed. In Section 4, we discuss the existence and stability of the equilibrium points in the presence

of Antiretroviral treatments. In Section 5, we present a Stratonovich stochastic HIV epidemic model by allowing the

transmission rates to fluctuate around a mean value. The Stratonovich model is now converted into its Itô version. We

also analyze the stability of the infection-free equilibrium and discuss threshold criterion for epidemic invasion in the

presence and absence of noise. In Section 6, numerical simulation is presented to support our claim. The conclusion

of the work is given in Section 7.

2. Deterministic Model

In order to study the transmission and spread of HIV/AIDS, as well as its treatments, we formulate a model which

subdivides the total population, N(t), at time t, into susceptible population, S , infected untreated population, Ik, in

stage k of the infection, and the population Tk of infected individuals under the Antiretroviral treatment in stage k of

infection, for k = 1, 2, ..., n. We formulate the deterministic model governing S , Ik, Tk, k = 1, 2, ..., n, as follows:

dS =

(
β − λS

n∑
j=1

(
h jI j + εT j

)
− µS

)
dt, S (t0) = S 0,

dI1 =

(
λS

n∑
j=1

(
h jI j + εT j

)
− (µ + ρ1 + τ)I1 + φT1

)
dt, I1(t0) = I01,

dIk = (ρk−1Ik−1 − (µ + ρk + τ)Ik + φTk) dt, Ik(t0) = I0k,

dT1 = (τI1 − (µ + γ1 + φ)T1)dt, T1(t0) = T01,

dTk = (τIk + γk−1Tk−1 − (µ + γk + φ)Tk) dt, Tk(t0) = T0k,

(2.1)

for k = 2, ..., n, where µ > 0 is the mortality rate, ρk and γk, k = 1, 2, ..., n, are transition rates per year from stage k

to stage k + 1 for untreated and treated individuals, respectively, τ and φ are rates per year of moving from untreated

to treated population, and from treated to untreated population, respectively, ε quantifies the reduced infectiousness
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due to ART treatment, hk is the infectivity of untreated individuals in stage k of infection per year, λ is the rate of

transmission between susceptible and infected individuals and β > 0 is the recruitment into the population.

Since the population size N = S +
n∑

j=1
(I j + T j), it follows from (2.1) that N satisfies the equation

dN = (β − µN − ρnIn − γnTn) dt, (2.2)

and lim
t→∞

sup N(t) ≤ β/µ. Hence, we consider model (2.1) in the feasible region

T :=

(S , I1, ..., In,T1, ...,Tn)T ∈ R2n+1
+ : 0 ≤ S +

n∑
j=1

(I j + T j) = N ≤
β

µ

 , (2.3)

where R+ denotes nonnegative real number. It can be shown that T is positively invariant with respect to (2.1). We

can make the sizes S , Ik and Tk, k = 1, 2, ..., n into percentages by setting β = µ.

3. Existence and stability of equilibrium points without treatments

In this section, we discuss the existence and stability of equilibrium points without the introduction of Antiretro-

viral treatments in the system. Define 
āk = µ + ρk,

b̄k = µ + γk,

κ̄ = β/µ.

(3.1)

We write (2.1) (in the absence of Antiretroviral treatments) using the next-generation matrix [6] as

dx̄ = (F (x̄) −V(x̄)) dt, (3.2)

where x̄ =



I1

...

In

S


, F =



λS
n∑

j=1
h jI j

0
...

0

0


,V =



ā1I1

ā2I2 − ρ1I1

...

ānIn − ρn−1In−1

λS
n∑

j=1
h jI j + µS − β


.

We define the infection-free and endemic equilibrium points derived from untreated population by P0 =

(
S 0 I0

1 . . . I0
n

)T

and P1 =

(
S ∗ I∗1 . . . I∗n

)T
, respectively. We will later give the closed form expression for P0 and P1 and also dis-

cuss their stability.
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3.1. Infection-free equilibrium, P0, and basic reproduction number, R0,n, in the absence of treatments

The infection-free equilibrium P0 of (3.2) is given by

P0 =
(
S 0 = κ̄, I0

1 = 0, ..., I0
n = 0

)T
.

Here, we derive an expression for the deterministic basic reproduction number, R0,n, corresponding to (3.2). We

define the basic reproduction number as the expected number of secondary cases produced, in a completely sus-

ceptible population, by a typical infective individual [5, 6]. The n + 1 × n + 1 Jacobian matrices D F (P0) =(
∂Fi
∂x̄ j

)
and D V (P0) =

(
∂Vi
∂x̄ j

)
of F and V in (3.2) evaluated at P0 are partitioned as D F (P0) =

F 0

0 0

 and

D V (P0) =

V 0

J1 J2

, respectively, where F, V , J1 and J2 are given by F = λκ̄



h1 h2 . . . hn

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


and V =



ā1 0 0 0 . . . 0 0

−ρ1 ā2 0 0 . . . 0 0

0 −ρ2 ā3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . −ρn−1 ān


, J1 = λκ̄

(
h1 h2 . . . hn

)
, J2 = µ, respectively. It follows that the

spectral radius, R0,n, of the matrix FV−1 is given by

R0,n = λκ̄

n∑
r=1

hr

r∏
j=1

(
ρ j−1

µ + ρ j

)
, (3.3)

where ρ0 = 1. Here, 1
µ+ρ j

is the average duration of the infectious period at stage j, ρ j−1

µ+ρ j−1
is the fraction of humans

that will progress from the infectious stage j − 1 to j, and λκ̄hr
r∏

j=1

ρ j−1

µ+ρ j
is the number of new infections produced by

a typical individual during the time it spends in the r-th infectious stage. We see here that the reproduction number,

R0,n, depends on the transmission rate λ, the background mortality rate, µ, the recruitment rate, β, and the total

infectiousness (unless the population is in percentage, in which case, κ̄ = 1 and the reproduction number only depends

on the transmission rate and the total infectiousness).
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3.1.1. Stability analysis of P0 in the absence of Antiretroviral treatments

In this subsection, we first analyze the asymptotic stability of the infection-free quilibrium by linearizing (3.2)

about P0. We later discuss the global stability of P0. By defining

u =

(
S − κ̄ I1 I2 . . . In

)T
, (3.4)

the linearization of (3.2) about P0 is equivalent to

d u = Λ u dt, u(t0) = u0, (3.5)

where Λ =



−µ −λκ̄h1 −λκ̄h2 −λκ̄h3 −λκ̄h4 . . . −λκ̄hn−1 −λκ̄hn

0 −ν̄ λκ̄h2 λκ̄h3 λκ̄h4 . . . λκ̄hn−1 λκ̄hn

0 ρ1 −ā2 0 0 . . . 0 0

0 0 ρ2 −ā3 0 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 . . . . . . . . . ρn−1 −ān



and ν̄ = ā1 − λκ̄h1. By rewriting R0,n =

1 − ν̄
ā1

+ λκ̄
n∑

k=2
hk

k∏
j=1

ρ j−1

ā j
, it follows directly that ν̄ > 0 if R0,n < 1.

Let r be an eigenvalue of Λ. The characteristic polynomial of Λ can be written as

det(Λ − rIn+1,n+1) = −(r + µ) det(Λ̄ − rI), (3.6)

where In+1,n+1 and I are n + 1 × n + 1 and n × n identity matrix, respectively, Λ̄ is the minor of the entry Λ1,1 in (3.5).

We prove the asymptotic stability of the infection-free equilibrium P0 using relations D12 and J29 in the work of

Plemmons [19]. Let s(A) denotes the maximum real part of all eigenvalues of a matrix A. We shall show that s
(
Λ̄
)
< 0

if R0,n < 1.

Definition 1. Let Zn be the set of all n × n square matrix A with ai j ≤ 0 if 1 ≤ i , j ≤ n. We call a matrix A ∈ Zn a

Z-matrix.

Theorem 1. The solution u(t) = 0 of the system (3.5) is locally asymptotically stable if R0,n < 1, stable if R0,n = 1

and unstable if R0,n > 1.

Proof. In order to show the stability of the solution u(t) = 0 of the system (3.5), we need to show that s
(
Λ̄
)
< 0 if

R0,n < 1.
Let B = −Λ̄. It is clear that B ∈ Zn is a Z-matrix. Also, we can write B in the form
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B = LU, (3.7)

where L and U are upper and lower diagonal matrices, respectively, with positive diagonals. A rigorous computation
of L and U gives

Li, j =
1

D j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B1,1 B1,2 . . . B1, j
B2,1 B2,2 . . . B2, j
...

... . . .
...

B j−1,1 B j−1,2 . . . B j−1, j
Bi,1 Bi,2 . . . Bi, j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, for i ≥ j , 1, Li,1 =

|Bi,1|

D1
, for i = 1, 2, ..., n, and 0 elsewhere,

Ui, j =
1

D j−1

∣∣∣∣∣∣∣∣∣∣∣∣
B1,1 . . . B1,i−1 B1, j
B2,1 . . . B2,i−1 B2, j
...

...
...

...
Bi,1 . . . Bi,i−1 Bi, j,

∣∣∣∣∣∣∣∣∣∣∣∣ , for 1 , i ≤ j, U1, j = B1, j, for j = 1, 2, ..., n, and 0 elsewhere,

where D0 := 1, and D j =

∣∣∣∣∣∣∣∣∣∣∣∣
B1,1 B1,2 . . . B1, j
B2,1 B2,2 . . . B2, j
...

... . . .
...

B j,1 B j,2 . . . B j, j

∣∣∣∣∣∣∣∣∣∣∣∣ for j = 1, 2, ..., n, and |.| denotes determinant of matrix.

Clearly, L j, j = 1 for j = 1, 2, ..., n. If R0,n < 1, then the diagonal U j, j =
D j

D j−1
= ā j

(
1−R0, j

1−R0, j−1

)
> 0 for j = 1, 2, ..., n.

It follows from relations D12 and J29 in [19], equation (3.7) and the fact that L j, j > 0, U j, j > 0, j = 1, 2, ..., n, that the
real part of each eigenvalue of B is positive, which is equivalent to s

(
Λ̄
)
< 0. If R0,n = 1, then r = 0 is one of the

eigenvalues of Λ̄ since det(Λ̄) = Dn =
(
1 − R0,n

) n∏
j=1

ā j = 0. If R0,n > 1, then det(Λ̄) < 0. If r1, r2,..., rn are eigenvalues

of Λ̄, then det(Λ̄) =
n∏

j=1
r j < 0 irrespective of whether n is even or odd. Hence, Λ̄ must have at least one positive

eigenvalue. �

Remark 1. We note here that the stability of the solution u(t) = 0 of the system (3.5) is equivalent to the stability of

the infection-free equilibrium P0.

Remark 2. The characteristic polynomial of Λ̄ can be written in the form

det(Λ̄ − rI) =

n∑
i=0

cirn−i, (3.8)

7



where c0 = (−1)n,

c1 = (−1)n

ā1(1 − R0,1) +

n∑
i=2

āi

 = (−1)ntrace(Λ̄),

cn = (−1)n (
1 − R0,n

) n∏
j=1

ā j,

ci = (−1)n


i∏

j=1

ā j
(
1 − R0,i

)
+

i∑
k=1

i−k∏
j=0

ā j


n∑

l1,l2,...,lk=i−k+2
l1,l2,,...,,lk

āl1 āl2 ...ālk


(
1 − R0,i−k

) , i = 2, 3, ..., n,

and ā0 = 1, R0,0 = 0. If R0,n < 1, then R0,i ≤ R0,n < 1 for i = 1, 2, ..., n. Hence, all coefficients ci, i = 0, 1, 2, ..., n, are

of the same sign. By Descartes’ rule of sign, the matrix Λ̄ has no real positive eigenvalue. If R0,n = 1, then R0, j < 1

for all j = 1, 2, ..., n − 1, cn = 0 and λ = 0 is one of the eigenvalues.

We will now investigate the global stability of the infection-free equilibrium P0 in the feasible region T .

Theorem 2. The infection-free equilibrium P0 is globally stable in the feasible region T if R0,n ≤ 1.

Proof. Consider the Lyapunov function V : R+
n+1 → R+ defined by

V(S , I1, I2, ..., In) =

(
S − S 0 − S 0 ln

S
S 0

)
+

n∑
k=1

ωkIk,

where R+ is the set of positive real numbers and

ω1 = 1,

ωk+1 =

 k∏
j=1

ā j

ρ j

 (1 − R0,k
)
, for k = 1, 2, ..., n − 1.

It can be shown that ωkāk − ωk+1ρk − λS 0hk = 0 for k = 1, 2, ..., n − 1 and ωnān − λS 0hn =

(
n∏

j=1

ā j

ρ j−1

) (
1 − R0,n

)
≥ 0 if

R0,n ≤ 1. Also, if R0,n ≤ 1, then the derivative of V with respect to t along the solutions of (3.2) is given by

dV
dt

= β + µS 0 − βS 0/S − µS + (ω1 − 1)λS
n∑

k=1

hkIk −

n−1∑
k=1

(
ωkāk − ωk+1ρk − λS 0hk

)
Ik −

(
ωnān − λS 0hn

)
In

≤ −β

(
S 0

S
+

S
S 0 − 2

)
≤ 0,

using the fact that S 0 = κ̄ = β/µ and 1 =
(

S 0

S
S
S 0

)1/2
≤ 1

2

(
S 0

S + S
S 0

)
(arithmetic mean of a list of nonnegative real

numbers is greater than or equal to the geometric mean of the same set [21]). If R0,n < 1, then dV
dt = 0 if and only if

S = S 0 and In = 0. If R0,n = 1, then dV
dt = 0 if and only if S = S 0. In either case, since the equilibrium point P0 = P1

if R0,n = 1 (this fact is shown in the next subsection), it can be easily verified that the largest invariant set of (3.2)
contained in the set {(S , I1, ..., In)T ∈ T : dV/dt = 0} is the singleton {P0}. The global stability of P0 follows from the
LaSalle invariance principle [16]. �
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3.2. Existence and stability of endemic equilibrium, P1, in the absence of treatment

The endemic equilibrium P1 =

(
S ∗, I∗1 , ..., I

∗
n

)T
of the system (3.2) is given by


S ∗ = κ̄

R0,n
,

I∗k = β

(
k∏

j=1

ρ j−1

ā j

) (
1 − 1

R0,n

)
, k = 1, 2, ..., n.

(3.9)

It follows directly that the endemic equilibrium, P1, converges to the infection-free equilibrium, P0, as R0,n tends to 1.

Remark 3. We show here that S ∗ and I∗k , for k = 1, 2, ..., n, are in the feasible region, T , whenever they exist (that

is, whenever R0,n > 1). It is easy to show from (3.9) that β − µS ∗ = ā1I∗1 and
n−1∑
k=1

ρkI∗k =
n∑

k=2
ākI∗k . Therefore,

µ
n−1∑
k=2

I∗k = ρ1I∗1 − ānI∗n and µ
(
S ∗ + I∗1 +

n−1∑
k=2

I∗k

)
= β − ānI∗n . Also, if R0,n > 1, then S ∗ > 0, I∗k > 0 for all k = 1, 2, ..., n.

Hence, 0 < S ∗ +
n−1∑
k=1

I∗k = κ̄ − ān
µ

I∗n < κ̄.

The following theorems show the existence and global stability of the endemic equilibrium P1.

Theorem 3. The endemic equilibrium P1 of (3.2) exists if and only if R0,n > 1, and does not exist if R0,n ≤ 1, with the

case P1 = P0 if R0,n = 1.

Proof. The proof follows directly from (3.9) and Remark 3. �.

The following lemma will be useful in proving the global stability of the endemic equilibrium, P1.

Lemma 4. Define the sequence {zk}
n
1 and {mk}

n
1 by


z1 = 1,

zk+1 =

(
k∏

j=1

ā j

ρ j

)
− λS ∗

k∑
r=2

hr−1
ρr−1

(
k∏

j=r

ā j

ρ j

)
− λS ∗ hk

ρk
, for k = 1, 2, ..., n − 1,

(3.10)

and 

m1 = β − ρ1z2I∗1 ,

mk = ρk−1zkI∗k−1 − ρkzk+1I∗k , for k = 2, ..., n − 1,

mn = ρn−1znI∗n−1,

C =
n∑

k=1
(k + 1)mk.

(3.11)

If R0,n > 1, then {zk}
n
1 and {mk}

n
1 are positive sequences.

Proof. Assume R0,n > 1. We know from (3.2) that S ∗ and I∗k satisfy{
β − µS ∗ = ā1I∗1 ,
ρk−1I∗k−1 = ākI∗k , for k = 2, ..., n. (3.12)

9



By substituting (3.9) and (3.12) into (3.10), it follows from Remark 3 that (3.10) and (3.11) reduce to
z1 = 1,

zk+1 =

(
k∏

j=1

ā j

ρ j

) (
1 − R0,k

R0,n

)
> 0, k = 1, 2, ..., n − 1,

zn = λS ∗ hn
ān
> 0,

(3.13)

and 
m1 = S ∗

(
µ + λh1I∗1

)
,

mk = λS ∗hkI∗k , for k = 2, ..., n,

C = β + µS ∗ +
n∑

k=1
ākzkI∗k .

(3.14)

�

Theorem 5. The endemic equilibrium P1 of the system (3.2) is globally stable in the feasible region if R0,n > 1.

Proof. Assume R0,n > 1. Define the Lyapunov function V∗ : R+
n+1 → R+ by

V∗ (S , I1, ..., In) =

(
S − S ∗ − S ∗ ln

S
S ∗

)
+

n∑
k=1

z̄k

(
Ik − I∗k − I∗k ln

Ik

I∗k

)
, (3.15)

where z̄k, k = 1, 2, ..., n are positive constants. We shall show that z̄k = zk, k = 1, 2, ..., n as defined in (3.10) and (3.13).
It follows from the fact that c − ln c > 1 for c > 0 that V∗ (S , I1, ..., In) > 0 if R0,n > 1. Define

y0 =
S
S ∗
, yk =

Ik

I∗k
, for k = 1, 2, ..., n.

The derivative of V∗ computed along solutions of the system (3.2) is given by

dV∗

dt
= C + (z̄1 − 1)λS ∗y0

n∑
k=1

hkI∗k yk − S ∗
(
µ + λh1z̄1I∗1

)
y0 −

β

y0
−

n−1∑
k=1

(āk z̄k − λS ∗hk − ρk z̄k+1) I∗k yk

− (ānz̄n − λS ∗hn) I∗nyn −

n∑
k=2

ρk−1z̄kI∗k−1
yk−1

yk
− λS ∗z̄1

n∑
k=2

hkI∗k
y0yk

y1
.

By setting z̄1 − 1 = 0, āk z̄k − λS ∗hk − ρk z̄k+1 = 0 for k = 1, 2, ..., n− 1, and ānz̄n − λS ∗hn = 0, it follows that 0 < z̄k = zk

defined in (3.10) and (3.13) for k = 1, 2, ..., n if R0,n > 1. Hence

dV∗

dt
= C − S ∗

(
µ + λh1z1I∗1

)
y0 −

β

y0
−

n∑
k=2

ρk−1zkI∗k−1
yk−1

yk
− λS ∗z1

n∑
k=2

hkI∗k
y0yk

y1
,

= −m1

(
y0 +

1
y0
− 2

)
−

n∑
k=2

mk

 1
y0

+
y0yk

y1
+

k∑
j=2

y j−1

y j
− (k + 1)

 ,
where C and mk, k = 1, 2, ..., n satisfy (3.11) and (3.14).

Using the fact that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geomet-

ric mean of the same list [21], we have 1 =
(
y0

1
y0

) 1
2
≤ 1

2

(
y0 + 1

y0

)
and 1 =

(
1
y0

y0yk
y1

k∏
j=2

y j−1

y j

) 1
k+1

≤ 1
k+1

(
1
y0

+
y0yk
y1

+
k∑

j=2

y j−1

y j

)
for k = 2, ..., n. Equality holds if and only if y0 = 1 and yk−1 = yk for k = 2, ..., n. Therefore,

dV∗

dt
≤ 0,
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and equality holds if and only if y0 = 1 and yk−1 = yk, that is, S = S ∗, Ik−1/I∗k−1 = Ik/I∗k for k = 2, ..., n. It can be easily
verified that the largest invariant set of (3.2) contained in the set {(S , I1, ..., In)T ∈ T : dV∗/dt = 0} = {(S , I1, ..., In)T ∈

T : S = S ∗, Ik−1/I∗k−1 = Ik/I∗k , k = 2, ..., n} is the singleton {P1}. By the LaSalle’s Invariance Principle [16], it follows
that P1 is globally stable in the feasible region. �

Remark 4. Define u∗ =

(
S − S ∗ I1 − I∗1 I2 − I∗2 . . . In − I∗n

)T
. The linearization of (3.2) about the endemic

equilibrium P1 is equivalent to

d u∗ = A∗ u∗ dt, u∗(t0) = u∗0, (3.16)

where A∗ =



−

(
µ + λ

n∑
k=1

hkI∗k

)
−λh1S ∗ −λh2S ∗ −λh3S ∗ −λh4S ∗ . . . −λhn−1S ∗ −λhnS ∗

λ
n∑

k=1
hkI∗k − ¯̄ν λh2S ∗ λh3S ∗ λh4S ∗ . . . λhn−1S ∗ λhnS ∗

0 ρ1 −ā2 0 0 . . . 0 0

0 0 ρ2 −ā3 0 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 . . . . . . . . . ρn−1 −ān



and ¯̄ν = ā1 −

λh1S ∗. Clearly, ¯̄ν = ā1

(
1 − R0,1

R0,n

)
≥ 0.

We give the closed form expression for the characteristic polynomial of A∗. Let r̄ be eigenvalue of A∗, then

det(A∗ − r̄In+1,n+1) =

n+1∑
i=0

c∗i r̄n+1−i (3.17)

where In+1,n+1 is a n + 1 × n + 1 identity matrix; c∗0 = 1,

c∗1 =

 n∑
k=1

āk

 + µ + λ

 n∑
k=1

hkI∗k

 − λh1S ∗ =

 n∑
k=2

āk

 + µR0,n + ā1

(
1 −

R0,1

R0,n

)
= −trace(A∗),

c∗n+1 =

 n∏
j=1

ā j

 n∑
k=1

λhkI∗k = det(A∗),

c∗i =


n∑

l1,l2,...,li=1
l1,l2,,...,,li

āl1 āl2 ...āli

 +

µ + λ

n∑
k=1

hkI∗k




n∑
l1,l2,...,li−1=1

l1,l2,,...,,li−1

āl1 āl2 ...āli−1


−


i−1∑
k=1

λhkS ∗




n∑
l1,l2,...,li−k=k+1
l1,l2,,...,,li−k

āl1 āl2 ...āli−k

 + µ


n∑

l1,l2,...,li−k−1=k+1
l1,l2,,...,,li−k−1

āl1 āl2 ...āli−k−1




k−1∏
j=0

ρ j

 − λhiS ∗
i−1∏
j=0

ρ j, i = 2, 3, ..., n.

If R0,n > 1, then it follows from (3.9) that c∗1 > 0, c∗i >

 n∑
l1,l2,...,li=2

l1,l2,,...,,li

āl1 āl2 ...āli

 + µR0,n

 n∑
l1,l2,...,li−1=2

l1,l2,,...,,li−1

āl1 āl2 ...āli−1

 for
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i = 2, 3, ..., n − 1, c∗n > µ(R0,n − 1)

 n∑
l1,l2,...,ln−2=2

l1,l2,,...,,ln−2

āl1 āl2 ...āln−2

 ā1 + µR0,n
n∏

j=2
ā j and c∗n+1 > 0. Hence, all coefficients

c∗j , j = 0, ..., n + 1 are positive. Therefore, by Descartes’ rule of sign, all real eigenvalues of A∗ are nonpositive. If

R0,n = 1, then c∗n+1 = 0 and r̄ = 0 is an eigenvalue of A∗.

Remark 5. We briefly describe the stability of the epidemic equilibrium
(
S ∗, I∗1

)
for the case n = 1 graphically using

Figure 1 below.

Figure 1: Graph of I1 =
β−µS
λh1S and I1 =

β−µS
µ+ρ1

In region A, β−µS
λh1S ≤ I1 ≤

β−µS
µ+ρ1

and µ+ρ1
λh1
≤ S ≤ β

µ
, 0 ≤ I1 ≤ I∗1 . So, dS/dt = β − µS − λh1S I1 < 0 and

dI1/dt = λh1S I1 − (µ + ρ1)I1 > 0. Therefore , we have R0,1 > 1, S is decreasing and I1 is increasing in region A.

In region B, β−µS
µ+ρ1

< I1 <
β−µS
λh1S , 0 < S ≤ µ+ρ1

λh1
and I∗1 ≤ I1 ≤

β
µ
. So, dS/dt > 0 and dI1/dt < 0. Therefore , we

have R0,1 > 1, S is increasing and I1 is decreasing in region B. Hence, the point P1 =

(
S ∗, I∗1

)T
is a locally stable

equilibrium point.

4. Existence and stability of equilibrium points in the presence of Antiretroviral treatments

In this section, we discuss the existence and stability of equilibrium points of (2.1) while ART treatment is intro-

duced into the system. We define the infection-free and endemic equilibrium points of (2.1) by

P̄0 =

(
S̄ 0 Ī0

1 . . . Ī0
n T̄ 0

1 . . . T̄ 0
n

)T
,

P̄1 =

(
S̄ ∗ Ī∗1 . . . Ī∗n T̄ ∗1 . . . T̄ ∗n

)T
,
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respectively. It follows from (2.1) that

S̄ 0 = κ̄, Ī0
j = 0, T̄ 0

j = 0, j = 1, 2, ..., n. (4.1)

We shall denote the reproduction number in the presence of treatment by Rt,n and call it the elimination threshold

parameter. This parameter will be used to quantify the level of treatment above which infection can no longer persist

in the endemic steady state. We shall use the idea in Section 3.1 to find the closed form expression for Rt,n and show

that it convey significant amount of insight. We shall solve for the closed form expression for the endemic equilibrium,

P̄1, in terms of Rt,n and show that if Rt,n = 1, then there is enough treatment to avoid persistent of infection in the

endemic equilibrium state (that is, P̄1 = P̄0).

4.1. Elimination threshold quantity, Rt,n, in the presence of treatments.

In the presence of treatments, we write (2.1) using the next-generation matrix [6] in the form

d ¯̄x =
(
F ( ¯̄x) −V( ¯̄x)

)
dt, (4.2)

where ¯̄x =



I1

...

In

T1

...

Tn

S



, F =



λS
n∑

j=1

(
h jI j + εT j

)
0
...

0

0


,V =



a1I1 − φT1

a2I2 − ρ1I1 − φT2

...

anIn − ρn−1In−1 − φTn

b1T1 − τI1

b2T2 − τI2 − γ1T1

...

bnTn − τIn − γn−1Tn−1

λS
n∑

j=1

(
h jI j + εT j

)
+ µS − β



.

The 2n + 1 × 2n + 1 Jacobian matrices D F
(
P̄0

)
=

(
∂Fi
∂x̄ j

)
and DV

(
P̄0

)
=

(
∂Vi
∂x̄ j

)
of F andV in (4.2) evaluated at

P̄0 are partitioned as D F
(
P̄0

)
=

F 0

0 0

 and DV
(
P̄0

)
=

V 0

J3 J4

, respectively, where F, V , J3 and J4 are given by

F = λκ̄



h1 h2 . . . hn ε ε . . . ε

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0


, V = −

MI φI

τI MT

, J3 = λκ̄
(
h1 h2 . . . hn ε ε . . . ε

)
, J4 = µ,

and
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ak = µ + ρk + τ,

bk = µ + γk + φ,

MI =



−a1 0 0 0 . . . 0 0

ρ1 −a2 0 0 . . . 0 0

0 ρ2 −a3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . ρn−1 −an


, MT =



−b1 0 0 0 . . . 0 0

γ1 −b2 0 0 . . . 0 0

0 γ2 −b3 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . . . . . . . γn−1 −bn


,

(4.3)

I is a n × n identity matrix.

It follows that the spectral radius, Rt,n, of the next generation matrix FV−1 is given by

Rt,n = κ̄λ

n∑
k=1


ukhk + τεvk

k∏
j=1

(
a jb j − τφ

)
 , (4.4)

where uk and vk satisfy

uk = bkρk−1uk−1 + τφγk−1vk−1,

vk = ρk−1uk−1 + akγk−1vk−1, for k = 1, 2, ..., n,

and ρ0 = 1, u0 = 1, γ0 = 0 and v0 = 0. We note here that a jb j − τφ = ā jb j + τ(µ + γ j) > 0 for j = 1, 2, ..., n.

Remark 6. Some insights on the derivation of Rt,n are as follows: a fraction ρ j

a j
of infected individuals in stage j

progress to stage j + 1, a fraction γ j

b j
of individuals receiving treatment progress from stage j to j + 1, a fraction τ

a j

of infected individuals in stage j progress to compartments with individuals receiving treatment in stage j, a fraction

φ
b j

of individual receiving treatments in stage j re-enters compartment with infected individuals in stage j. Thus, an

individual introduced into compartment with infected individuals at stage 1 spends, on average 1
b1

∞∑
j=1

(
τ
a1

) j ( φ
b1

) j−1
=

τ
a1b1−τφ

times unit in compartment of individuals receiving treatment in stage 1. Likewise, an individual introduced

into compartment with treated individuals at stage 1 spends, on average φ
a1b1−τφ

times unit in compartment of infected

individuals. An individual enters the infectious compartment 1 and spends 1
a1

time units there, producing on average,

λh1
a1

secondary infections. Hence, Rt,1 = κ̄λ

(
h1
a1

1
1− τ

a1
φ

b1

+ ε τ
a1b1−τφ

)
.
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Remark 7. It follows directly that if there are no individual moving from untreatment to treatment population (that

is, if τ = 0), then u j =
j∏

k=1
bkρk−1 for j = 1, 2, ..., n, and Rt,n = R0,n.

Remark 8. We point out the error made in Kretzschmar et al. [15]. We show here that Rt,1 � R0,1 for all values of

τ and φ. For fixed φ, define f (τ) =
Rt,1

R0,1
. We have f

′

(τ) =
(µ+ρ1)b1

h1

[
ε(µ+ρ1)−h1(µ+γ1)

(a1b1−τφ)2

]
. It follows that f (τ) ≤ f (0) = 1 if

ε (µ + ρ1) < h1 (µ + γ1) (that is, if h1
ε
> ā1

b̄1
). Hence, Rt,1 ≤ R0,1 if h1

ε
> ā1

b̄1
, Rt,1 ≥ R0,1 if h1

ε
< ā1

b̄1
and Rt,1 = R0,1 if

h1
ε

= ā1
b̄1

. We define h1
ε

as the full-to-reduced infection ratio in stage 1.

4.1.1. Existence and Stability of infection-free equilibrium P̄0 in the presence of treatment

The following theorem shows the condition for the local stability of the infection-free equilibrium, P̄0. Following

the same idea used to proof Theorem 1, the proof of the local asymptotic stability of P̄0 reduces to showing that the

real part of all eigenvalues of the coefficient matrix of the linear associated system to (2.1) is negative. The coefficient

matrix of the linear associated system to (2.1) is similar to that presented in (5.11) (and the same if σ1 = 0). For

this reason, we omit the proof here and direct the reader to Theorem 14 where the real part of the eigenvalues of the

coefficient matrix is shown to be negative.

Theorem 6. The infection-free equilibrium P̄0 of (2.1) is asymptotically stable if Rt,n < 1 and unstable if Rt,n > 1.

We give the proof of the global stability of the infection-free equilibrium P̄0 if Rt,n ≤ 1.

Theorem 7. The infection-free equilibrium P̄0 of (2.1) is globally stable in the feasible region if Rt,n ≤ 1.

Proof. Consider the Lyapunov function L : R+
2n+1 → R+ by

L(S , I1, I2, ..., In,T1, ...,Tn) =

(
S − S̄ 0 − S̄ 0 ln

S
S̄ 0

)
+

n∑
k=1

ω̄kIk +

n∑
k=1

q̄kTk,

where ω̄k and q̄k satisfy(
ω̄n

q̄n

)
= λS̄ 0

anbn−τφ

(
hnbn + τε
hnφ + anε

)
,(

ω̄n−k

q̄n−k

)
= 1

an−kbn−k−τφ

[(
bn−kρn−k γn−kτ
φρn−k γn−kan−k

) (
ω̄n−k+1
q̄n−k+1

)
+ λS̄ 0

(
hn−kbn−k + τε
hn−kφ + an−kε

)]
, for k = 1, 2, 3, ..., n − 1.

(4.5)

It can be shown that ω̄kāk − ω̄k+1ρk − λS̄ 0hk − τq̄k = 0, q̄kbk − q̄k+1γk − λS̄ 0ε − φω̄k = 0 for k = 1, 2, ..., n − 1,
ω̄nān − τq̄n − λS̄ 0hn = 0 and q̄nbn − φω̄n − λS̄ 0ε = 0. Define

R̄t,n = κ̄λ

n∑
k=1


ūkhk + εv̄k

k∏
j=1

(
a jb j − τφ

)
 , (4.6)

where ūk and v̄k are recurssive sequences defined by
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ūk = bkρk−1ūk−1 + φγk−1v̄k−1,

v̄k = τρk−1ūk−1 + akγk−1v̄k−1, for k = 2, 3, ..., n,

and ū1 = φ, v̄1 = a1. It follows from (4.5) that(
ω̄1
q̄1

)
=

n−1∏
j=1

[
1

a jb j − τφ

(
b jρ j γ jτ
φρ j γ ja j

)] (ω̄n

q̄n

)

+λS̄ 0
n−2∑
k=1

 k∏
j=1

[
1

a jb j − τφ

(
b jρ j γ jτ
φρ j γ ja j

)] [ 1
ak+1bk+1 − τφ

(
hk+1bk+1 + τε
hk+1φ + ak+1ε

)]

+
λS̄ 0

a1b1 − τφ

(
h1b1 + τε
h1φ + a1ε

)
=

(
Rt,n

R̄t,n

)
,

and the derivative of L computed along solution of (4.2) is

dL
dt

= β + µS̄ 0 − βS̄ 0/S − µS + (ω̄1 − 1)λS
n∑

k=1

(hkIk + εTk) −
n∑

k=1

(
ω̄kāk − ω̄k+1ρk − λS̄ 0hk − τq̄k

)
Ik

−

n∑
k=1

(
q̄kbk − q̄k+1γk − λS̄ 0ε − φω̄k

)
Tk −

(
ω̄nān − λS̄ 0hn − τq̄n

)
In −

(
q̄nb̄n − λS̄ 0ε − φω̄n

)
Tn.

If Rt,n ≤ 1, then 0 < Rt,n ≤ 1 and 0 < ω̄1 ≤ 1. Thus, it follows from (4.5) and (4.6) that ω̄k and q̄k are positive for
k = 1, 2, ..., n and

dL
dt

≤ −β

(
S̄ 0

S
+

S
S̄ 0
− 2

)
,

≤ 0,

using the fact that S̄ 0 = κ̄ = β/µ and 1 =
(

S̄ 0

S
S
S̄ 0

)1/2
≤ 1

2

(
S̄ 0

S + S
S̄ 0

)
. If Rt,n < 1, then dL/dt = 0 if and only if S = S̄ 0,

Ik = 0 and Tk = 0 for all k = 1, 2, ..., n. It Rt,n = 1, then dL/dt = 0 if and only if S = S̄ 0. In either case, it can be
shown that the largest invariant set of (4.2) contained in {(S , I1, ..., In,T1, ...,Tn)T ∈ T dL/dt = 0} is the set {P̄0}. The
global stability of P̄0 follows from the LaSalle invariance principle [16]. �

4.1.2. Existence and stability of endemic equilibrium P̄1 in the presence of treatment

The endemic equilibrium P̄1 =

(
S̄ ∗ Ī∗1 . . . Ī∗n T̄ ∗1 . . . T̄ ∗n

)T
of the system (2.1) is given by



S̄ ∗ = κ̄
Rt,n
,

Ī∗k =
βuk

k∏
j=1

(a jb j−τφ)

(
1 − 1

Rt,n

)
,

T̄ ∗k =
τβvk

k∏
j=1

(a jb j−τφ)

(
1 − 1

Rt,n

)
, k = 1, 2, ..., n,

(4.7)

where uk and vk are defined in (4.4). The following theorem follows directly from (4.7).
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Theorem 8. The endemic equilibrium P̄1 of (2.1) exists if and only if Rt,n > 1 and does not exit if Rt,n < 1. The

endemic equilibrium becomes infection-free (that is, P̄1 = P̄0) if Rt,n = 1.

Proof. It follows directly from (4.7) that S̄ ∗ > 0, Ī∗k > 0 and T̄ ∗k > 0 for k = 1, 2, ..., n, if Rt,n > 1.

Remark 9. From (4.7) and Theorem 8, we deduce that the level of treatment above which the infection can no longer

persist in endemic state is attained when Rt,n = 1. In this case, we only have one equilibrium point, namely, P̄0.

We follow the same procedure used in previous theorems to discuss the global stability of the endemic equilibrium

P̄1.

Theorem 9. The endemic equilibrium P̄1 of the system (2.1) is globally stable if Rt,n > 1.

Proof. The existence of the endemic equilibrium P̄1 follows from Theorem 8 if Rt,n > 1. Assume Rt,n > 1. Define the
Lyapunov function L̄ : R+

2n+1 → R+ by

L̄ (S , I1, ..., In,T1, ...,Tn) =

(
S − S̄ ∗ − S̄ ∗ ln

S
S̄ ∗

)
+

n∑
k=1

w̄∗k

Ik − Ī∗k − Ī∗k ln
Ik

Ī∗k

 +

n∑
k=1

c̄∗k

Tk − T̄ ∗k − T̄ ∗k ln
Tk

T̄ ∗k

 , (4.8)

where w̄∗k and c̄∗k, k = 1, 2, ..., n are positive constants to be determined later. Define

ȳ0 =
S
S̄ ∗
, ȳk =

Ik

Ī∗k
, and πk =

Tk

T̄ ∗k
for k = 1, 2, ..., n.

We have

dL̄
dt = C̄ + (w̄∗1 − 1)λS̄ ∗ȳ0

n∑
k=1

(
hk Ī∗k ȳk + εT̄ ∗kπk

)
− S ∗

(
µ + λh1w̄∗1 Ī∗1

)
ȳ0 −

β
ȳ0
−

n−1∑
k=1

(
akw̄∗k − λS̄ ∗hk − ρkw̄∗k+1 − τc̄∗k

)
Ī∗k ȳk

−
(
anw̄∗n − λS̄ ∗hn − τc̄∗n

)
Ī∗n ȳn −

n∑
k=2

ρk−1w̄∗k Ī∗k−1
ȳk−1
ȳk
− λS̄ ∗w̄∗1

ȳ0
ȳ1

n∑
k=2

hk Ī∗k ȳk

−
n−1∑
k=1

(
c̄∗kbk − c̄∗k+1γk − λS̄ ∗ε − w̄∗kφ

)
T̄ ∗kπk −

(
c̄∗nbn − λS̄ ∗ε − w̄∗nφ

)
T̄ ∗nπn

−
n∑

k=1
φw̄∗kT̄ ∗k

πk
ȳk
−

n∑
k=1

c̄∗kτĪ∗k
ȳk
πk
−

n∑
k=2

c̄∗kγk−1T̄ ∗k−1
πk−1
πk
− λS̄ ∗w̄∗1

ȳ0
ȳ1

n∑
k=1

εT̄ ∗kπk

(4.9)
where

C̄ = β + µS̄ ∗ +

n∑
k=1

(
akw̄∗k Ī∗k + bkc̄∗kT̄ ∗k

)
. (4.10)

By setting w̄∗1 − 1 = 0, akw̄∗k − λS̄ ∗hk − ρkw̄∗k+1 − τc̄∗k = 0 and c̄∗kbk − c̄∗k+1γk − λS̄ ∗ε − w̄∗kφ = 0 for k = 1, 2, ..., n − 1,
anw̄∗n − λS̄ ∗hn − τc̄∗n = 0 and c̄∗nbn − λS̄ ∗ε − w̄∗nφ = 0, it follows that w̄∗k and c̄∗k satisfy

w̄∗1 = 1,
w̄∗k+1 =

(
akw̄∗k − λS̄ ∗hk − τc̄∗k

)
/ρk, k = 1, ..., n − 1,

w̄∗n =
(
τc̄∗n + λS̄ ∗hn

)
/an,

(4.11)

c̄∗1 = 1
τĪ∗1

(
φT̄ ∗1 + λS̄ ∗ε

n∑
k=1

T̄ ∗k

)
,

c̄∗k+1 =
(
bkc̄∗k − λS̄ ∗ε − φw̄∗k

)
/γk, k = 1, ..., n − 1,

c̄∗n =
(
φw̄∗n + λS̄ ∗ε

)
/bn,

(4.12)
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Hence, the derivative of L̄ with respect to t computed along solutions of (4.2) is

dL̄
dt = −g1

(
ȳ0 + 1

ȳ0
− 2

)
−

n∑
k=2

gk

(
1
ȳ0

+
ȳ0 ȳk
ȳ1

+
k∑

j=2

ȳ j−1

ȳ j
− (k + 1)

)
−

n∑
k=1

fk
(
πk
ȳk

+
ȳk
πk
− 2

)
− d1

(
1
ȳ0

+
ȳ0π1
ȳ1

+
ȳ1
π1
− 3

)
−

n∑
k=2

dk

(
1
ȳ0

+
ȳ0πk
ȳ1

+
ȳ1
π1

+
k∑

j=2

π j−1

π j
− (k + 2)

)
,

(4.13)

where C̄, dk, fk and gk, k = 1, 2, ..., n, satisfy

g1 =
(
µ + λw̄∗1h1 Ī∗1

)
S̄ ∗,

gk = ρk−1w̄∗k Ī∗k−1 − ρkw̄∗k+1 Ī∗k = λw̄∗1S̄ ∗hk Ī∗k , for k = 2, 3, ..., n − 1,
gn = λw̄∗1S̄ ∗hn Ī∗n = ρn−1w̄∗n Ī∗n−1,

(4.14)

d1 = λw̄∗1S̄ ∗εT̄ ∗1 ,
dk = γk−1c̄∗kT̄ ∗k−1 − γkc̄∗k+1T̄ ∗k = λw̄∗1S̄ ∗εT̄ ∗k , for k = 2, 3, ..., n − 1,
dn = λw̄∗1S̄ ∗εT̄ ∗n = γn−1c̄∗nT̄ ∗n−1,

(4.15)

f1 = φw̄∗1T̄ ∗1 = c̄∗1τĪ∗1 −
n∑

j=1
d j,

fk = φw̄∗kT̄ ∗k = c̄∗kτĪ∗k , for k = 2, 3, ..., n,
(4.16)

and

C̄ =

n∑
k=1

(k + 1)gk + 2
n∑

k=1

fk +

n∑
k=1

(k + 2)dk. (4.17)

The expressions for gk and dk in (4.14) and (4.15) follow by using (4.11), (4.12) and (4.16), and the fact that
S̄ ∗, Ī∗k and T̄ ∗k are endemic equilibrium of (2.1) that satisfy ρk−1 Ī∗k−1 = ak Ī∗k − φT̄ ∗k and bkT̄ ∗k − τĪ∗k = γk−1T̄ ∗k−1 for

k = 2, 3, ..., n − 1. The value of c̄∗1 in (4.12) is computed using expression for f1 in (4.16) and the fact that
n∑

j=1
d j =

λS̄ ∗
n∑

j=1
εT̄ ∗j (derived by comparing coefficients of ȳ0π1/ȳ1 in (4.9) and (4.13)). By substituting (4.16) into (4.11) and

(4.12) and using the fact that S̄ ∗, Ī∗k and T̄ ∗k are endemic equilibrium of (2.1), it follows that

w̄∗1 = 1,

w̄∗k+1 = 1
ρk Ī∗k

λS̄ ∗
n∑

j=k+1
h j Ī∗j , for k = 1, 2, ..., n − 1,

c̄∗1 = 1
τĪ∗1

(
φT̄ ∗1 + λS̄ ∗

n∑
j=1
εT̄ ∗j

)
,

c̄∗k+1 = 1
γk T̄ ∗k

λS̄ ∗
n∑

j=k+1
εT̄ ∗j , for k = 1, 2, ..., n − 1.

(4.18)

Finally, by using (4.14), (4.15), (4.16) and the fact that

n∑
k=1

(gk + dk) = β,

(derived by comparing coefficients of 1/ȳ0 in (4.9) and (4.13)), we can show that the expression for C̄ in (4.10) and
(4.17) are the same. Hence, from (4.13)-(4.16), (4.18), and the fact that the arithmetic mean of a list of non-negative

real numbers is greater than or equal to the geometric mean of the same list [21], it follows that 1 =
(
ȳ0

1
ȳ0

) 1
2
≤
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1
2

(
ȳ0 + 1

ȳ0

)
and 1 =

(
1
ȳ0

ȳ0 ȳk
ȳ1

k∏
j=2

ȳ j−1

ȳ j

) 1
k+1

≤ 1
k+1

(
1
ȳ0

+
ȳ0 ȳk
ȳ1

+
k∑

j=2

ȳ j−1

ȳ j

)
for k = 2, ..., n, 1 =

(
πk
ȳk

ȳk
πk

) 1
2
≤ 1

2

(
πk
ȳk

+
ȳk
πk

)
, for

k = 1, 2, ..., n, 1 =
(

1
ȳ0

ȳ0π1
ȳ1

ȳ1
π1

) 1
3
≤ 1

3

(
1
ȳ0

+
ȳ0π1
ȳ1

+
ȳ1
π1

)
, 1 =

(
1
ȳ0

ȳ0πk
ȳ1

ȳ1
π1

k∏
j=2

π j−1

π j

) 1
k+2

≤ 1
k+2

(
1
ȳ0

+
ȳ0πk
ȳ1

+
ȳ1
π1

+
k∑

j=2

π j−1

π j

)
, for

k = 2, 3, ..., n, and

dL̄
dt ≤ 0. (4.19)

Equality holds if and only if ȳ0 = 1, ȳ j−1 = ȳ j, π j−1 = π j for j = 2, 3, ..., n, ȳ j = π j for j = 1, 2, ..., n, that is, if S = S̄ ∗,
I j−1/Ī∗j−1 = I j/Ī∗j = T j−1/T̄ ∗j−1 = T j/T̄ ∗j for j = 2, 3, ..., n. It can be easily verified that the largest invariant set of (4.2)
contained in {(S , I1, ..., In,T1, ...,Tn)T ∈ T : dL̄/dt = 0} is the singleton {P̄1}. By the LaSalle’s Invariance Principle
[16], it follows that P̄1 is globally stable in the feasible region if Rt,n > 1 . �

5. Stochastic Model

In this section, we study the effect of noise on the transmission rate and infectivity, hk, of untreated individuals in

stage k. External noise appears multiplicatively in our model and it is able to modify the mean dynamical behavior

of the population [10, 18]. We assume, following the argument mabe by Mendez et al. [18], that external fluctiations

may be caused by variability in the number of contacts between infected and susceptible individuals and such random

variations can be modeled by a white noise [18]. Let λ̄k = λhk. By allowing the transmission rate λ to fluctuate around

a mean value, we introduce external fluctuations in the model as follows:

λ̄k ≡ λ̄k + σk C(t), (5.1)

where C(t) is a noise term with zero mean, and σ > 0 is the noise intensity, a measure of the amplitude of fluctuation.

By substituting (5.1) into (2.1), we have the Stratonovich stochastic model

dS =

(
β − λS

n∑
j=1

(
h jI j + εT j

)
− µS

)
dt − S

n∑
j=1
σ jI j ◦ dW j(t), S (t0) = S 0,

dI1 =

(
λS

n∑
j=1

(
h jI j + εT j

)
− (µ + ρ1 + τ)I1 + φT1

)
dt + S

n∑
j=1
σ jI j ◦ dW j(t), I1(t0) = I01,

dIk = (ρk−1Ik−1 − (µ + ρk + τ)Ik + φTk) dt, Ik(t0) = I0k,

dT1 = (τI1 − (µ + γ1 + φ)T1)dt, T1(t0) = T01,

dTk = (τIk + γk−1Tk−1 − (µ + γk + φ)Tk) dt, Tk(t0) = T0k, for k = 2, 3, ..., n,

(5.2)

where Wi(t), i = 1, 2, ..., n, are standard Wiener process on a filtered probability space (Ω,Ft, (Ft)t≥0,P), the filtration

function (F )t≥0 is right-continuous and each Ft with t ≥ 0 contains all P-null sets in Ft; ◦ denotes the Stratonovich

integral [1], the initial process x(t0) = (S (t0), I1(t0), ..., In(t0),T1(t0), ...,Tn(t0)) is Ft0 measurable and independent of

W(t) −W(t0).
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We use the Stratonovich-Itô conversion theorem given in Bernardi et al [4] and Kloeden et al. [14] (stated below)

to convert the Stratonovich dynamic model (5.2) to its Itô’s equivalent and later give a theorem showing how the Itô’s

equivalent is derived.

Theorem 10. ([4, 14]) The Itô stochastic differential equation (SDE)

dX = a(t, X)dt +

M∑
j=1

b j(t, X)dW j(t), (5.3)

defined componentwise as

dXi = ai(t, X)dt +

M∑
j=1

bi, j(t, X)dW j(t), i = 1, 2, ...,N,

having the same solution as the N− dimensional Stratonovich SDE with M− dimensional Wiener process

dX = a(t, X)dt +

M∑
j=1

b j(t, X) ◦ dW j(t), (5.4)

has drift coefficient a(t, X) that is defined in terms of a(t, X), componentwise, by

ai(t, X) = ai(t, X) +
1
2

N∑
k=1

M∑
j=1

bk, j(t, X)
∂bi, j

∂xk
(t, X), i = 1, 2, ...,N. (5.5)

The following theorem gives the Itô’s equivalent of (5.2).

Theorem 11. The Itô stochastic differential equation having the same solution as the 2n+1-dimensional Stratonovich

stochastic differential equation (5.2) is given by

dS =

(
β − λS

n∑
j=1

(
h jI j + εT j

)
− µS + 1

2 S
n∑

j=1
σ2

j I
2
j −

1
2σ

2
1S 2I1

)
dt − S

n∑
j=1
σ jI j dW j(t), S (t0) = S 0,

dI1 =

(
λS

n∑
j=1

(
h jI j + εT j

)
− (µ + ρ1 + τ)I1 + φT1 −

1
2 S

n∑
j=1
σ2

j I
2
j + 1

2σ
2
1S 2I1

)
dt + S

n∑
j=1
σ jI j dW j(t), I1(t0) = I01,

dIk = (ρk−1Ik−1 − (µ + ρk + τ)Ik + φTk) dt, Ik(t0) = I0k,

dT1 = (τI1 − (µ + γ1 + φ)T1)dt, T1(t0) = T01,

dTk = (τIk + γk−1Tk−1 − (µ + γk + φ)Tk) dt, Tk(t0) = T0k, for k = 2, 3, ..., n.
(5.6)

Proof. Using Theorem 10, we define x = (S , I1, I2, ..., In,T1,T2, ...,Tn). It follows from (5.2) and (5.4) that
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a(t, x) =



β − λS
n∑

j=1

(
h jI j + εT j

)
− µS

λS
n∑

j=1

(
h jI j + εT j

)
− (µ + ρ1 + τ)I1 + φT1

ρ1I1 − (µ + ρ2 + τ)I2 + φT2
...

ρn−1In−1 − (µ + ρn + τ)In + φTn

τI1 − (µ + γ1 + φ)T1
...

τIn + γn−1Tn−1 − (µ + γn + φ)Tn



, b1, j = −σ jS I j, b2, j = σ jS I j and bi, j = 0 for i ≥ 3, j =

1, 2, ..., n. Also, we have ∂b1, j

∂x1
= ∂b1, j

∂S = −σ jI j, ∂b2, j

∂x1
= σ jI j for j = 1, 2, ..., n, ∂b1, j

∂x2
= ∂b1, j

∂I1
= −σ1S , ∂b2, j

∂x2
= σ1S if j = 1

and zero otherwise, so that from (5.5),

ai(t, x) = ai(t, x) +
1
2

2n+1∑
k=1

n∑
j=1

bk, j(t, x)
∂bi, j

∂xk
(t, x) = ai(t, x) +

1
2

2∑
k=1

n∑
j=1

bk, j(t, x)
∂bi, j

∂xk
(t, x),

= ai(t, x) +
1
2

n∑
j=1

(
b1, j ∂bi, j

∂x1
+ b2, j ∂bi, j

∂x2

)
.

Therefore,

a1(t, x) = a1(t, x) + 1
2

n∑
j=1

(
σ2

jS I2
j

)
− 1

2σ
2
1S 2I1,

a2(t, x) = a2(t, x) − 1
2

n∑
j=1

(
σ2

jS I2
j

)
+ 1

2σ
2
1S 2I1,

ai(t, x) = ai(t, x), for i = 3, 4, ..., 2n + 1.

(5.7)

Using (5.3) and (5.7), the Itô’s equivalent of (5.2) reduces to (5.6). �

5.1. Existence of solution of (5.6)

Following Theorem 3.5 of Khasminskii [13], we use Theorem 12 below to show the existence and uniqueness of

solution of (5.6).

Definition 2. Let C1,2(R+ × R2n+1;R+) denote the family of all nonnegative functions V(t,u) on R+ × R2n+1 that are

continuously differentiable with respect to t and twice continuously differentiable with respect to u.

Definition 3. Define the domain Un by Un = {|x| < n}. We define the differential operator L on a function V(t,u) ∈

C1,2 corresponding to a stochastic differential equation with drift and diffusion coefficients A(t,u) and B(t,u), respec-

tively, by

LV(t,u) =
∂V(t,u)
∂t

+
∂V(t,u)
∂u

A +
1
2

trace
[
BT ∂

2V(t,u)
∂u2 B

]
(5.8)

where ∂V(t,u)
∂u =

(
∂V(t,u)
∂u1

, ..., ∂V(t,u)
∂un

)
and ∂2V(t,u)

∂u2 =

(
∂2V(t,u)
∂ui∂u j

)
n×n

.
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Theorem 12. (Khasminskii [13]) Suppose that (5.6) satisfies the classical existence and uniqueness theorem in every

cylinder [a, b] ×UR and, moreover, that there exists a nonnegative function V ∈ C1,2

(
[t0,T ] × R2n+1

+ → R+
)

such that

for some constant c > 0

LV ≤ cV,

VR = inf
|x|>R

V(t, x)→ ∞, as R→ ∞.
(5.9)

Assume x(t0) = (S (t0), I1(t0), ..., In(t0),T1(t0), ...,Tn(t0)) is independent of the processes Wi(t)−Wi(t0), i = 1, 2, ..., n.

Then there exists a solution x(t) = (S (t), I1(t), ..., In(t),T1(t), ...,Tn(t)) of the stochastic differential equation (5.6) which

is an almost surely continuous stochastic process and is unique up to equivalence.

Theorem 13. There exists a solution x(t) = (S (t), I1(t), ..., In(t),T1(t), ...,Tn(t)) of (5.6) which is an almost surely

continuous stochastic process and is unique up to equivalence if x(t0) is independent of the processes Wi(t) −Wi(t0),

i = 1, 2, ..., n.

Proof. It is easy to show that (5.6) satisfies the classical existence and uniqueness theorem in every cylinder [a, b] ×
UR (that is, the drift and diffusion coefficients of (5.6) satisfy the Lipschitz condition and linear growth, locally, in
[a, b] × UR). It suffices to show that condition (5.9) is satisfied in order to prove the existence of x(t) using Theorem
12. Define x = (S , I1, ..., In,T1, ...,Tn) and V : [0,T ] × R2n+1

+ → R+ by

V(t, x) = ln

S +

n∑
j=1

(
I j + T j

)
+ eβ

 .
It follows directly that V > 0. Using (5.8), we have

LV =
1

S +
n∑

j=1

(
I j + T j

)
+ eβ

β − λS
n∑

j=1

(
h jI j + εT j

)
− µS +

1
2

S
n∑

j=1

σ2
j I

2
j −

1
2
σ2

1S 2I1 + λS
n∑

j=1

(
h jI j + εT j

)

−(µ + ρ1 + τ)I1 + φT1 −
1
2

S
n∑

j=1

σ2
j I

2
j +

1
2
σ2

1S 2I1 +

n∑
k=2

(ρk−1Ik−1 − (µ + ρk + τ)Ik + φTk) + τI1

−(µ + γ1 + φ)T1 +

n∑
k=2

(τIk + γk−1Tk−1 − (µ + γk + φ)Tk)


−

1(
S +

n∑
j=1

(
I j + T j

)
+ eβ

)2

n∑
j=1

σ2
jS

2I2
j

≤

β − µ

(
S +

n∑
j=1

(
I j + T j

))
S +

n∑
j=1

(
I j + T j

)
+ eβ

< V.

Define VR = inf
|x|>R

V(t, x). Since V(t, x) ≥ ln
(
|x| + eβ

)
, it follows that VR → ∞ as R → ∞. The existence and
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uniqueness of solution x(t) = (S , I1, ..., In,T1, ...,Tn) with initial condition x(t0) independent of Wi(t) − Wi(t0), i =

1, 2, ..., n, follow directly from Theorem 12. �

5.2. Reproduction number R0,n and elimination threshold Rt,n in the presence of noise

By defining R0,n and Rt,n as the stochastic reproduction number equivalent to R0,n and Rt,n, respectively, we study

the condition under which the system (5.6) evolves into an endemic or transient epidemic advance state by analyzing

thresholds for R0,n and Rt,n. According to Tornatore et al. [22], many problems concerning the stability of the

equilibrium states of a non-linear stochastic system can be reduced to problems concerning stability of solutions of

the linear associated system. For this reason, we shall first study the conditions under which the linear associated

system to (5.6) evolves into an endemic or transient epidemic advance state. Using the idea in Mendez et al. [18], we

find condition under which expected infected population (with respect to linear associated system to (5.6)) becomes

extinct.

Define Φ =

(
S − κ̄ I1 . . . In T1 . . . Tn

)T
. The linearization of (5.6) along the infection-free equilibrium P̄0 is

given by

d Φ = A Φ dt +

n∑
i=1

Gi Φ dWi(t), u(t0) = u0, (5.10)

whereA =

A1,1 A1,2

A2,1 A2,2

, A1,1 =



−µ −
(
λh1 + σ2

1κ̄/2
)
κ̄ −λκ̄h2 −λκ̄h3 . . . −λκ̄hn−1 −λκ̄hn

0 −
(
ν − σ2

1κ̄
2/2

)
λκ̄h2 λκ̄h3 . . . λκ̄hn−1 λκ̄hn

0 ρ1 −a2 0 . . . 0 0

0 0 ρ2 −a3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 . . . . . . ρn−1 −an


n+1×n+1

,

A1,2 =



−λκ̄ε −λκ̄ε −λκ̄ε . . . −λκ̄ε −λκ̄ε

φ + λκ̄ε λκ̄ε λκ̄ε . . . λκ̄ε λκ̄ε

0 φ 0 0 . . . 0

0 0 φ 0 . . . 0
...

...
...

. . .
...

...

0 0 . . . . . . 0 φ


n×n

, A2,1 =



0 τ 0 . . . 0 0

0 0 τ . . . 0 0

0 0 0 τ . . . 0
...

...
...

. . .
...

...

0 0 . . . . . . 0 τ


n×n+1

, A2,2 = MT defined

in (4.3), ν = a1 −λh1k̄, ak and bk are defined in (4.3), and G j =

(
O j Γ O2n− j

)
, where Om is a 2n + 1×m zero matrix

and Γ = σ jκ̄
(
−1 1 0 . . . 0

)T

2n+1×1
.

Define m(t) = E [Φ(t)]. Then m(t) satisfies the differential equation
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dm = A m dt. (5.11)

Let r be an eigenvalue ofA. It can be shown that the characteristic polynomial ofA is given by

det(A− rI2n+1×2n+1) = −(r + µ) det(Ā − rI2n×2n), (5.12)

where Ā is the minor ofA1,1 in (5.10).

Using the idea presented in Mendez et al. [18] and in Section 3.1, we calculate the reproduction number R0,n with

respect to the deterministic model (5.11) in the absence of treatment (that is, case where m = E
(
S − κ̄ I1 . . . In

)T

and dm = A1,1 m dt) as

R0,n = λκ̄
n∑

r=1
hr

r∏
j=1

(
ρ j−1

µ+ρ j

)
+ 1

2

(
σ2

1 κ̄
2

µ+ρ1

)
,

= R0,n + 1
2

(
σ2

1 κ̄
2

µ+ρ1

)
,

(5.13)

where R0,n is defined in (3.3). Also, using similar idea, we calculate the elimination threshold Rt,n with respect to

(5.11) in the presence of treatment as

Rt,n = κ̄λ
n∑

k=1

 ukhk+τεvk
k∏

j=1
(a jb j−τφ)

 + 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

)
,

= Rt,n + 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

)
,

(5.14)

where uk, vk and Rt,n are defined in (4.4).

5.3. Stability of infection-free equilibrium P̄0 of (5.6)

We get conditions for stochastic stability of the infection-free equilibrium P̄0 of (5.6). According to Tornatore et

al. [22], many problems concerning the stability of the equilibrium states of a non-linear stochastic system can be

reduced to problems concerning stability of solutions of the linear associated system. For this reason, we first study

the conditions for stochastic stability of the infection-free equilibrium P̄0 of the linear associated system (5.10) and

later use Theorem A.2 in [22] to extend the result to that of the nonlinear system (5.6).

Remark 10. We compute the determinant of Ā as det(Ā) =

[
n∏

j=1

(
a jb j − τφ

)] (
1 − Rt,n

)
.
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Define

R0,n = λκ̄
n∑

r=1
hr

r∏
j=1

(
ρ j−1

µ+ρ j+τ

)
+ 1

2

(
σ2

1 κ̄
2

µ+ρ1+τ

)
,

Rt,n = κ̄λ
n−1∑
k=1

 ukhk+τεvk
k∏

j=1
(a jb j−τφ)

 + κ̄λ

 hnρn−1un−1

an
n−1∏
j=1

(a jb j−τφ)

 + 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

)
.

(5.15)

It is clear from (5.15) that R0,n < Rt,n and Rt,n = Rt,n−1 + κ̄λ

 hnbnρn−1un−1

anbn
n−1∏
j=1

(a jb j−τφ)

 ≤ Rt,n.

Also, det(A1,1) = −(−1)nµ

[
n∏

j=1
a j

] (
1 − R0,n

)
and det

(
Minor of Ā2n,2n

)
= an

[
n−1∏
j=1

(
a jb j − τφ

)] (
1 − Rt,n

)
. It follows

directly from (5.10) that ν − σ2
1κ̄

2/2 = a1

(
1 − λκ̄h1/a1 − σ

2
1κ̄

2/(2a1)
)

= a1

(
1 − R0,1

)
> a1

(
1 − Rt,1

)
> 0 if Rt,1 < 1.

Theorem 14. The real part of all eigenvalues ofA is negative if Rt,n < 1.

Proof. Using the result from (5.12), it suffices to show that the real part of all eigenvalues of Ā is negative. Define
B = −Ā. We can write B in the form

B = LU, (5.16)

where L andU are upper and lower diagonal matrices, respectively with positive diagonals. The matrices L =
(
Li, j

)
andU =

(
Ui, j

)
are computed rigorously as follows:

Li, j =
1
D j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B1,1 B1,2 . . . B1, j
B2,1 B2,2 . . . B2, j
...

... . . .
...

B j−1,1 B j−1,2 . . . B j−1, j
Bi,1 Bi,2 . . . Bi, j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, for i ≥ j , 1, Li,1 =

|Bi,1|

D1
for i = 1, 2, ..., 2n, and 0 elsewhere,

Ui, j =
1
D j−1

∣∣∣∣∣∣∣∣∣∣∣∣
B1,1 . . . B1,i−1 B1, j
B2,1 . . . B2,i−1 B2, j
...

...
...

...
Bi,1 . . . Bi,i−1 Bi, j

∣∣∣∣∣∣∣∣∣∣∣∣ , for 1 , i ≤ j, U1, j = B1, j, for j = 1, 2, ..., 2n, and 0 elsewhere,

whereD0 := 1, andD j =

∣∣∣∣∣∣∣∣∣∣∣∣
B1,1 B1,2 . . . B1, j
B2,1 B2,2 . . . B2, j
...

... . . .
...

B j,1 B j,2 . . . B j, j

∣∣∣∣∣∣∣∣∣∣∣∣ for j = 1, 2, ..., 2n, and can be simplified as

D j =

[
j∏

k=1
ak

] (
1 − R0, j

)
, for j = 1, 2, ..., n,

Dn+ j =

[
j∏

k=1
(akbk − τφ)

] (
n∏

k= j+1
ak

) (
1 − Rt, j+1

)
+ u j

n∏
k=1

ak

j∏
k=1

ρk−1

(
R0,n − R0, j+1

)
, for j = 1, 2, ..., n − 1,

D2n =

[
n∏

k=1
(akbk − τφ)

] (
1 − Rt,n

)
,

(5.17)

where {ak, bk} and uk are defined in (4.3) and (4.4), respectively. If Rt,n < 1, it follows from (5.15) and (5.17) that
Rt, j < Rt,n < 1, D j > 0 and the diagonal entries U j, j =

D j

D j−1
> 0 for all j = 1, 2, ..., 2n. Since B ∈ Z2n is a Z-matrix
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(
that is, bi, j ≤ 0 if i , j, 1 ≤ i, j ≤ n, where B =

(
bi, j

))
and the diagonal entries L j, j =

D j

D j
= 1 for j = 1, 2, ..., 2n, it

follows from relations D12 and J29 in [19] that the real part of each eigenvalues of matrix B is positive, which is in
turn equivalent to s

(
Ā

)
< 0. �

Remark 11. It follows from relation I25 in [19] that there exist a positive diagonal matrix K such that KA +ATK

is negative definite. Thus, there exist a real number z > 0 such that yT
(
KA +ATK

)
y ≤ −zyT y for every nonzero

vector y ∈ R2n+1.

Let k j > 0, j = 1, 2, ..., 2n + 1 be the diagonal entries of K . We shall show that the trivial solution Φ = 0 of (5.10)

is asymptotically stable if Rt,n < 1 by finding appropriate positive numbers k j, j = 1, 2, ..., 2n + 1, such that

ΦT

KA +ATK +

n∑
i=1

GT
i KGi

 Φ < 0. (5.18)

Theorem 15. The trivial solution Φ = 0 of (5.10) is asymptotically stable if Rt,n < 1.

Proof. Let Φ = (Φ1,Φ2, ...,Φ2n+1)T be a vector satisfying (5.10) and define V : [0,T ] × R2n+1 → R+ by

V(t,Φ) = ΦTKΦ,

whereK is the positive diagonal matrix described in Remark 11 such that k1 = k2 = z
8σ2

1 κ̄
2 , k j > 0 for j = 3, 4, ..., 2n+1,

and z is described in Remark 11. If Rt,n < 1, it follows from (5.8) and (5.10) that

LV(t,Φ) = ΦT
(
KA +ATK

)
Φ + ΦT

 n∑
i=1

GT
i KGi

 Φ

≤ −z ΦT Φ + ΦT

 n∑
i=1

GT
i KGi

 Φ = −z
2n+1∑
j=1

Φ2
j + 2σ2

1κ̄
2 (k1 + k2)

n+1∑
j=2

Φ2
j

= −z Φ2
1 −

z
2

n+1∑
j=2

Φ2
j − z

2n+1∑
j=n+2

Φ2
j < −

z
2

ΦT Φ.

Let kl and ku be min{k1, ..., k2n+1} and max{k1, ..., k2n+1}, respectively. Then kl‖Φ‖
2 ≤ V(t,Φ) ≤ ku‖Φ‖

2. It follows from
Theorem A.1 of Tornatore et al. [22] that the trivial solution of (5.10) is asymptotically stable if Rt,n < 1. �

We state the following theorem (Theorem A.2 of Tornatore et al. [22]) which shall be used to show the global

stability of the trivial solution of (5.6).

Theorem 16. (See [22], Theorem A.2) If the trivial solution Φ = 0 of a linear system of stochastic differential

equation with drift and diffusion coefficients F(t,Φ) and G(t,Φ), respectively, is asymptotically stable and the drift

and diffusion coefficients f (t,Φ) and g(t,Φ), respectively, of its equivalent nonlinear system (the linear system derived

by linearizing the nonlinear system) satisfy the inequality

‖ f (t,Φ) − F(t,Φ)‖ + ‖g(t,Φ) −G(t,Φ)‖ < ε ‖Φ‖ (5.19)
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in a sufficiently small neighbourhood of Φ = 0, with a sufficiently small constant ε, then the trivial solution Φ(t) = 0

of the nonlinear system is globally asymptotically stable. Here, ‖.‖ denotes the L2-norm.

Substituting Φ =

(
S − κ̄ I1 . . . In T1 . . . Tn

)T
into (5.6), we have

dΦ1 =

(
−λ(Φ1 + κ̄)

n∑
j=1

(
h jΦ j+1 + εΦn+ j+1

)
− µΦ1 + 1

2 (Φ1 + κ̄)
n∑

j=1
σ2

jΦ
2
j+1 −

1
2σ

2
1(Φ1 + κ̄)2Φ2

)
dt

−(Φ1 + κ̄)
n∑

j=1
σ jΦ j+1 dW j(t), Φ1(t0) = Φ0,1,

dΦ2 =

(
λ(Φ1 + κ̄)

n∑
j=1

(
h jΦ j+1 + εΦn+ j+1

)
− a1Φ2 + φΦn+2 −

1
2 (Φ1 + κ̄)

n∑
j=1
σ2

jΦ
2
j+1 + 1

2σ
2
1(Φ1 + κ̄)2Φ2

)
dt

+(Φ1 + κ̄)
n∑

j=1
σ jΦ j+1 dW j(t), Φ2(t0) = Φ0,2,

dΦk+1 = (ρk−1Φk − akΦk+1 + φΦn+k+1) dt, Φk+1(t0) = Φ0,k+1,

dΦn+2 = (τΦ2 − b1Φn+2)dt, Φn+2(t0) = Φ0,n+2,

dΦn+k+1 = (τΦk+1 + γk−1Φn+k − bkΦn+k+1) dt, Φn+k+1(t0) = Φ0,n+k+1, for k = 2, 3, ..., n,
(5.20)

where ak and bk are defined in (4.3).

Theorem 17. The infection-free equilibrium P̄0 of the system (5.6) is globally asymptotically stable in the feasible

region if Rt,n < 1.

We show that Theorem 16 is satisfied with respect to the systems (5.10) and (5.20), where F and G are the drift and

diffusion coefficients of (5.10), respectively, and f and g are the drift and diffusion coefficients of (5.20), respectively.

Proof. If Rt,n < 1, we only need to show that condition (5.19) is satisfied since the trivial solution Φ = 0 of (5.10) is
asymptotically stable. In a sufficiently small neighbourhood of Φ = 0, choose ε > 0 sufficiently small so that |Φ| < ε.
We have | f (t,Φ) − F(t,Φ)| + |g(t,Φ) −G(t,Φ)| reducing to

√√√√
2

λΦ1

n∑
j=1

(
h jΦ j+1 + εΦn+ j+1

)
−

1
2

(Φ1 + κ̄)
n∑

j=1

σ2
jΦ

2
j+1 +

1
2
σ2

1Φ2

(
Φ2

1 + 2Φ1κ̄
)2

+

√√√√
Φ2

1

 n∑
j=1

σ jΦ j+1

2

≤

√√√
6

2λ2ε2
n∑

j=1

(
h2

jΦ
2
j+1 + ε2Φ2

n+ j+1

)
+
ε2(ε2 + κ̄2)

2

n∑
j=1

σ4
jΦ

2
j+1 +

σ4
1

2
ε2 (

ε2 + 4κ̄2) Φ2
1

 +
√

2ε

√√ n∑
j=1

σ2
jΦ

2
j+1

≤ ε
√

6h

√√√2n+1∑
j=1

Φ2
j +
√

2σε

√√√2n+1∑
j=1

Φ2
j

≤ h‖Φ‖,

where h = max
1≤ j≤n

{
2λ2h2

j + (ε2 + κ̄2)σ4
j , σ

4
1

(
ε2 + 4κ̄2

)
/2

}
and h = εmax

{ √
6h,
√

2σ
}
.

�.
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Remark 12. From (5.14), if

1 ≤ Rt,n < 1 + 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

)
, (5.21)

or equivalently,

1 − 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

)
≤ Rt,n < 1, (5.22)

then from Remark 10, we have − 1
2

(
b1σ

2
1 κ̄

2

a1b1−τφ

) n∏
j=1

(
a jb j − τφ

)
< det(Ā) =

[
n∏

j=1

(
a jb j − τφ

)] (
1 − Rt,n

)
≤ 0. Since

det(Ā) =
2n∏
j=1

r j, where r j, j = 1, ..., 2n, are the eigenvalues of Ā, then at least one eigenvalue of Ā is positive. This

causes an epidemic growth, initially, leading to transient epidemic advance. The transient epidemic advance is caused

by the noise intensity, σ1, in the rate of efficient contact in stage 1 of the infection.

6. Numerical simulations

In this section, we give simulation result for the susceptible, infected untreated and treated population satisfying

(2.1), (3.2) and (5.6) using published real data estimates in the work [7, 15]. The following graph verifies the global

stability criteria discussed in previous sections.

6.1. Numerical verification of global stability of equilibrium points for the deterministic model

For i = 1, 2, ..., n, let S m, Ii,m, Ti,m be simulated value of S , Ii, Ti, respectively, at time tm with respect to (2.1). We

use the Euler-Maruyama type discretization scheme [14] to discretize (2.1) on t0 ≤ t ≤ T for a given discretization

t0 < t1 < ... < ti < ... < tN = T of time interval [t0,T ] with equidistance discretization times ti = t0 + i∆t and time step

∆t = (T − t0)/N.
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6.1.1. Graphs showing global stability of P0 (Figure 2 (a)) and P1 (Figure 2 (b)) for n = 1 (no treatment)

(a) (b)

Figure 2: Graphs of deterministic trajectories of S and I1 model for the cases R0,1 < 1 and R0,1 > 1.

Figure 2 (a) shows the trajectory of S and I1 with initial condition S 0 = 0.7, I01 = 0.3, β = 0.018, λ = 1.2, h1 = 2.76, ρ1 = 1/0.271,

µ = 0.018. In this case, R0,1 = 0.893 and infection-free equilibrium P0 =
(
S 0 = 1, I0

1 = 0
)T

. Figure 2 (b) shows the trajectory of S and I1 with

initial condition S 0 = 0.7, I01 = 0.3, β = 0.18, λ = 3.1, h1 = 2.76, ρ1 = 1/0.271, µ = 0.18. In this case, R0,1 = 2.2108 and endemic equilibrium

P1 =
(
S ∗ = 0.4523, I∗1 = 0.0255

)T
.

6.1.2. Graphs showing global stability of P0 (Figure 2 (a)) and P1 (Figure 2 (b)) for n = 2 (no treatment)

(a) (b)

Figure 3: Graphs of deterministic trajectories of S , I1 and I2 for the cases R0,2 < 1 and R0,2 > 1.

Figure 3 (a) shows the trajectory of S , I1 and I2 with initial condition S 0 = 0.7, I01 = 0.2, I02 = 0.1, β = 0.018, λ = 0.6, h1 = 2.76, h2 = 0.106,

ρ1 = 1/0.271, ρ2 = 1/8.31, µ = 0.018. In this case, R0,2 = 0.9041 and infection-free equilibrium P0 =
(
S 0 = 1, I0

1 = 0, I0
2 = 0

)T
. Figure 3 (b)
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shows the trajectory of S , I1 and I2 with initial condition S 0 = 0.7, I01 = 0.2, I02 = 0.1, β = 0.018, λ = 2.1, h1 = 2.76, h2 = 0.106, ρ1 = 1/0.271,

ρ2 = 1/8.31, µ = 0.018. In this case, R0,2 = 3.1644 and endemic equilibrium P1 =
(
S ∗ = 0.316, I∗1 = 0.0033, I∗2 = 0.0886

)T
.

6.1.3. Graphs showing global stability of P̄0 (Figure 4 (a)) and P̄1 (Figure 4 (b)) for n = 1 (with treatment)

(a) (b)

Figure 4: Graphs of deterministic trajectories of S , I1, T1 for the cases Rt,1 < 1 and Rt,1 > 1.

Figure 4 (a) shows the trajectory of S , I1, T1 with initial condition S 0 = 0.7, I01 = 0.1, T01 = 0.2, β = 0.018, λ = 0.6, h1 = 2.76,

h2 = 0.106, ρ1 = 1/0.271, µ = 0.018, ε = 0.01, τ = 0.5, φ = 0.32, γ1 = 1/8.21. In this case, Rt,1 = 0.4307 and infection-free equilibrium

P̄0 =
(
S̄ 0 = 1, Ī0

1 = 0, T̄ 0
1 = 0

)T
. Figure 4 (b) shows the trajectory of S , I1, T1 with initial condition S 0 = 0.7, I01 = 0.1, T01 = 0.2, β = 0.018,

λ = 3.1, h1 = 2.76, ρ1 = 1/0.271, µ = 0.018, ε = 0.01, τ = 0.5, φ = 0.32, γ1 = 1/8.21. In this case, Rt,1 = 2.2253 and endemic equilibrium

P̄1 =
(
S̄ ∗ = 0.4494, Ī∗1 = 0.0026, T̄ ∗1 = 0.0028

)T
.
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6.1.4. Graphs showing global stability of P̄0 (Figure 5 (a)) and P̄1 (Figure 5 (b)) for n = 2 (with treatment)

(a) (b)

Figure 5: Graphs of deterministic trajectories of S , I1, I2, T1, T2 for the cases Rt,2 < 1 and Rt,2 > 1.

Figure 5 (a) shows the trajectory of S , I1, I2, T1, T2 with initial condition S 0 = 0.36, I01 = 0.1, I02 = 0.15, T01 = 0.14, T02 = 0.25,

β = 0.018, λ = 0.6, h1 = 2.76, h2 = 0.106, ρ1 = 1/0.271, ρ2 = 1/8.31, µ = 0.018, ε = 0.01, τ = 0.5, φ = 0.32, γ1 = 1/8.21, γ2 = 1/54.

In this case, Rt,2 = 0.8062 and infection-free equilibrium P̄0 =
(
S̄ 0 = 1, Ī0

1 = 0, Ī0
2 = 0, T̄ 0

1 = 0, T̄ 0
2 = 0

)T
. Figure 5 (b) shows the trajectory of S ,

I1, I2, T1, T2 with initial condition S 0 = 0.46, I01 = 0.1, I02 = 0.15, T01 = 0.14, T02 = 0.25, β = 0.018, λ = 2.1, h1 = 2.76, h2 = 0.106,

ρ1 = 1/0.271, ρ2 = 1/8.31, µ = 0.018, ε = 0.01, τ = 0.5, φ = 0.32, γ1 = 1/8.21, γ2 = 1/54. In this case, Rt,2 = 2.8216 and endemic equilibrium

P̄1 =
(
S̄ ∗ = 0.3544, Ī∗1 = 0.003, Ī∗2 = 0.0605, T̄ ∗1 = 0.0033, T̄ ∗2 = 0.086

)T
.

6.2. Numerical verification of global stability of P̄0 in stochastic model (5.6)

For i = 1, 2, ..., n, let S m, Ii,m, Ti,m be simulated value of S , Ii, Ti, respectively, at time tm. We use the Euler-

Maruyama type discretization scheme [14] to discretize (5.6) on t0 ≤ t ≤ T . For a given discretization t0 < t1 <

... < ti < ... < tN = T of time interval [t0,T ] with equidistance discretization times ti = t0 + i∆t and time step

∆t = (T − t0)/N, the Euler discretization is given by

∆xi
m = ai(tm, xm) ∆t +

n∑
j=1

bi, j(tm, xm) ∆W j,m, x0 = x(t0), (6.1)

where x(t) = (S (t), I1(t), ..., In(t),T1(t), ...,Tn(t)) satisfying (5.6), xi
m = xi(tm), i = 1, 2, ..., 2n + 1, a (defined in (5.7)

) and b are the drift and diffusion coefficients of (5.6), respectively, ∆xm = xm+1 − xm, ∆W j,m = W j,m+1 − W j,m,

for m = 0, 1, 2, ...,N − 1, j = 1, 2, ..., n. We generate random increments ∆W j,m for m = 0, 1, 2, ...,N − 1 of the

Wiener process Wk(t), t ≥ 0. It is known that these increments are independent Gaussian random variables with mean

E
(
∆W j,m

)
= 0 and variance E

((
∆W j,m

)2
)

= ∆t.
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6.2.1. Transient epidemic advances: Case where Rt,1 < 1 and Rt,1 > 1

Figure 6: Graph of stochastic trajectories of S , I1, T1 for the case where Rt,1 < 1.

Figure 6 shows the trajectory of S , I1, T1 with initial condition S 0 = 0.55, I01 = 0.3, T01 = 0.15, β = 0.18, λ = 0.85, h1 = 3.7, ρ1 = 1/0.271,

µ = 0.18, ε = 0.1, τ = 0.5, φ = 0.32, γ1 = 1/8.21, σ1 = 2. In this case, Rt,1 = 0.7813, Rt,1 = 1.2676 and infection-free equilibrium

P̄0 =
(
S̄ 0 = 1, Ī0

1 = 0, T̄ 0
1 = 0,

)T
.

6.2.2. Transient epidemic advances: Case where Rt,2 < 1 and Rt,2 > 1

Figure 7: Graph of stochastic trajectories of S , I1, I2, T1, T2 for the case where Rt,2 < 1 and Rt,2 > 1.

Figure 7 shows the trajectory of S , I1, I2, T1, T2 with initial condition S 0 = 0.46, I01 = 0.08, I02 = 0.09, T01 = 0.081, T02 = 0.082, β = 0.18,

λ = 0.85, h1 = 2.7, h2 = 0.05, ρ1 = 1/0.271, ρ2 = 1/8.31, µ = 0.18, ε = 0.1, τ = 0.5, φ = 0.32, γ1 = 1/8.21, γ2 = 1/54, σ1 = 1.8. In this case,
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Rt,2 = 0.8094, Rt,2 = 1.2033, and infection-free equilibrium P̄0 =
(
S̄ 0 = 1, Ī0

1 = 0, Ī0
2 = 0, T̄ 0

1 = 0, T̄ 0
2 = 0

)T
.

7. Conclusion

In this paper, we present a deterministic and stochastic HIV/AIDS epidemic model describing the transmission

of HIV/AIDS disease between susceptible, infected untreated population and infected individuals receiving the ART

treatment. With the help of the next generation matrix method, we obtain the basic reproduction numbers R0,n, Rt,n

and Rt,n denoting the deterministic basic reproduction number in the absence of ART treatments, deterministic basic

reproduction number in the presence of ART treatments and stochastic reproduction number in the presence of ART

treatment, respectively, and derive the global dynamics of the model. We discuss the stability of the infection-free

and endemic equilibrium in the absence (presence) of treatments by showing that if the reproduction number R0,n ≤ 1

(Rt,n ≤ 1), the infection-free equilibrium derived from untreated population (treated and untreated population) is

globally asymptotically stable. Hence, the disease will be extinct. Also, we further show that if R0,n > 1 (Rt,n > 1),

the endemic equilibrium derived from untreated population ( endemic equilibrium derived from both treated and

untreated population) is globally asymptotically stable. This shows that there is enough treatment to avoid persistence

of infection in the endemic equilibrium state if Rt,n = 1 and suggests that early treatment of AIDS is necessary. By

introducing noise in the transmission rate of the disease, a theoretical treatment strategy of regular HIV testing and

immediate treatment with Antiretroviral Therapy (ART) is investigated in the presence and absence of noise. We

further show by studying the effect of noise in the transmission rate of the disease that transient epidemic invasion can

still occur even if Rt,n < 1. Numerical simulations are presented to support our claim.

REFERENCES

[1] L. Arnold. Stochastic differential equations: Theory and Applications, (1974), Wiley, New York.

[2] Aids Committee of Newfoundland and Labrador, Stages and Phases of HIV/AIDS, (2017), https://acnl.net/stages-phases-hivaids.

[3] Center for Disease Control and Prevention, HIV/AIDS Basic Statistics, (2017), https://www.cdc.gov/hiv/basics/statistics.html.

33



[4] C. Bernardi, Y. Madday , J. F. Blowey, J. P. Coleman , A. W. Craig Theory and numerics of differential equations, (2001), Springer-Verlag

Berlin Heidelberg.

[5] O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz On the definition and the computation of the basic reproduction ratio R0i in models for

infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990) 365.

[6] P. V. Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-

mission, Math. Biosci., (2002), 180 pp 29-48.

[7] R.M. Granich, C. F. Gilks, C. Dye, K. M. De Cock, B. G. Williams. Universal voluntary HIV testing with immediate antiretroviral therapy

as a strategy for elimination of HIV transmission: A mathematical model. Lancet, (2009); 373 (9657), pp 48-57.

[8] K. Hattaf, M. Mahrouf, J. Adnani and N. Yousfi. Qualitative analysis of a stochastic epidemic model with specific functional response and

temporary immunity, Physica A, 490 (2018), 591-600.

[9] K. Hattaf, A. A. Lashari, Y. Louartassi and N. Yousfi. A delayed SIR epidemic model with general incidence rate, Electronic J. of Qualitative

Theory of Differential Equations, (2013), 3, 1-9.

[10] W. Horsthemke and R. Lefever. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology, Springer-Verlag,

Berlin, 1984.

[11] H. Huo, R. Chen and X. Wang. Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Modelling, 40 (2016);

6550-6559.

[12] M.J. Keeling and J. V. Ross . On methods for studying stochastic disease dynamics, PJ. R. Soc. Interface 5, 171 (2008).

[13] Khasminskii Rafail, Stochastic stability of differential equations, (2012), Second edition, 66, Springer-Verlag Berlin Heidelberg.

[14] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, New York, 1995.

[15] M. E. Kretzschmar, M. F. Schim van der Loeff , P. J. Birrell, D. D. Angelis and R. A. Coutinho. Prospects of elimination of HIV with

test-and-treat strategy, PNAS, (2013); 110 (39), pp 15538-15543.

[16] J. P. LaSalle The stability of dynamical systems: Regional conference series in applied mathematics, SIAM, Philadelphia, 1976.

[17] J. Li, Y. Xiao, F. Zhang, Y. Yang An algebraic approach to proving the global stability of a class of epidemic models, Nonlinear Analysis:

Real World Applications 13(2012) 2006-2016.

[18] V. Mendez, D. Campos, and W. Horsthemke Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic

model, Physical Review E, 86, 011919 (2012).

[19] R. J. Plemmons M-Matrix Characterizations. I–Nonsingular M-Matrices, Linear Algebra and its Applications, (1977); 18(2) 175-188.

[20] R. Naresh, A. Tripathi, and D. Sharma. Modelling and analysis of the spread of AIDS epidemic with immigration of HIV infectives, Math.

and Comp. Modelling 49 (2009) 880-892.

[21] J. M. Steele.The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. MAA Problem Books Series.

Cambridge University Press, (2004).

[22] E. Tornatore, S. M. Buccellato, and P. Vetro. Stability of a stochastic SIR system, Physica A, vol. 354, no. 1-4 pp 111-126.

[23] United States Department of Health and Human Services, Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living

with HIV, (2017), https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/10/initiation-of-antiretroviral-therapy.

[24] G.S.K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response functions and

differential death rates, SIAM J. Appl. Math. (1992) 52(1), pp 222-233.

34


	Marshall University
	Marshall Digital Scholar
	5-2018

	Global stability for a 2n + 1 dimensional HIV/AIDS epidemic model with treatments
	Olusegun Michael Otunuga
	Recommended Citation


	tmp.1550777772.pdf.ROEKZ

