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We derive and analyze the dynamic of a stochastic SEI epidemic model for disease spread. Fluctuations in the transmission rate of
the disease bring about stochasticity in model. We discuss the asymptotic stability of the infection-free equilibrium by first deriving
the closed form deterministic (𝑅0) and stochastic (R0) basic reproductive number. Contrary to some author’s remark that different
diffusion rates have no effect on the stability of the disease-free equilibrium, we showed that even if no epidemic invasion occurs
with respect to the deterministic version of the SEI model (i.e., 𝑅0 < 1), epidemic can still grow initially (ifR0 > 1) because of the
presence of noise in the stochastic version of the model.That is, diffusion rates can have effect on the stability by causing a transient
epidemic advance. A threshold criterion for epidemic invasion was derived in the presence of external noise.

1. Introduction

Many mathematical models have been developed in order to
understand disease transmissions and behavior of epidemics.
Among thesemodel is the SEI susceptible-exposed-infectious
model.Thismodel is used by some author in studying disease
transmission of the Severe Acute Respiratory Syndrome
(SARS) disease. Several authors [1–3] have studied other
models like SEIR and SEIRS to analyze the spread of the
disease. Guihua and Zhen [3] studied the deterministic SEI
model by providing conditions for the global asymptotic
stability of the infection-free and epidemic equilibrium using
the higher dimensional Poincare-Bendixson property.

In this paper, we are interested in studying the effect of
stochastic fluctuations in the disease transmission rates in the
susceptible-exposed-infected epidemic model. We assume
that a susceptible individual first goes through latent period
after infection before becoming infectious. We consider a
case where the disease is infectious in the latent period and
the infected period. We study the role of external noise
in the transmission rate. We assume the external noise is
a Gaussian white noise. According to Méndez et al. [4],
Langevin equations that describe system with real noise
should be interpreted as a Stratonovich equation, instead of

Ito equation. Due to this reason, we develop a Stratonovich
stochastic dynamic SEI model by introducing noise in the
transmission rates.

The paper is organized as follows.
In Section 2, we present a Stratonovich stochastic SEI

model by allowing the transmission rates to fluctuate around
a mean value. The Stratonovich model is now converted into
its Ito version. In Section 3, we show that the solution of
the stochastic SEI model discussed in Section 2 exists and
it is positive. By linearizing the Ito version of the stochastic
SEI model around the infection-free equilibrium, we give
a closed form expectation of the susceptible, exposed and
infected. In Section 4, the closed form value for the stochastic
reproductive number R0 is given. This is used to discuss
and analyze the stability of the infection-free equilibrium. In
Section 5, a numerical simulation is presented to verify our
claim. The conclusion of the work is given in Section 6.

2. Stochastic SEI Model

We consider the SEI model for description of the population
dynamics for SARS andother similar diseases.Thehost popu-
lation is partitioned into three compartments: the susceptible,
exposed (latent), and infectious, with sizes denoted by 𝑆, 𝐸,
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and 𝐼, respectively. The total population 𝑁 = 𝑆 + 𝐸 + 𝐼. The
SEI model is described by the following system of differential
equation:𝑑𝑆 = (−𝛽1𝑆𝐸 − 𝛽2𝑆𝐼 − 𝜇𝑆 + 𝛿) 𝑑𝑡, 𝑆 (𝑡0) = 𝑆0,𝑑𝐸 = (𝛽1𝑆𝐸 + 𝛽2𝑆𝐼 − 𝛾𝐸 − (𝜇 + 𝛼1) 𝐸) 𝑑𝑡, 𝐸 (𝑡0) = 𝐸0,𝑑𝐼 = (𝛾𝐸 − 𝜅𝐼 − (𝜇 + 𝛼2) 𝐼) 𝑑𝑡, 𝐼 (𝑡0) = 𝐼0,

(1)

where 𝛿 is the recruitment constant, 𝛽1 and 𝛽2 are rates of
efficient contact in the latent period and infected period,
respectively, 𝜇 > 0 is the natural death rate, 𝛾 > 0 is the
transfer rate from the exposed to the infectious compartment,𝛼1 ≥ 0, 𝛼2 ≥ 0 are rates of disease-caused death, and 𝜅 is
the rate coefficient of segregation after disease. From (1) and
the fact that the total population 𝑁 = 𝑆 + 𝐸 + 𝐼, we have 𝑁
satisfying the equation𝑑𝑁 = (𝛿 − 𝜇𝑁 − 𝛼1𝐸 − (𝛼2 + 𝜅) 𝐼) 𝑑𝑡. (2)

It follows from (2) that the population size𝑁 may vary with
time and lim𝑡→∞ sup𝑁(𝑡) ≤ 𝛿/𝜇. Hence, we consider model
(1) in the feasible region:

𝑇 fl {(𝑆, 𝐸, 𝐼) ∈ R3+ : 0 ≤ 𝑆 + 𝐸 + 𝐼 = 𝑁 ≤ 𝛿𝜇} . (3)

Here, R+ denotes nonnegative real number. It can be shown
that 𝑇 is positively invariant with respect to (1).

The system has two equilibriums: the infection-free equi-
librium 𝑃0 and the endemic equilibrium 𝑃1. The infection-
free equilibrium 𝑃0 fl (𝑆∗ = 𝛿/𝜇, 𝐸∗ = 0, 𝐼∗ = 0) exists
on the boundary, 𝜕𝑇, of 𝑇 while the endemic equilibrium𝑃1 = (S,E,I) exists in the interior of 𝑇 with

S = (𝛼2 + 𝜅 + 𝜇) (𝛼1 + 𝜇 + 𝛾)𝛽1 (𝛼2 + 𝜅 + 𝜇) + 𝛽2𝛾 ,
E = (𝛼2 + 𝜅 + 𝜇) (𝛽1𝛿 − 𝜇 (𝛼1 + 𝛾 + 𝜇)) + 𝛽2𝛿𝛾(𝛼1 + 𝜇 + 𝛾) (𝛽1 (𝛼2 + 𝜅 + 𝜇) + 𝛽2𝛾) ,
I = 𝛾𝛼2 + 𝜅 + 𝜇E.

(4)

By setting 𝛿 = 𝜇, we make the sizes 𝑆, 𝐸, and 𝐼 into
percentages. This reduces the feasible region 𝑇 to𝑇 fl {(𝑆, 𝐸, 𝐼) ∈ R3+ : 0 ≤ 𝑆 + 𝐸 + 𝐼 = 𝑁 ≤ 1} . (5)

Let

𝑅0 fl 𝛽1 (𝜅 + 𝜇 + 𝛼2) + 𝛽2𝛾(𝛾 + 𝜇 + 𝛼1) (𝜅 + 𝜇 + 𝛼2)𝑆∗. (6)

If 𝑅0 ≤ 1, 𝑃0 is the only equilibrium in 𝑇. If 𝑅0 > 1, the
unique endemic equilibrium 𝑃1 exists in 𝑇. Note that model
(1) is similar to the model considered by Guihua and Zhen in
[3]. They showed using LaSalle’s invariance principle that the

disease-free equilibrium, 𝑃0, is globally asymptotically stable
in 𝑇 if 𝑅0 ≤ 1 and unstable if 𝑅0 > 1. We define 𝑅0 in (6) as
the deterministic basic reproductive number.

By allowing the transmission rates 𝛽1 and 𝛽2 to fluctuate
around a mean value, we introduce external fluctuations in
the model as follows:𝛽𝑖 (𝑡) ≡ 𝛽𝑖 + 𝜎𝑖C𝑖 (𝑡) , 𝑖 = 1, 2, (7)

where C𝑖(𝑡), 𝑖 = 1, 2, are independent noise term with zero
mean, and 𝜎𝑖 > 0, 𝑖 = 1, 2 are noise intensity, a measure
of the amplitude of fluctuation with respect to 𝛽𝑖, 𝑖 = 1, 2,
respectively. Substituting (7) into (1), the dynamic model (1)
reduces to the Stratonovich stochastic model:𝑑𝑆 = (−𝛽1𝑆𝐸 − 𝛽2𝑆𝐼 − 𝜇𝑆 + 𝛿) 𝑑𝑡 − 𝜎1𝑆𝐸 ∘ 𝑑𝑊1 (𝑡)− 𝜎2𝑆𝐼 ∘ 𝑑𝑊2 (𝑡) , 𝑆 (𝑡0) = 𝑆0,𝑑𝐸 = (𝛽1𝑆𝐸 + 𝛽2𝑆𝐼 − (𝛾 + 𝜇 + 𝛼1) 𝐸) 𝑑𝑡 + 𝜎1𝑆𝐸∘ 𝑑𝑊1 (𝑡) + 𝜎2𝑆𝐼 ∘ 𝑑𝑊2 (𝑡) , 𝐸 (𝑡0) = 𝐸0,𝑑𝐼 = (𝛾𝐸 − (𝜅 + 𝜇 + 𝛼2) 𝐼) 𝑑𝑡, 𝐼 (𝑡0) = 𝐼0,

(8)

where 𝑊𝑖(𝑡), 𝑖 = 1, 2, are independent standard Wiener
processes defined on stochastic basis (Ω,F, (F𝑡)𝑡≥0,P); ∘
denotes the Stratonovich integral [4, 5].

We convert (8) to its Ito’s equivalent using the
Stratonovich-Ito conversion (Bernardi et al. [6]) given
below.

Theorem 1. The Ito Stochastic differential equation

𝑑𝑋 = 𝑎 (𝑡, 𝑋) 𝑑𝑡 + 𝑀∑
𝑗=1

𝑏𝑗 (𝑡, 𝑋) 𝑑𝑊𝑗 (𝑡) (9)

having the same solution as the 𝑁-dimensional Stratonovich
SDE with an𝑀-dimensional Wiener process

𝑑𝑋 = 𝑎 (𝑡, 𝑋) 𝑑𝑡 + 𝑀∑
𝑗=1

𝑏𝑗 (𝑡, 𝑋) ∘ 𝑑𝑊𝑗 (𝑡) (10)

has drift coefficient 𝑎(𝑡, 𝑋) that is defined in terms of 𝑎(𝑡, 𝑋),
componentwise, by

𝑎𝑖 (𝑡, 𝑋) = 𝑎𝑖 (𝑡, 𝑋) + 12 𝑁∑
𝑘=1

𝑀∑
𝑗=1

𝑏𝑘,𝑗 (𝑡, 𝑋) 𝜕𝑏𝑖,𝑗𝜕𝑥𝑘 (𝑡, 𝑋) . (11)

UsingTheorem 1, the Ito equivalent of (8) is given by

𝑑𝑆 = (−𝛽1𝑆𝐸 − 𝛽2𝑆𝐼 − 𝜇𝑆 + 𝛿 + 12𝜎21𝑆𝐸 (𝐸 − 𝑆)+ 12𝜎22𝑆𝐼2)𝑑𝑡 − 𝜎1𝑆𝐸𝑑𝑊1 (𝑡) − 𝜎2𝑆𝐼𝑑𝑊2 (𝑡) ,𝑆 (𝑡0) = 𝑆0,
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𝑑𝐸 = (𝛽1𝑆𝐸 + 𝛽2𝑆𝐼 − (𝛾 + 𝜇 + 𝛼1) 𝐸
− 12𝜎21𝑆𝐸 (𝐸 − 𝑆) − 12𝜎22𝑆𝐼2)𝑑𝑡 + 𝜎1𝑆𝐸𝑑𝑊1 (𝑡)+ 𝜎2𝑆𝐼𝑑𝑊2 (𝑡) , 𝐸 (𝑡0) = 𝐸0,𝑑𝐼 = (𝛾𝐸 − (𝜅 + 𝜇 + 𝛼2) 𝐼) 𝑑𝑡, 𝐼 (𝑡0) = 𝐼0.

(12)

3. Existence and Uniqueness of Positive
Solution of (12)

In this section, we show that not only does the stochastic
model (12) have a unique global solution but also the solution
will remain within 𝑇 whenever it starts from there.

Following Theorem 3.5 of Khasminskii [7], we use
Theorem 4 below to show the existence and uniqueness of
positive solution of (12).

Definition 2. Let 𝐶1,2(𝐷) be the family of nonnegative func-
tions V(𝑡, u) defined on 𝐷 such that they are continuously
differentiable with respect to 𝑡 and twice continuously differ-
entiable with respect to u.

Definition 3. Define the domain 𝑈𝑛 by 𝑈𝑛 = {|𝑥| < 𝑛}. One
defines the differential operator𝐿 for a functionV(𝑡,u) ∈ 𝐶1,2
corresponding to a stochastic differential equation with drift
and diffusion coefficients A(𝑡, u) and B(𝑡, u), respectively, by

𝐿V (𝑡, u) = 𝜕V (𝑡, u)𝜕𝑡 + A𝑇 𝜕V (𝑡, u)𝜕u+ 12 tr[𝐵𝑇 𝜕2V (𝑡, u)𝜕u2 𝐵] , (13)

where 𝜕V(𝑡, u)/𝜕u = (𝜕V(𝑡, u)/𝜕𝑢1, . . . , 𝜕V(𝑡, u)/𝜕𝑢𝑛) and𝜕2V(𝑡, u)/𝜕u2 = (𝜕2V(𝑡, u)/𝜕𝑢𝑖𝜕𝑢𝑗)𝑖,𝑗. Define R++ to be set
of positive real numbers. Using the substitution 𝐸 = 𝑁 −𝑆 − 𝐼, one reduces (12) to model governing only 𝑆 and 𝐼
and applies Theorem 4 to show existence and uniqueness of
positive solution of the reduced model.

Theorem 4. Suppose that (12) satisfies the classical existence
and uniqueness theorem in every cylinder [𝑎, 𝑏] × 𝑈𝑅 and,
moreover, that there exists a nonnegative function 𝑉 ∈𝐶1,2([0, 𝑇] ×R2++ → R++) such that for some constant 𝑐 > 0

𝐿𝑉 ≤ 𝑐𝑉,𝑉𝑅 = inf
|𝑥|>𝑅

𝑉 (𝑡, 𝑥) → ∞, 𝑎𝑠 𝑅 → ∞. (14)

Then, for every random variable 𝑋(𝑡0) = (𝑆(𝑡0), 𝐼(𝑡0))
independent of the processes 𝑊(𝑡) − 𝑊(𝑡0), there exists a
solution𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡)) of the reduced stochastic differential
equation (12) (with 𝐸 = 𝑁 − 𝑆 − 𝐼) which is an almost surely
continuous stochastic process and is unique up to equivalence.

Proof. It is easy to show that (12) satisfies the classical
existence and uniqueness theorem in every cylinder [𝑎, 𝑏] ×𝑈𝑅. Define V : [0, 𝑇] ×R2++ → R++ by

V (𝑆, 𝐼) = 𝑆 − ln (𝑆) + 𝐼 − ln (𝐼) . (15)

Note that, for any positive real number𝑢, we have𝑢−ln(𝑢) ≥ 1
and 𝑢 ≤ 2(𝑢− ln(𝑢))− (2−2 ln(2)). It then follows thatV ≥ 2.
Also, using the fact that 0 ≤ 𝐸 = 𝑁 − 𝑆 − 𝐼 ≤ 1, 𝑁 ≤ 1, we
have𝐿V = (1 − 1𝑆) [−𝛽1𝑆 (𝑁 − 𝑆 − 𝐼) − 𝛽2𝑆𝐼 − 𝜇𝑆 + 𝛿+ 12𝜎21𝑆 (𝑁 − 𝑆 − 𝐼) (𝑁 − 2𝑆 − 𝐼) + 12𝜎22𝑆𝐼2] + (1− 1𝐼) [𝛾 (𝑁 − 𝑆 − 𝐼) − (𝜅 + 𝜇 + 𝛼2) 𝐼]+ 12𝑆2 [𝜎21𝑆2 (𝑁 − 𝑆 − 𝐼)2 + 𝜎22𝑆2𝐼2] ≤ 𝑐𝑉,

(16)

where 𝑐 = 𝛿 + 𝜅 + 2𝜇 + 𝛼2 + 2max{2𝛽1 + 2𝛾, 𝜎21/2, 𝜎22/2}.
It can be easily shown that V𝑛 = inf |𝑋|>𝑛V(𝑡, 𝑋) → ∞ as𝑛 → ∞. The result follows.The existence of 𝐸(𝑡) = 𝑁−𝑆(𝑡)−𝐼(𝑡) follows immediately.

The fact that the solution (𝑆, 𝐸, 𝐼) of (12) remains in 𝑇
follows from Corollary 3.1 of Khasminskii [7].

3.1. Closed Form Expectation of Susceptible, Exposed, and
Infected Population Near 𝑃0. We study the condition under
which system (12) evolves into an endemic state by analyzing
the endemic behavior of the linearized version of (12) around
the infection-free equilibrium 𝑃0.

Using the transformation

u = (𝑆𝐸𝐼) −(𝑆∗00 ) , (17)

we rewrite (12) to get the nonlinear version:𝑑𝑢1 = 𝑓1 (𝑡, u) 𝑑𝑡 − (𝑆∗ + 𝑢1) 𝑢2𝜎1𝑑𝑊1 (𝑡)− (𝑆∗ + 𝑢1) 𝑢3𝜎2𝑑𝑊2 (𝑡) ,𝑑𝑢2 = 𝑓2 (𝑡, u) 𝑑𝑡 + (𝑆∗ + 𝑢1) 𝑢2𝜎1𝑑𝑊1 (𝑡)+ (𝑆∗ + 𝑢1) 𝑢3𝜎2𝑑𝑊2 (𝑡) ,𝑑𝑢3 = 𝑓3 (𝑡, u) 𝑑𝑡,
(18)

where𝑓1 (𝑡, u) = −𝛽1 (𝑆∗ + 𝑢1) 𝑢2 − 𝛽2 (𝑆∗ + 𝑢1) 𝑢3 − 𝜇𝑢1− 12 (𝑆∗ + 𝑢1)2 𝑢2𝜎21 + 12 (𝑆∗ + 𝑢1) 𝑢22𝜎21+ 12 (𝑆∗ + 𝑢1) 𝑢23𝜎22 ,
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𝑓2 (𝑡, u) = 𝛽1 (𝑆∗ + 𝑢1) 𝑢2 + 𝛽2 (𝑆∗ + 𝑢1) 𝑢3− (𝛾 + 𝜇 + 𝛼1) 𝑢2 + 12 (𝑆∗ + 𝑢1)2 𝑢2𝜎21− 12 (𝑆∗ + 𝑢1) 𝑢22𝜎21 − 12 (𝑆∗ + 𝑢1) 𝑢23𝜎22 ,𝑓3 (𝑡, u) = 𝛾𝑢2 − (𝜅 + 𝜇 + 𝛼2) 𝑢3.
(19)

The linearization of (12) around the infection-free equi-
librium 𝑃0 is equivalent to the linearization of (18) around its
trivial solution (u = 0), given by

𝑑u = Au𝑑𝑡 + B1u𝑑𝑊1 (𝑡) + B2u𝑑𝑊2 (𝑡) ,
u (𝑡0) = u0, (20)

where

A = (−𝜇 −(𝛽1 + 𝜎21𝑆∗2 ) 𝑆∗ −𝛽2𝑆∗0 −] 𝛽2𝑆∗0 𝛾 − (𝜅 + 𝜇 + 𝛼2)) ,
B1 = (0 −𝜎1 00 𝜎1 00 0 0)𝑆∗,
B2 = (0 0 −𝜎20 0 𝜎20 0 0 )𝑆∗,
] = 𝛾 + 𝜇 + 𝛼1 − (𝛽1 + 𝜎21𝑆∗2 ) 𝑆∗.

(21)

It follows that the expected value, E[u(𝑡)], of the solution
of (20) is given by

E [u (𝑡)] = (𝑚1𝑒−𝑧1𝑡 + 𝑐1𝑒−𝑧2𝑡 + 𝑐2𝑒−𝑧3𝑡𝑚2𝑒−𝑧2𝑡 + 𝑚3𝑒−𝑧3𝑡𝑚2𝑒−𝑧2𝑡 + 𝑚3𝑒−𝑧3𝑡 ), (22)

where𝑚𝑖 = E[𝑢𝑖(𝑡0)], 𝑖 = 1, 2, 3,𝑚𝑖 = (𝑚𝑖/𝛾)(𝜅 + 𝜇 + 𝛼2 − 𝑧𝑖),𝑐1 = ((𝛽2𝑚2 + (𝛽1 + 𝜎21𝑆∗/2)𝑚2)/(𝑧2 − 𝜇))𝑆∗, 𝑐2 = ((𝛽2𝑚3 +(𝛽1 + 𝜎21𝑆∗/2)𝑚3)/(𝑧3 − 𝜇))𝑆∗, 𝑧1 = 𝜇, 𝑧𝑖 = (1/2)[(𝛼2 + 𝜅 +𝜇 + ]) + (−1)𝑖√(𝛼2 + 𝜅 + 𝜇 − ])2 + 4𝛾𝛽2𝑆∗], 𝑖 = 2, 3.
4. Stability Analysis of Infection-Free

Equilibrium 𝑃0
UsingTheoremA.2 of Tornatore et al. [2], we show the global
stability of the nonlinear stochastic system (12). Notice that,

in order to avoid epidemic invasion, we must have 𝑧𝑖 > 0,𝑖 = 1, 2, 3. This is equivalent to

(𝛽1 + 𝜎212 𝑆∗) (𝜅 + 𝜇 + 𝛼2) 𝑆∗ + 𝛽2𝛾𝑆∗− (𝛾 + 𝜇 + 𝛼1) (𝜅 + 𝜇 + 𝛼2) < 0. (23)

Also (23) implies that ] > 0.
Define

R0 = (𝛽1 + (𝜎21/2) 𝑆∗) (𝜅 + 𝜇 + 𝛼2) + 𝛽2𝛾(𝛾 + 𝜇 + 𝛼1) (𝜅 + 𝜇 + 𝛼2) 𝑆∗. (24)

Remark 5. It follows that (23) is equivalent to R0 < 1. We
can rewrite R0 in terms of 𝑅0 by combining (6) and (24) as
follows:

R0 = 𝑅0 + 𝜎21 (𝑆∗)22 (𝛾 + 𝜇 + 𝛼1) . (25)

We call the constant R0 defined in (25) the stochastic basic
reproductive number.

Using the following theorem, we get conditions for
stochastic asymptotic stability of the infection-free equilib-
rium.

Definition 6. The solution u(𝑡) = 0 of system (20) is said to
be

(1) 𝑝-stable (𝑝 > 0) for 𝑡 ≥ 0, if
sup
|u|≤𝑛,𝑡≥𝑠

E |u (𝑡)|𝑝 → 0, as 𝑛 → 0, (𝑠 ≥ 0) ; (26)

(2) asymptotically 𝑝-stable, if it is 𝑝-stable and moreover
E|u(𝑡)|𝑝 → 0 as 𝑡 → ∞;

(3) exponentially 𝑝-stable, if, for some positive constants𝐴 and 𝑐,
E |u (𝑡)|𝑝 ≤ 𝐴 |u|𝑝 exp [−𝑐 (𝑡 − 𝑠)] ; (27)

(4) when 𝑝 = 1, one says stability in the mean and for𝑝 = 2, one says stability in mean square.

Theorem 7. If

R0 < 1 (28)

holds, then the solution u(𝑡) = 0 of (20) is globally asymptot-
ically stable. Furthermore, if 𝑅0 > 1, the solution u(𝑡) = 0 is
unstable.

Proof. If (28) holds, it follows from (25) that 𝑅0 < 1 and (22)
implies lim𝑡→∞E[|u(𝑡)|] = 0. If 𝑅0 > 1, then R0 > 1 and
E[|u(𝑡)|] → ∞ as 𝑡 → ∞.

Remark 8. Contrary to Remark 3.1 of Kim and Lin [1], if

1 − 𝜎21 (𝑆∗)22 (𝛾 + 𝜇 + 𝛼1) < 𝑅0 < 1, (29)
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Figure 1: Graph of deterministic and stochastic trajectories of SEI model for initial conditions 𝑆0 = 0.9, 𝐸0 = 0.08, 𝐼0 = 0.02, 𝜎1 = 0.15,𝜎2 = 0.8, 𝑅0 = 0.9346, andR0 = 0.9845; (𝑅0 < 1,R0 < 1).
then epidemic can grow initially, leading to transient epi-
demic advance. Note that condition (29) implies 𝑅0 < 1 and
R0 = 𝑅0 + 𝜎21(𝑆∗)2/2(𝛾 + 𝜇 + 𝛼1) > 1. Hence, 𝑧1 > 0, 𝑧2 > 0,
and 𝑧3 < 0. The transient epidemic advance is caused by the
noise intensity, 𝜎1, in the rate of efficient contact in the latent
period, 𝛽1.
Remark 9. Note that the global stability of the trivial solution
u = 0 of (20) is equivalent to the global stability of the
infection-free equilibrium 𝑃0 = (𝑆∗, 0, 0).

The following theorem shows that the expected value
E[u(𝑡)] in (22) does not always converge to the trivial solution

u = 0 of (20) ifR0 = 1. In fact, ifR0 = 1, then E[u(𝑡)] → 0
as 𝑡 → ∞ if𝑚3 = E[𝑢3(𝑡0)] = E[𝐼(𝑡0)] = 0.
Theorem 10. If R0 = 1, then E[u(𝑡)] in (22) converge to the
trivial solution u = 0 of (20) if E[𝑢3(𝑡0)] = 0.
Proof. From (23) and (24), R0 = 1 is equivalent to [(𝛽1 +(𝜎21/2)𝑆∗)(𝜅 + 𝜇 + 𝛼2) + 𝛽2𝛾]𝑆∗ = (𝛾 + 𝜇 + 𝛼1)(𝜅 + 𝜇 + 𝛼2).
If R0 = 1, then ] = (𝛽2𝛾/(𝜅 + 𝜇 + 𝛼2))𝑆∗, 𝑧1 = 𝜇, 𝑧2 =𝛼2 + 𝜅 + 𝜇 + ], 𝑧3 = 0, and E[u(𝑡)] → ( 𝑐2𝑚3

𝑚3
) as 𝑡 → ∞, where𝑐2 = −((𝛾+𝜇+𝛼1)(𝜅+𝜇+𝛼2)/𝛾𝜇)𝑚3𝑆∗,𝑚3 = ((𝜅+𝜇+𝛼2)/𝛾)𝑚3.

If𝑚3 = 0, then E[u(𝑡)] → 0 as 𝑡 → ∞.
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Figure 2: Graph of deterministic and stochastic trajectories of SEI model for the case 1 − 𝜎1(𝑆∗)2/2(𝛾 + 𝜇 + 𝛼1) < 𝑅0 < 1 of Remark 8 with
initial conditions 𝑆0 = 0.9, 𝐸0 = 0.08, 𝐼0 = 0.02, 𝛽1 = 0.1, 𝛽2 = 5.5, 𝜇 = 0.3 = 𝛿 (𝑆∗ = 1), 𝛾 = 0.103, 𝜅 = 3.47, 𝛼1 = 0.01, 𝛼2 = 1, 𝜎1 = 0.9,𝜎2 = 0.1, 𝑅0 = 0.5297, andR0 = 1.5103.

We show the global stability of the infection-free equilib-
rium 𝑃0 and trivial solution u = 0 of the nonlinear stochastic
systems (12) and (18), respectively.

Theorem 11. If the trivial solution u(𝑡) = 0 for linear system
(20) with drift and diffusion coefficients 𝐹(𝑡, u) and 𝐺(𝑡, u),
respectively, is asymptotically stable and the drift and diffusion
coefficients𝑓(𝑡, u) and 𝑔(𝑡, u), respectively, of nonlinear system
(18) satisfy the inequality𝑓 (𝑡, u) − 𝐹 (𝑡, u) + 𝑔 (𝑡, u) − 𝐺 (𝑡, u) < 𝑐 |u| (30)

in a sufficiently small neighbourhood of u = 0, with a
sufficiently small constant 𝑐, then the trivial solution u(𝑡) = 0
of system (18) is globally asymptotically stable.

Proof. In a sufficiently small neighbourhood of u = 0, choose𝜖 > 0 sufficiently small so that |u| < 𝜖. We have𝑓 (𝑡, u) − 𝐹 (𝑡, u) + 𝑔 (𝑡, u) − 𝐺 (𝑡, u)
= [[(−𝛽1𝑢1𝑢2 − 𝛽2𝑢1𝑢3 − 12 (𝑆∗ + 𝑢1)2 𝑢2𝜎21
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+ 12 (𝑆∗ + 𝑢1) 𝑢22𝜎21 + 12 (𝑆∗ + 𝑢1) 𝑢23𝜎22
+ 𝜎21 (𝑆∗)2 𝑢22 )2 + (𝛽1𝑢1𝑢2 + 𝛽2𝑢1𝑢3
+ 12 (𝑆∗ + 𝑢1)2 𝑢2𝜎21 − 12 (𝑆∗ + 𝑢1) 𝑢22𝜎21
− 12 (𝑆∗ + 𝑢1) 𝑢23𝜎22 − 𝜎21 (𝑆∗)2 𝑢22 )2]]

1/2

+ [2 (𝑢1𝑢2𝜎1)2 + 2 (𝑢1𝑢3𝜎2)2]1/2 ≤ (2𝛽1 + 2𝛽2+ 𝜎21 + 𝜎22 + √2 (𝜎1 + 𝜎2)) 𝜖 𝑢1 + (3𝑆∗ + 1)⋅ 𝜎21𝜖 𝑢2 + 𝜎22𝑆∗𝜖 𝑢3 < 𝑐 |u| ,
(31)

where 𝑐 = (2𝛽1 + 2𝛽2 + (3𝑆∗ + 2)𝜎21 + (𝑆∗ + 1)𝜎22 + √2(𝜎1 +𝜎2))𝜖.
5. Numerical Simulations

Figure 1 verifies the global stability criteria discussed in
Theorems 7, 10, and 11 and Remark 8.

Figure 1 shows the graph of deterministic and stochastic
trajectories of SEI model for initial conditions 𝑆0 = 0.9, 𝐸0 =0.08, and 𝐼0 = 0.02. Here, we see that both𝑅0 andR0 are both
less than one and both trajectories converge to the infection-
free equilibrium (𝑆∗, 0, 0) = (1, 0, 0).

The transient epidemic advance is evident in all Figures
2(a), 2(b), and 2(c). The number of exposed (latent) individ-
uals drastically increased for some time period. During the
same period, the number of infected individuals increased
and the number of susceptible individuals decreased.

6. Conclusion

Thepurpose of this work is to shedmore light on the effects of
the presence of external perturbations (in the form of white
noise) in the disease transmission rates in a SEI model. By
extending a SEI system of deterministic differential equations
into a system of stochastic differential equations, we show
the existence of solution of the stochastic model and derive
the stochastic basic reproductive number,R0, corresponding
to the deterministic reproductive number, 𝑅0. The stochastic
basic reproductive numberR0 converges to the deterministic
basic reproductive number 𝑅0 as the noise intensity 𝜎1 tends
to zero. We show that even if the infection-free equilibrium
is stable, we might still have a transient epidemic advance.
A condition in which this advance can happen is derived
and analyzed. From our result, we conclude that the transient
epidemic advance is induced by the noise intensity, 𝜎1, of the
white noise. It follows from (7) that as the noise intensity𝜎1 increases, the fluctuations around the mean number of
infected individuals also increase thereby causing an initial
epidemic growth provided that (29) is satisfied.
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