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ABSTRACT 

The cancer chemotherapeutic agent doxorubicin (DOX), Adriamycin, is part of the treatment 

regimen for breast, ovarian, small cell lung cancer and acute/chronic lymphoid leukemia. 

Adverse effects associated with DOX are cardiotoxicity and nephrotoxicity. Interventions are 

needed to reduce DOX nephrotoxicity. Resveratrol (RES) is a phytochemical contained in 

grapes, berries and nuts, which possesses antioxidant and anticancer properties. This study tested 

the hypothesis that RES will attenuate DOX renal cytotoxicity in human noncancerous renal 

proximal tubular epithelial (HK-2) cells and that RES will reduce DOX mediated changes in 

mitochondrial function. HK-2 cells were plated and grown for 48 hours (h). Cells were next pre-

incubated for 1h with 0 (DMSO), 5 or 7.5 µM RES followed by a 24 h co-incubation with 0-5 

µM DOX. RES did not alter cell growth or viability at the concentrations tested as indicated by 

comparable MTT values between DMSO and RES groups (p>0.05). Cell viability was further 

assessed by cell count using Trypan blue exclusion. DOX produced a concentration dependent 

decline in viability within a 24 h exposure. Pretreatment for 1 h with RES was sufficient to 

reduce DOX loss of cell viability. Studies were initiated to investigate the cellular mechanism of 

RES attenuation of DOX cytotoxicity. Western blot of cells following 24 h exposure examined 

increased protein carbonylation as an indicator of oxidative stress. Initial studies were begun to 

examine the DOX effects on mitochondrial oxygen consumption using a Seahorse platform. In 

summary, RES did not diminish cell viability at the concentrations tested in our HK-2 cells. 

DOX diminished cell viability within 24 h relative to vehicle control. A 1 h pretreatment with 

RES reduced DOX cytotoxicity in HK-2 cells. Prevention of mitochondrial impairment and 

oxidative stress by DOX are potential mechanisms for RES protection in HK-2 cells.  
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CHAPTER 1 

INTRODUCTION: DOXORUBICIN 

Doxorubicin: Cancer Chemotherapeutic Agent 

 Doxorubicin (DOX), trade name Adriamycin, is an anthracycline cancer 

chemotherapeutic that has been used in the treatment of a variety of cancers including: breast, 

ovarian and small cell lung cancers and both acute and chronic lymphoid leukemias (Figure 1). 

The first anthracycline, daunorubicin, was isolated in 1951 and its analogue, DOX, was 

developed in 1969 (Arcamone, 1967). DOX is an antitumor antibiotic that was originally isolated 

from the Streptomyces peucetius bacteria. The longevity and continued use of the drug, it was 

first approved for use in the United States in 1974, are a testament to the drug's efficacy. 

Typically DOX is administered in intravenous doses of 60 to 75 mg/m2 every 21 to 28 days 

(National Library of Medicine, 2017). The dosage varies based upon: indication, body surface 

area and hepatic function (National Library of Medicine, 2017). The mechanism of action for 

DOX involves intercalating between base pairs of deoxyribonucleic acid (DNA) and inhibiting 

macromolecule biosynthesis (Gu et al., 2016). The effectiveness of DOX is related to its ability 

to inhibit DNA replication through the inhibition of topoisomerase II (Top2) by preventing the 

ligation of nucleotide strands after double strand breakage (Eissa, El-Naggar, El-Sattar, & 

Youssef, 2017). The DNA strand requires unwinding for both transcription and replication. 

However, the unwinding has to be compensated by overwinding elsewhere in the DNA molecule 

(Nitiss, 2009) This problem of supercoiling is addressed through topoisomerases that introduce 

DNA double strand breaks that eliminate the overwinding of the DNA molecule. Top2 

introduces double strand breaks altering DNA structure, replication, transcription and 

chromosome segregation that are essential processes in preventing tumor growth (Nitiss, 2009). 
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The inhibition of Top2 triggered by DOX administration is directly correlated with the drug’s 

effectiveness as a cancer chemotherapeutic agent.  

 

Figure 1: Chemical Structure of Doxorubicin 

The same mechanisms that make DOX an effective antineoplastic agent are also in part 

responsible for the drug’s adverse effects. Administration of DOX has been limited by dose-

dependent, irreversible and progressive toxicity (Buzdar et al., 1992). DOX direct cytotoxic 

action on membranes leads to redox cycling, generation of reactive oxygen species (ROS) 

(Cappetta et al., 2017) and subsequent lipid peroxidation and DNA damage (Gewirtz, 1999). The 

metabolism of DOX (Figure 2) through reductive pathways leads to the generation of a 

semiquinone free radical, doxorubicinol (DOX-OL) and ROS (Riddick et al., 2005). Studies have 

shown that an intravenous bolus of DOX produces high plasma concentrations that quickly fall 

due to rapid and extensive distribution into tissues (Speth, Linssen, Holdrinet, & Haanen, 1987). 

Independent of the absolute drug concentration in plasma, 50 to 85% of plasma DOX is bound to 

protein, leaving 50% of DOX and its metabolite DOX-OL as free drug (Celio, Digregorio, Ruch, 

Pace, & Piraino, 1982). After 50% of DOX is removed from the body unchanged the remaining 

50% is metabolized to DOX-OL via a two-electron reduction (Joerger, Huitema, Meenhorst, 

Schellens, & Beijnen, 2005). Other metabolites are formed but are detected at much lower 

concentrations (Joerger et al., 2005). Elimination primarily occurs in the bile (Takanashi & 
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Bachur, 1976) and over 50% is eliminated as part of the “first pass effect” through the liver 

(Harris & Gross, 1975). There has been no evidence to indicate that enterohepatic recirculation 

occurs with DOX administration (Takanashi & Bachur, 1976). Patients have described a reddish 

discoloration of urine and further examination indicated only about 5% of a dose was discovered 

in urine (Di Fronzo, Lenaz, & Bonadonna, 1973). The mean half-life of DOX has been estimated 

to be between 1-3 hours. It should also be noted that DOX concentrations measured in healthy 

tissues such as liver, spleen, lymph nodes, muscle, hematopoetic cells, kidney and lung always 

exceed plasma concentrations (Chan et al., 1978; J. Cummings & McArdle, 1986; Y. T. Lee, 

Chan, Harris, & Cohen, 1980; Speth, van Hoesel, & Haanen, 1988). The unique features of drug 

accumulation and distribution associated with DOX are part of the reason it is an effective 

antineoplastic agent in the treatment of a variety of cancers. DOX has a propensity to accumulate 

in tissues over time and it is this accumulation that may predispose tissues to cytotoxicity. 

Toxicities associated with DOX have limited its clinical usage. Common side effects 

include bone marrow suppression, nausea, vomiting, diarrhea, headache, skin rash, dizziness, 

confusion, neuropathy, alopecia and fever (National Library of Medicine, 2017). The more 

severe adverse reactions that are associated with high doses or prolonged therapy are 

cardiotoxicity, hepatotoxicity and nephrotoxicity and are major dose limiting effects. The 

mechanisms associated with various toxicities have not been fully elucidated but a disturbance in 

the antioxidant-oxidant system leading to free radical generation and iron-dependent oxidative 

damage has been implicated in previous studies (Liu, Li, Xia, Li, & Shao, 2007). Additionally, 

DOX has been shown to induce inflammatory changes in heart, liver and kidney tissue (Deepa & 

Varalakshmi, 2005). The tissue damage caused by DOX produces an imbalance between free 

radicals and antioxidants that is demonstrated by lipid peroxidation and protein modifications 
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leading to tissue damage (Ayla et al., 2011). The free radicals formed as a result of the 

conversion of DOX to DOX-OL cause damage by inducing oxidative stress and subsequent 

tissue damage. Increased levels of DOX-OL in human myocardium have been shown to cause 

impairment of hydrolase and/or reductase deglycosylation and to uncouple hydrolysis from the 

carbonyl reduction causing increased levels of the redox-cycling metabolite (Licata, Saponiero, 

Mordente, & Minotti, 2000). DOX cardiotoxicity has been linked to the DOX-OL metabolite 

which compromises both systolic and diastolic cardiac function more than the parent compound 

DOX (Olson et al., 1988). The NADPH: Cytochrome P450 reductase (P450R) enzyme catalyzes 

the one electron reduction of DOX to the semiquinone free radical, which can be directly 

cytotoxic leading to covalent modification of macromolecules (Riddick et al., 2005). This 

quinone-structured agent can be enzymatically reduced and may subsequently autoxidize, 

generating free radicals (Goodman & Hochstein, 1977). The free radicals produced are the 

superoxide anion, hydrogen peroxide and the hydroxyl radical (Goodman & Hochstein, 1977). 

However, it should also be mentioned that the P450R enzyme also plays a role in the DOX 

detoxification pathway involving reductive deglycosylation to the metabolite, 7-deoxyglycone 

(Niitsu, Kato, Shikoshi, & Umeda, 1997). The effectiveness of DOX as an antineoplastic agent is 

well documented but there is a need to find better methods to combat the drug’s multiple 

toxicities. 
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Figure 2: Major pathway of doxorubicin metabolism in humans 

Doxorubicin Toxicity: Heart 

The effects of DOX on the heart are both acute and chronic, meaning that even after the 

therapy is discontinued the accumulated drug can lead to left ventricular dysfunction, dilated 

cardiomyopathy and heart failure (Lipshultz et al., 2010). The effects on the heart are more 

pronounced in part due to its lower levels of protective antioxidant enzymes such as superoxide 

dismutase, which results in cardiomyocytes having a greater susceptibility to injury over other 

tissues (Barry, Alvarez, Scully, Miller, & Lipshultz, 2007). The severity of heart disease is linked 

directly to accumulated DOX dosage during the course of therapy ranging from 3-5% in patients 

who received a cumulative dose of 400mg/m2 to 18-48% in patients receiving 700mg/m2 

(Lipshultz et al., 2010).  DOX induced cardiotoxicities are clearly a dose-dependent response. 

Studies have shown that the various DOX manifested cardiotoxicities can be attributed to the 

excessive production of ROS causing damage to cardiomyocytes. Cardiomyocytes require 

mitochondria for extensive ATP production that ensures contractile function of the heart (Koleini 

& Kardami, 2017). Oxidative stress activates molecular pathways causing the loss of 

cardiomyocytes through necrosis and apoptosis (Licata et al., 2000). The oxidative stress 
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mechanism of DOX has also been shown to mediate mitochondrial toxicity, a key player in acute 

and long-term cardiac dysfunction (Zhang, Shi, Li, & Wei, 2009). Ichikawa and colleagues have 

shown there is also a preferential accumulation of Iron (Fe2+) in the mitochondria following 

treatments and isolated cardiomyocytes showed an increase in Fe concentrations for both 

mitochondrial Fe2+ and cellular ROS levels (Ichikawa et al., 2014). The excessive amount of 

ROS and substantial increases in Fe2+ are two ways that DOX has been shown to cause acute and 

chronic cardiac toxicities.  

Doxorubicin Toxicity: Liver 

The liver achieves the highest concentration of DOX compared to all other organs studied 

(Y. T. Lee et al., 1980). This distribution of DOX was observed in patients about 1-1.5 hours 

after an intravenous bolus dose with the highest levels of uptake, 2.3-19.8µg/g, occurring in the 

liver compared to plasma levels of 0.2-0.53 µg/g (Y. T. Lee et al., 1980). The aforementioned 

distribution would indicate that the liver plays a central role in DOX metabolism and 

distribution. In the past, hepatic impairment has led to a dose reduction or removal of the 

medication entirely from a chemotherapeutic regimen. Hepatic dysfunction is also mediated 

through the generation of free radicals causing oxidative damage to tissue. The high levels of 

P450 enzymes in the liver make it a direct target for drug accumulation and potential damage. 

The P450R facilitated conversion of DOX to its toxic metabolite DOX-OL occurs in the liver. 

The toxic effects are seen with increases in aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) in stressed erythrocytes (Hamlaoui et al., 2012). High malondialdehyde 

(MDA) has also been used as a diagnostic marker of hepatic impairment. The increased levels of 

MDA, AST and ALT within erythrocytes have been accompanied by a concomitant decrease of 

antioxidant enzymes in both regions of the liver (Hamlaoui et al., 2012). The increase in free iron 
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(Fe2+), hydrogen peroxide (H2O2), coupled with depressed Ca2+ levels, and followed by the 

induction of the hydroxyl radical (•OH) that can in turn affect Ca2+ homeostasis in both 

erythrocytes and plasma (Bengaied, Ribiero, Amri, Scherman, & Arnaud, 2017). Kassner and 

colleagues reported that the extrinsic and intrinsic apoptotic responses mediated by Fas and Bax 

were both associated with DOX-induced acute hepatic damage (Kassner et al., 2008). The 

reduction of DOX to DOX-OL detected in the cytosol of the liver has the highest Vmax and 

clearance values making it a primary target for the drug’s metabolism as well as the adverse 

effects associated with DOX (Kassner et al., 2008).  

Doxorubicin Toxicity: Kidney 

The effects of DOX associated toxicities have been studied much less extensively in the 

kidney as compared to other organs. However, DOX-induced mechanisms of nephrotoxicity are 

postulated to be as a result of free radical generation similar to what has been reported to 

contribute to hepatotoxicity and cardiotoxicity, along with preferential accumulation of DOX in 

the kidney leading to direct renal damage (Refaie, Amin, El-Tahawy, & Abdelrahman, 2016). 

The preferential accumulation of DOX in the kidney leads to increased capillary permeability 

and glomerular atrophy (Injac et al., 2008). Although the exact mechanism is unknown, there is 

ample data to suggest that free radical formation, iron-dependent oxidative damage of biological 

macromolecules and membrane lipid peroxidation are again the key players in DOX-induced 

toxicity (Liu et al., 2007). The possible role of DOX in nitric oxide synthase (NOS) metabolism 

is through direct or indirect stimulation of nitric oxide (NO) production and could be attributed 

to the increase in free radical generation mediated by the drug (Ayla et al., 2011). Nitric oxide 

(NO) can act as a cytoprotective or cytotoxic agent and is generated by endothelial nitric oxide 

synthase (eNOS) or inducible nitric oxide synthase (iNOS) (Nathan & Xie, 1994). Free radical 
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production and/or NO release induced by DOX may lead to toxicity in the kidney. The 

significant change in kidney tissue triggered by DOX administration is exemplified by the 

cytotoxic effects on human noncancerous renal proximal tubular epithelial cells (HK-2) causing 

alterations in caspase pathways (Y. Wu et al., 2009). Alterations in caspase pathways alter 

apoptosis.   

Damage to the liver as well as the heart may also indirectly effect DOX induced 

nephropathy and nephrotoxicity. The kidneys receive nearly 25% of cardiac output and as one of 

the major organs of excretion, are exposed to a greater proportion of circulating drugs (Y. Wu et 

al., 2009). The known cardiac toxicities associated with the drug may more directly affect the 

kidney than previously believed and should be examined more thoroughly. DOX has also been 

shown to accumulate at high levels in the mitochondria increasing Fe2+ levels within the 

mitochondria as well as increasing cellular reactive oxygen species (Ichikawa et al., 2014). DOX 

has the ability to interact with Fe directly and forms a DOX-Fe2+ complex, resulting in Fe2+ 

cycling between Fe(II) (Niitsu et al., 1997) and Fe(III) forms producing a substantial amount of 

ROS (Ichikawa et al., 2014). The same study showed that DOX mitochondrial content was 

significantly greater than DOX content in the cytosol, 0.8µM and 0.01 respectively upon 

administration of 20 µM/mg dose. Additionally, DOX-Fe2+, measured as Mito 55Fe content, in 

the mitochondria was almost twice that of the control. DOX toxicity to the mitochondria in the 

heart, as well as the kidney, shows that mitochondrial damage plays a central role in DOX-

induced complications. Attenuating DOX mitochondrial toxicity may play a central role in 

mitigating nephrotoxicity and will be examined in this study.  

INTRODUCTION: RESVERATROL 
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Resveratrol (3,4’,5-trihydroxystilbene) (RES) is a naturally occurring polyphenolic 

compound found in various nuts, berries and grapes and exhibits antioxidant properties and anti-

inflammatory activity (Valentovic et al., 2014) (Figure 3). RES is a phytoalexin that is produced 

by plants as a defense mechanism triggered by conditions of fungal growth, specifically powdery 

mildew. The main enzyme responsible for RES biosynthesis is stilbene synthase that condenses 

one p-coumaroyl-CoA and three molecules of malonyl-CoA (Park & Pezzuto, 2015). Despite its 

early isolation in 1939, RES has only gained attention relatively recently for its numerous 

antioxidant and anti-inflammatory benefits. In 1997, Jang and colleagues discovered the 

chemopreventive effects of RES and its ability to inhibit events associated with tumor initiation 

e.g. free radical formation (Jang et al., 1997). Further studies have concluded that RES has both 

anti-angiogenic and anti-tumor effects in skin, breast, colorectal, prostate and lung cancers (Park 

& Pezzuto, 2015). RES’s anti-oxidant and anti-inflammatory properties have been shown to 

exert positive effects on the heart, liver and kidney in addition to its known chemopreventive 

effects.  

The pharmacological properties of RES can make research somewhat limiting. RES is 

known to have high absorption but extremely poor bioavailability (<1%) when administered 

orally. RES undergoes rapid metabolism and excretion and most of the oral dose is recovered in 

urine unchanged. However, oral intake remains the major route administration and has been  

 

Figure 3: Chemical structure of Resveratrol 
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studied extensively. RES exists as both cis and trans isomers; however, most studies use the 

trans isomer due to greater stability. Improvements have been made in identifying RES and its 

metabolites using high performance liquid chromatography (HPLC) analytical methods. HPLC 

has enabled direct identification of metabolites and the position of the hydroxyl substitution. This 

new method led to the development of a metabolite standard and has enabled the measurement of 

RES derivatives (Cottart, Nivet-Antoine, Laguillier-Morizot, & Beaudeux, 2010). The 

advancement of analytical methods has also contributed to identifying free and bound forms of 

RES in plasma. RES is lipophilic, and therefore, it is necessary to take into account LDL-and 

protein bound fractions (Cottart et al., 2010). In 2008 it was described in vitro, that more than 

90% of free trans RES is bound to human plasma lipoproteins in a non-covalent manner in 

healthy human subjects (Burkon & Somoza, 2008). A full understanding of the pharmacokinetics 

and bioavailability is essential in determining proper dose and response of RES, and only then 

can it be utilized to its full potential in the treatment of disease. RES’s ability in slowing or 

halting disease progress has been widely studied in the past few years and will be discussed in 

the following subsections. There is little doubt that the potential clinical usage of antioxidant 

RES could have far reaching applications in the mitigation of a number of disease pathologies. 

Resveratrol and Cancer 

 Jang and colleagues discovered the chemopreventive properties of RES by demonstrating 

the anti-initiation, anti-promotion and anti-tumor progression actions of RES in different models 

(Jang et al., 1997). Potential mechanisms proposed for RES anticancer activity include action as 

an antioxidant and/or anti-inflammatory agent, interference with signal transduction pathways, 

modulation of cell cycle regulating proteins and selective induction of apoptosis, which has been 

characterized in various cell lines (Ulrich, Wolter, & Stein, 2005). RES anti-tumor effects and 
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pathways have been studied broadly in vitro on various cell lines but there are still very limited 

clinical applications available. The need for further studies on human cell lines is imperative in 

determining the possible uses of RES as a chemotherapeutic agent. 

Resveratrol and the Heart 

 Resveratrol has long been part of the “French paradox” and in 1992, Renaud and 

colleagues showed that the French population had a lower risk of cardiovascular disease (CVD) 

even though their diet was high in saturated fats. The intake of a moderate amount of RES 

containing red wine was thought to play a potential protective role against CVDs. Further studies 

showed RES as being a good candidate for prevention of CVD due to its apparent protection of 

vascular walls on oxidation, inflammation, platelet oxidation and thrombus formation (Delmas, 

Jannin, & Latruffe, 2005). Cardioprotective mechanisms of RES are in part due to its ability to 

upregulate eNOS which in turn favors NO mediated vasodilation (Leikert et al., 2002; Wallerath 

et al., 2002). The known physiological roles of NO show that it improves vasodilation and 

decreases platelet aggregation as well as stimulating leukocyte recruitment and proliferation of 

smooth muscle cells (H. Li & Forstermann, 2000). Previous studies have also shown that RES 

can protect against oxidative stress by scavenging the hydroxyl and superoxide radical 

(Bonnefont-Rousselot, 2016). These same RES scavenging properties that prevent against 

oxidative stress are also involved in the prevention of lipid peroxidation. The identification of 

multiple targets, as well as the known protective benefits against CVDs, make naturally 

occurring RES a noteworthy compound for future study in disease prevention. 

Resveratrol and the Liver 

 Hepatotoxicity is not only a major problem in the development of drugs, but is also one 

of the major reasons certain drugs are withdrawn from the market. Clinically, drug-induced liver 
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injury is the most frequent cause of acute liver failure (Pagliarini et al., 2008) in the west (E. S. 

Lee, Shin, Yoon, & Moon, 2010). RES has been shown to protect against numerous in vitro and 

in vivo rodent models of liver injury, including hepatotoxicity caused by drugs and other 

xenobiotics (Bishayee, Darvesh, Politis, & McGory, 2010). The proposed mechanism of RES-

mediated protection against liver injury is that it acts as an antioxidant and decreases oxidative 

stress by directly scavenging free radicals or by upregulating cellular antioxidant enzymes such 

as superoxide dismutase (SOD), catalase and glutathione peroxidases (McGill, Du, Weemhoff, & 

Jaeschke, 2015). Inflammation often accompanies liver disease and the anti-inflammatory 

properties of RES have been demonstrated by the downregulation of inflammation-inducing 

biomarkers including proinflammatory mediators, oxidative stress markers and endogenous 

vasoconstrictors, while accompanied by the upregulation of inflammation-reducing biomarkers 

and anti-inflammatory proteins (Park & Pezzuto, 2015). The poor bioavailability of RES and its 

rapid and extensive metabolism in the liver continues to be an obstacle in clinical application and 

further metabolic studies are needed to validate its potential as a prospective therapeutic option. 

Resveratrol and the Kidney 

 The positive effects that RES could potentially exert on the kidney have not been 

examined as closely as with other organs. Pharmacokinetic studies indicated that RES levels are 

higher in the kidney and liver compared to other organs suggesting that RES has a greater 

potential to induce its effects on these organs respectively (Aggarwal et al., 2004). RES has been 

shown to alleviate oxidative stress in a diabetic kidney and attenuate increases in 

proinflammatory mediators (Palsamy & Subramanian, 2011), but little is known about its 

potential to reduce or protect against xenobiotic-induced nephrotoxicity. Previous studies 

completed in our lab have shown that pretreatment with RES, when co-administered with 
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cisplatin (a well-known cancer chemotherapeutic agent) demonstrated positive effects in the 

mitigation of nephrotoxicity. The results have shown that pretreatment with RES was protective 

for cisplatin renal cytotoxicity in an in vitro mouse model. Additionally, RES protection was 

associated with prevention of lipid peroxidation and oxidative stress that is normally associated 

with cisplatin administration (Valentovic et al., 2014).  

Resveratrol and the Mitochondria 

 Mitochondria are cytoplasmic double-membraned organelles that play a crucial role in 

cell physiological processes, e.g. energy generation via formation of adenosine triphosphate 

(ATP) through oxidative phosphorylation (Trumbeckaite et al., 2006). Oxidative phosphorylation 

leads to two electron transfer through the electron transport chain that is organized into five 

different trans-membrane protein complexes I-V (Dias & Bailly, 2005). Mitochondria are a 

common target of toxicity for drugs and other chemicals, and damage results in decreased 

aerobic metabolism and cell death (Beeson, Beeson, & Schnellmann, 2010). Mitochondrial 

dysfunction plays a role in the pathophysiology of many human diseases, as well as in the 

initiation and progression of apoptosis and the production of ROS in cellular systems. The roles 

of these tiny powerhouses range from apoptosis to energy homeostasis and cell signaling to lipid 

metabolism, making it evident that proper mitochondrial function is imperative to a variety of 

biological processes. RES may modulate mitochondrial function by regulating transcription 

factors that activate or repress mitochondria-related genes, causing alterations in mitochondrial 

physiology (de Oliveira et al., 2016). Proper mitochondrial function is essential but 

mitochondrial biogenesis, which restores cell vitality, is imperative. It has been proposed that 

recovery of organ and cellular injury following insult, may be limited by the remaining 

mitochondrial function and ATP levels, and that stimulation of mitochondrial biogenesis may 
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promote organ recovery and restore cellular function in the short and long term (Beeson et al., 

2010). RES has previously been shown to induce mitochondrial biogenesis as assessed through 

respirometric measurement when compared to untreated control cells (Beeson et al., 2010). The 

mechanism by which RES can induce mitochondrial biogenesis is not known but it is possible 

that it may work through inducing peroxisome proliferator-activated receptor gamma coactivator 

1-alpha (PGC1α), the “master regulator” of mitochondrial biogenesis (Beeson et al., 2010). The 

anti-inflammatory and antioxidant properties of RES may serve to protect mitochondria against 

dysfunction induced by xenobiotics as well as to promote mitochondrial biogenesis. This two-

fold protective response could potentially mitigate mitochondrial toxicity seen with not only 

DOX administration but also a variety of other drugs. Although RES has been shown to have 

effects on mitochondrial function, the exact mechanism and dynamics by which RES modulates 

function are not fully understood (de Oliveira et al., 2016). As such, there is a need for further 

study to examine the effects of RES on modulating and possibly protecting mitochondrial 

function in the presence of oxidative stress induced by anthracyclines, e.g. DOX.  

Statement of Hypothesis 

The effectiveness of DOX as a cancer chemotherapeutic agent is well documented in a 

variety of different types of cancers. However, it is clear that the various toxicities associated 

with the drug limit its clinical use; thus, new methods designed to reduce toxicity are vital to its 

continued clinical usage. The previous discovery by our lab, showing that RES decreased the 

extent of oxidative stress and associated modification of proteins, has led us to consider the 

possible effects of using RES to mitigate DOX induced nephrotoxicity. Additionally, we wanted 

to determine if RES’ antioxidant and anti-inflammatory properties would also protect against 

mitochondrial dysfunction. Previous studies have shown that DOX accumulates at high levels in 
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the mitochondria; therefore, we hypothesized that RES would reduce DOX renal cytotoxicity in 

HK-2 cells and that RES would attenuate DOX-mediated changes in oxidative stress and 

mitochondrial function. 
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Chapter 2 

Materials and Methods 

Chemicals and Reagents 

 DOX and RES were purchased from Sigma Aldrich (Item No. D1515 and Item No. 

R5010) and were used throughout the experiment. All other chemicals were purchased from 

Fisher Scientific or Sigma Aldrich Company and were of the highest analytical quality. Antibody 

sources and dilutions are described below in the appropriate subsection(s).  

Cell Line and Treatment 

 Human immortalized epithelial (HK-2) cells were purchased from the American Type 

Culture Collection (ATCC) and cultured according to the manufacturer’s guidelines. Cells were 

grown in keratinocyte-free media with 50µg/mL bovine pituitary extract and 5 ng/mL 

recombinant epithelial growth factor from Invitrogen (Carlsbad, CA, USA, Item No. 17005-042). 

Cells were grown in a humidified incubator under constant conditions of 37° and 5% CO2. HK-2 

cells were plated into six-well tissue culture plates (1.5x106 cells/well) (Corning, Sigma Aldrich 

Item No. CLS3516) and allowed to grow for 48 h. Media was replaced and cells were treated 

with 0.5 or 7.5 µM of RES or 0, 1 or 2 µM of DOX for 24 h. Vehicle controls were equal 

amounts of Dimethyl sulfoxide (DMSO) (Item No. TS-20688) for RES or purified water for 

DOX, respectively. Following the 24 h treatment period, cells were collected with Trypsin-

EDTA (0.25%) (Invitrogen, Item No. 25200072) for sample analysis. 

Cell Viability 

 Cells were plated in 48-well tissue culture plates (39,000 cells/mL) (Cyto One, USA 

Scientific, Ocala, FL, USA, Item No. CC7682-7548) and allowed to grow for 48 h in the manner 

listed in the above sub-section. In later experiments, cells were plated in 96-well tissue culture 
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plates (3700 cells/mL) (Thermo Fisher Scientific, Item No.12565501) and allowed to grow for 

48 h in the same manner. Following the treatment period, cell viability was assessed using the 

MTT assay (van Meerloo, Kaspers, & Cloos, 2011). The MTT assay relies on the conversion of 

tetrazolium dye 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma 

Aldrich, Item No. M5655-5X1G) to formazan by NAD(P)H-dependent oxidoreductases. The 

cells were incubated at room temperature for 4 h with MTT, and quantity was specified in 25mL 

of HBSS (Hank’s buffered salt solution) (Gibco, Thermofisher Scientific, Pittsburgh, PA, USA, 

Item No. 14025076). Following the 4 h incubation with MTT, cell viability was assessed using a 

plate reader (Synergy 2, Biotek Instruments, Winooski, Ca, USA) at 540 nm by measuring 

formazan concentration as reflected in optical density (OD). Cells not exposed to DOX or RES 

were compared to values of the wells that were exposed to the drugs.  

Western Blot 

 Western blot analysis was conducted to assess the expression of cytochrome-C 

oxidoreductase IV. Protein concentration in each sample was determined using the Bradford 

protein assay (Bradford, 1976). A 40 µg aliquot of each sample was denatured by boiling for 5 

min. Proteins were then separated on a 12.5% polyacrylamide gel and transferred to a 

nitrocellulose membrane (Bio-Rad, Hercules, CA, USA, Item No. 162011). Successful transfer 

and unified protein loading were verified using MemCode Reversible Protein Stain Kit (Pierce 

Biotechnology, Rockford, Il, USA, Fisher Scientific, Item No. PI-24580). Membranes were 

blocked in 5% milk/TBST solution (10mM Tris-HCl, 150mM NaCl, 0.1% Tween-20; pH 8.0) 

for 1 h. Membranes were then incubated with continuous shaking overnight at 4°C with 

cytochrome C (Cell Signaling, Item No.4272, 1:1000 dilution). The membranes were washed 

four times with TBST, and goat anti-rabbit HRP-linked secondary antibody (Santa Cruz, Item 
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No. sc-2004) was diluted 1:5000 in 5% milk/TBST and added for 1 h with continual shaking. 

The membranes were washed again with TBST in the same manner listed above. Membranes 

were developed using Amersham ECL Western Blotting Detection Agent (GE Healthcare Life 

Sciences, Malborough, MA, USA, Item No. RPN2232). A Bio-Rad Chemidoc system was to 

capture the gel image for densitometry analysis. All western analyses were conducted as three 

independent experiments. Western blot was also conducted as described above using rabbit 

polyclonal antibody to peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(anti-PGC-1α) (Abcam, Item No. ab191838) and sirtuin 1 (anti-SIRT1) (Abcam, Item No. 

ab7343) both diluted 1:1000 in 5% w/v milk/TBST. Human heart tissue whole cell lysate, 

(Abcam, Item No.7919 dilution 1:1000) a positive control known to express PGC-1α, and SIRT1 

was used in both PGC-1α and SIRT1 analyses at a dilution of 1:1000 and boiled for five minutes 

prior to loading. Following washing with TBST, membranes were treated with goat anti-rabbit 

HRP-linked secondary antibody for 1 h (Santa Cruz, Item No. sc-2004) and secondary was 

diluted 1:3000 in 5% w/v milk/TBST. Membranes were washed and developed as previously 

described. PGC-1α positive control was replaced with mouse heart total protein lysate (Abcam, 

Item No. Ab30291). SIRT1 positive control was replaced by human embryonic kidney whole 

cell lysate (HEK293). Dilutions for both positive controls were 1:1000 and were boiled for 5 

minutes prior to loading. Secondary antibodies and dilutions remained unchanged.  

Oxidative Stress  

 Protein carbonylation is an indicator of oxidative stress that produces an aldehyde or 

ketone side chain on amino acids. Protein carbonylation was assessed using the Oxyblot Protein 

Oxidation Detection Kit (EMD Millipore, Billerica MA, USA, Item No. S7150). Following a 24 

h treatment with vehicle(s), DOX, RES or DOX and RES, cells were trypsinized, pelleted and 
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stored in lysis buffer at -80°C until the blot was performed. The Bradford assay measured protein 

content and a 25 µg aliquot was derivitized as described in the previous sub-section. Proteins 

were separated on a 12.5% polyacrylamide gel, transferred to a nitrocellulose membrane and 

uniform protein loading was verified using MemCode Reversible staining as described in the 

previous sub-section. Protein carbonyl moieties on amino acids generated by oxidative stress 

were derivitized in the presence of 2,4-dinitrophenylhydrazine to stable 2,4-

dinitrophenylhydrazone groups. The membrane was blocked for 1 h in 1% BSA in PBST 

(Phosphate buffered saline, 0.05% Tween-20 pH 7.2-7.5). The primary antibody used recognizes 

2,4-dinitrophenylhydrazine groups on proteins and was used at a dilution of 1:150 and incubated 

with constant shaking overnight at 4°C. The membrane was washed in PBST four times for 10 

minutes and incubated with secondary antibody at a dilution of 1:300 in 1%BSA/PBST for 1 h at 

room temperature. The membrane was washed again in the same manner listed above. Results 

were analyzed with BioRad Chemidoc densitometry software (version 4.0.1, Catalog No. 170-

9690, BioRad, Hercules, CA, USA).  

Seahorse XFp Assays 

 Seahorse XFp assays allow measurement of basal Oxygen Consumption Rate (OCR) and 

Extracellular Acidification Rate (ECAR) following injection of compounds to identify sources of 

mitochondrial impairment. Mitochondrial function was measured using Agilent mitochondrial 

stress and glycolytic stress assays. Cells were cultured in XFp miniplates (75,000 cells/mL) 

(Agilent Technologies, Item No. 103025-100). Prior to the assay, cells were washed with assay 

media (Agilent Technologies, Item No. 103334-100) supplemented with 1mM pyruvate, 2 mM 

glutamine and 0 mM glucose and equilibrated in 180 µL pre-warmed assay media at 37°C with 

no CO2 for 1 h. Cells were treated and incubated for 24 h with the varying drug concentrations or 
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vehicle controls. In each assay, three basal OCR/ECAR measurements were taken at 7-minute 

intervals using the Seahorse XFp instrument system. Following basal measurements, various 

probes were injected and additional OCR and ECAR measurements were taken. Maximal 

respiration was stimulated by the addition of carbonyl cyanide-4-(trifluoromethoxy) 

phenylhydrazone (FCCP), a mitochondrial uncoupler. The mitochondrial stress test assay 

(Agilent Technologies, Item No. 103015-100), injections of oligomycin (0.05µM), and a mixture 

of rotenone/antimycin A (0.05µM) were added and OCR and ECAR were measured. In the 

Glycolysis Stress Test (Agilent Technologies, Item No. 103020-100), glucose (10mM), 

oligomycin (1µM), and 2-DG were injected, and OCR and ECAR were measured. Upon 

completion of each assay, cells were washed with 200µL PBS and lysed. Protein concentration 

was determined using the Bradford assay as previously described. Results were normalized to 

total protein concentration and analyzed using Wave Software (Agilent Technologies, Wave for 

Desktop, Version 2.3.0.19).  

Statistical Analysis 

 Values represent mean ± SEM with 2-4 independent experiments conducted with 2-4 

biological replicates. Differences between groups were determined with one-way or two-way 

ANOVA followed by a Bartlett’s post-hoc test with or Tukey’s multiple comparison test 

respectively with p<0.05 (Prism 7 for Mac OS X, Graph Pad Software, Inc. La Jolla, CA 92037). 

   

 

 

 

 



21 

CHAPTER 3  

RESULTS 

Doxorubicin and Resveratrol Effects on Cell Viability 

 The MTT (MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide)) 

concentration response assays showed DOX reduced cell viability at concentrations of 3µM 

(p<0.0385) and 5 µM (p<0.0071) within 24 h compared to control (Figure 4A). DOX at 

concentrations of 0.5, 1 and 2 µM did not have significant effects on cell viability. A dose 

response assay performed at 48 h showed toxicity at all concentrations of DOX (p<0.0001) 

relative to control (Figure 4B). MTT assays performed at 8 h with 1 h RES pretreatment 

indicated that 5 µM RES pretreatment was ineffective in mitigating DOX induced cytotoxicity 

while the higher RES concentration of 7.5 µM was slightly more effective (Figure 5A). DOX 

concentration of 1 µM coupled with 5 µM RES pretreatment had significantly reduced cell 

viability (p<0.0011) when compared to control but 1 µM DOX coupled with 7.5 µM RES 

pretreatment did show a significant decline. DOX at 2 µM had significantly reduced cell viability 

in both cells treated with 5µM RES (p<0.0003) and 7.5 µM RES (p<0.0004). Cells treated with 4 

µM DOX and 5 µM RES showed reduced cell viability (p<0.0246) while cells pretreated with 

7.5 µM RES did not show a significant decline in viability. MTT performed at 24 h showed a 

significant decline between control vs. 4 µM DOX (p<0.0481) (Figure 5B). Additional declines 

were observed between 5 µM RES vs. 5 µM RES+2 µM DOX (p<0.0453) and 5 µM RES+ 4 µM 

DOX (p<0.0347). Additional declines were also observed between 7.5 µM RES vs. 7.5 µM 

RES+4 µM DOX (p<0.0066) and 7.5 µM RES+1 µM DOX vs. 7.5 µM RES+4 µM DOX 

(p<0.0396). 
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A)       B) 

 

Figure 4: DOX cytotoxic effects HK-2 cell viability using MTT. DOX dose response at 24 h 
(A) and DOX dose response at 48 h (B). Bar graph values represent Mean ± SEM for two 
independent experiments. 
 

 
  
Figure 5: Protective effects of RES against DOX cytotoxic effects HK-2 cell viability using 
MTT. RES was unable to protect against DOX induced cytotoxicity at (A) 8 h. RES was able to 
protect against significant loss of cell viability at 24 h (B) with no significant decreases between 
groups. Bar graph values represent Mean ± SEM for four independent experiments. 
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Oxidative Stress: Protein Carbonylation 

 Preliminary data indicated that RES decreased protein carbonylation at both 

concentrations relative to control (Figure 6). DOX alone appears to increase protein 

carbonylation relative to control and RES co-administered with DOX showed a decline in 

protein carbonylation relative to control (Figure 6). These results are based on one replicate and 

further experiments are required to determine statistical significance.

 

Figure 6: DOX treatment increased protein carbonylation in HK-2 cells. Western blot lanes 
correspond to the above graph (1-9). Bar graph values represent Mean ± SEM for three 
independent experiments run with one biological replicate.   
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Western Blot: Cytochrome C Leakage 

 DOX at 1 and 2µM alone did not cause significant leakage of cytochrome C (cyt C) from 

the mitochondria into the cytosol relative to control as confirmed by western blot (Figure 7). 

Additionally, RES alone or RES co-administered with DOX did not significantly decrease cyt C 

leakage from the mitochondria into the cytosol relative to control within the 24 h treatment 

period. Cyt C is located in the inner membrane of the mitochondria and initiate apoptosis. The 

lack of an observed difference in cyt C leakage may be attributed to the short experimental time 

course and the localization of the protein.  

 

 

Figure 7. Cytochrome C leakage from HK-2 cells treated with various concentrations of 
DOX and RES. Cytochrome C leakage was not significantly increased or decreased relative to 
control or among treatment groups. Bar graph values represent Mean ± SEM for three 
independent experiments.  
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Western Blot: SIRT1 and PGC1a 

 SIRT1 expression was decreased significantly in 2 µM DOX (p<0.0142) treated cells 

relative to control (Figure 8A). Multiple comparisons revealed significant decreases between 5 

µM RES alone and 1 µM and 2 µM DOX alone (p<0.0033 and p<0.0045) respectively (Figure 

8A). Significant reductions in SIRT1 were also observed between 7.5 µM RES alone and 1 µM 

and 2 µM DOX (p<0.0045 and p<0.0020) respectively (Figure 8). Increases in SIRT 1 

expression were observed between 1 µM DOX vs. 7.5 µM RES+1 µM DOX (p<0.0020) and 7.5 

µM RES+2 µM DOX (p<0.0403) (Figure 8A). Increases were also observed between 5 µM 

RES+1 µM DOX vs. 2 µM DOX (p<0.0304) and 7.5 µM RES+1 µM DOX vs. 2 µM DOX 

(p<0.0004) (Figure 8A). These results indicate that SIRT1 is expressed to a higher degree in cells 

treated with 5 µM and 7.5 µM RES regardless of the addition of DOX (Figure 8A).  

 PGC1a expression was higher in RES treated groups relative to control and DOX alone 

treated cells although the increases were not significant (Figure 8B). The large variance within 

groups indicates that these tests should be repeated but do seem to support increases in SIRT1 

mediate increases in PGC1a. 
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Figure 8. SIRT1 and PGC1a western blot of HK-2 cells treated with varying 
concentrations of DOX and RES. Western blot of SIRT1 (A) and PGC1a (B) and 
corresponding treatments: Control (1), RES 5 (2), RES 7.5 (3), DOX 1 (4), RES 5+DOX 1 (5), 
RES 7.5+ DOX 1 (6), DOX 2 (7), RES 5+DOX 2 (8), RES 7.5+DOX 2 (9) (p<0.05). Bar graph 
values represent Mean ± SEM for two independent experiments. 
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Seahorse Analysis: Measurement of Mitochondrial Function  
 
 A mitochondrial stress test was performed following a 1 h pretreatment with RES (7.5 

µM) and 24 h incubation with DOX (2 and 4 µM). Following treatment, cells were serially 

injected with probes to identify parameters of mitochondrial function. The first injection of 

oligomycin inhibits the ATP synthase enzyme and results in a decrease in OCR. This decrease 

represents mitochondrial respiration linked to ATP production. FCCP uncouples mitochondrial 

respiration and increases the cell’s oxygen consumption to its maximum level and enabled us to 

calculate the spare or reserve respiratory capacity. The final injection of rotenone/antimycin A 

inhibits complex I and III and was used to calculate non-mitochondrial respiration.  

 Cells exposed to DOX at a concentration of 4 µM showed a significant decrease in basal 

respiration (p<0.0083) and 7.5 µM RES+4 µM DOX (p<0.0471) at 24 h but not cells exposed to 

2 µM DOX when relative to control (Figure 9A). Basal respiration was significantly decreased 

between DOX 2 µM vs. Dox 4 µM (p<0.0047), 7.5 µM RES +2 µM DOX vs. 4 µM DOX 

(p<0.0246) and 7.5 µM RES vs. 7.5 µM RES+4 µM DOX (p<0.005) (Figure 9A).  

 ATP-linked OCR was calculated and results analyzed through a two-way ANOVA and 

multiple comparisons (Figure 9C). DOX 4 µM was significantly decreased (p<0.0205) relative to 

control (Figure 9C). There were significant declines observed in 2 µM DOX vs. 4 µM DOX 

(p<0.0041) (Figure 9C). Multiple comparisons revealed maximal OCR was not significantly 

affected among any treatment groups relative control and the only significant decline observed 

was between RES 7.5 µM vs. DOX 4 µM (p<0.0022) (Figure 9B). Proton leak was not 

significantly affected in any treatment group relative to control (Figure 9E). Surprisingly, proton 

leak was decreased between 7.5 µM RES vs. 4 µM DOX (p<0.0402) and vs. 7.5 µM RES +4 µM 
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DOX (p<0.0464) (Figure 9E). Proton Leak was also diminished significantly between control 

and DOX 4 µM (p<0.0337).   

 Spare Capacity was not effected in any treatment groups compared to control, but was 

decreased in 7.5 µM RES vs. 4 µM DOX (p<0.0022) (Figure 9D).  

 

Figure 9: Mitochondrial Stress Test, effects of DOX and RES on ATP production and 
mitochondrial respiratory capacity. Basal (A) and Maximal (B) OCR following 24 h exposure 
to RES, DOX or RES+DOX. ATP Production (C) spare respiratory capacity (D) and proton leak 
(E) following 24 h exposure to RES, DOX or RES+DOX. Bar graph values represent Mean ± 
SEM for three independent experiments run with two biological replicates.  
 
 
 Glycolytic stress tests were performed after 24 h treatments with the various 

concentrations of RES and DOX. The cells are saturated with glucose and basal ECAR is 

assessed. Following basal ECAR assessment, oligomycin is injected to inhibit ATP synthase 

thereby driving glycolysis to its maximal capacity. The third and final injection of 2-DG, a 

glucose analog, inhibits the first enzyme in the glycolytic pathway known as hexokinase. The 
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following observed decrease in ECAR indicates that the ECAR produced in the experiment is 

due to glycolysis.  

 Basal ECAR was assessed but the only significant decline relative to control was in 7.5 

µM RES+4 µM DOX group (p<0.0131) (Figure 10A). A significant basal ECAR drop was 

observed in 7.5 µM RES vs 2 µM DOX (p<0.0020) and 4 µM DOX (p<0.0032) treated groups 

(Figure 10A). There was also significant decrease among 7.5 µM RES treated cells vs. 7.5 µM 

RES+4 µM DOX (p<0.0002) and a decrease between 7.5 µM RES+2 µM DOX and 7.5 µM 

RES+4 µM DOX (p<0.0157) (Figure 10A).  

Glycolytic capacity was reduced in cells treated with 4 µM DOX alone (p<0.0106) and 

7.5 µM RES+4 µM DOX (p<0.0098) relative to control cells (Figure 10B).  Additionally, cells 

treated with 7.5 µM RES alone had significantly higher glycolytic capacity when compared to 2 

µM DOX (p<0.0051) or 4 µM DOX (p>0.001) alone (Figure 9B). A significant decline was 

observed in cells treated with 7.5 µM RES alone vs. either 7.5 µM RES+ 2 or 4 µM DOX 

(p<0.0149, p<0.0001) respectively (Figure 10B). 

Glycolytic reserve indicated a significant increase in cells treated with 7.5 µM RES alone 

(p<0.0203) relative to control (Figure 10C). Significant decreases in glycolytic reserve were 

demonstrated between 7.5 µM RES alone vs. 2 µM DOX (p<0.0019), 4 µM DOX (p<0.0001) 

and 7.5 µM RES+4 µM DOX (p<0.0001) respectively (Figure 10C).  
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Figure 10. Glycolytic stress test, effects of RES, DOX or RES+DOX on glycolytic capacity 
and reserve. Basal (A) and Maximal (B) ECAR following and Reserve Capacity (C) following 
24 h exposure to RES, DOX or RES+DOX. Bar Graph values are presented as a Mean ± SEM 
for two independent experiments run with two biological replicates.  
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CHAPTER 4 

DISCUSSION 

Doxorubicin: Cancer Chemotherapeutic 

 Doxorubicin has been in use as a cancer chemotherapeutic agent since the 1970s despite 

the known toxicities associated with administration. The high anti-tumor capability of DOX and 

its power to prevent DNA replication is largely why it is still part of the treatment regimen for 

breast, ovarian and small cell lung cancer and both acute and chronic lymphoid leukemias. There 

is a clear need for better interventions to treat the numerous toxicities associated with DOX, 

which could ultimately be responsible for its removal from a patient’s therapy regimen. As stated 

previously DOX-associated nephrotoxicity has been studied to a much less extent than other 

adverse side effects linked to the anthracycline. DOX progressive and dose-dependent toxicity is 

a result of the drug’s accumulation in tissue over time. The preferential accumulation of DOX in 

the kidney causes increased capillary permeability and glomerular atrophy (Injac et al., 2008). 

The high cytochrome P450 levels in the renal proximal tubule would make the kidney a direct 

target for the conversion of DOX to toxic DOX-OL and subsequent formation of ROS (B. S. 

Cummings, Zangar, Novak, & Lash, 1999). ROS formation leads to oxidative stress, lipid 

peroxidation and subsequent renal damage. Additionally, the high numbers of mitochondria in 

the proximal tubule lead to increased damage and mitochondrial dysfunction. The need to 

combat renal toxicity is imperative for the continued usage, and use of the natural product RES 

in mitigating kidney toxicity would have strong clinical applications.  

 RES’s anti-oxidant and anti-inflammatory properties have been well documented in the 

literature. The additional anti-cancer and anti-tumorigenic properties associated with RES show 

its potential in mitigating cancer metastasis in addition to its function as an antioxidant. The 
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unique ability of RES to scavenge free radicals could be a potential mechanism against oxidative 

stress and lipid peroxidation. At present, it is difficult to determine if RES reduces oxidative 

damage by scavenging radicals or if it is capable of inhibiting the generation of free radicals. A 

more comprehensive mechanistic study should be performed in order to determine the exact 

mechanism by which RES exerts its positive effects. The ability of RES to potentially reduce 

oxidative stress and successive damage will be discussed in the following subsections. 

Resveratrol Protection Against Doxorubicin Induced Oxidative Stress and Cytotoxicity 

 Oxidative stress and successive damage are responsible for the irreversible and 

progressive toxicity associated with DOX administration. Under normal conditions ROS are 

produced at low enough concentrations where the cell is able to detoxify the radicals through 

innate antioxidant mechanisms. Excessive production of free radicals, as seen with 

administration of DOX, triggers eventual damage that the cell is unable to overcome. However, 

it should be noted that even subtle changes due to oxidation of amino acid residues in a protein 

polypeptide chain may cause significant alteration in protein higher order structures and cellular 

functions (Aryal, Jeong, & Rao, 2014). These alterations indicate that oxidative stress can begin 

to cause damage virtually upon onset.  

 Toxicity mediation through free radical generation, Fe2+-dependent oxidative damage of 

biological macromolecules and membrane lipid peroxidation are major players in progressive 

toxicity (Tian, Li, Wang, Xie, & Li, 2012). The inability to mitigate protein oxidation and stress 

will eventually lead to cell death. Protein carbonylation is a non-specific technique that allowed 

us to examine oxidative stress among various treatment groups (Figure 6). Stressed cells produce 

an aldehyde or ketone side chain on amino acids, which are then derivitized (see pg. 12) and 

analyzed. Proteins are often the first targets of cellular oxidative stress and are commonly used as 
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a marker of injury. Cellular dysfunction and disease progression occur as a result of protein 

carbonylation (Aryal et al., 2014).  

 A study by Toldo and colleagues in 2013 demonstrated, in vivo and in vitro, DOX 

treatment causes significant damage in cardiomyocytes, over production of ROS and total 

protein carbonylation (Toldo et al., 2013). Additionally, Aryal and colleagues demonstrated that 

major serum proteins, serum albumin and serotransferrin, were found to be highly carbonylated 

under DOX-induced acute cardiotoxicity. DOX effects on cardiomyocytes, as well as cardiac 

tissue, has been widely studied, but little is known about DOX-induced protein carbonylation in 

HK-2 cells (Aryal et al., 2014). Cardiac tissue is known to have lower levels of antioxidant 

enzymes and high levels of mitochondria making it the primary target of toxicity and the reason 

it has been heavily studied. Nonetheless, examination of DOX-induced damage in other organs, 

i.e. kidney. gave new insight into DOX-induced multi-organ damage. By examining oxidative 

damage to the kidney, we were able to better assess and examine a potential way to curb kidney 

damage. These findings may lead to new ways to prevent DOX-induced kidney damage and 

potentially organ damage as a whole.  

DOX has been shown to cause renal damage, but the exact mechanism has remained 

elusive. In the past DOX-induced kidney damage has been examined by observing levels of 

enzymes capable of detoxifying free radicals. DOX has been shown to induce a glutathione 

(GSH) and oxidized-glutathione (GSSG) imbalance as well as lipid peroxidation in kidney tissue 

of rats (Injac et al., 2008). The GSH/GSSG ratio is a critical regulator of cellular redox states and 

declines in this ratio are closely associated with oxidative stress and disease (Zhou et al., 2014). 

Additionally, administration of DOX causes a decrease in GSH, SOD and glutathione-S-

transferase (GST) (Liu et al., 2007). GSH and SOD are major players in free radical 
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detoxification and decreased levels may indicate the cell’s inability to detoxify ROS at the rate in 

which they are being formed. GSTs are enzymes which are strictly specific for epithelial cells of 

the proximal and distal tubules in the kidney and are detected in urine when tubular damage has 

occurred causing decreased tissue levels (Polak et al., 1999). The imbalance between 

GSH/GSSG coupled with decreases in GSH, SOD and GST is indicative of damage and will lead 

to toxicity. A potential way to alleviate damage is through the use of RES which has previously 

been shown to reduce oxidative stress by increasing expression of SOD and glutathione 

peroxidase (GPx1) in human endothelial cells (Spanier et al., 2009). Assessing DOX injury and 

potential protection by RES via protein carbonylation analysis was our first step in examining 

and conceivably combatting DOX-induced oxidative injury. Oxidative damage was not assessed 

at 8 h based on RES’s apparent inability to combat cell damage in the short amount of time 

(Figure 5A). Preliminary data showed that DOX alone increased oxidative stress relative to 

control and that RES reduced stress when compared to control cells. Cells pretreated with RES 

and various concentrations of DOX had decreased protein carbonylation within a 24 h time 

period (Figure 5B). It is of interest that like the heart, the proximal tubule of the kidney is high in 

mitochondria. RES may have the ability to exert protective effects on cardiac tissue as well as 

renal tissue and should be studied further. It is generally accepted that ROS and subsequent 

oxidative stress are key players in the initiation of DOX-induced toxicities. This is the first study 

to assess protein carbonylation in DOX and RES treated HK-2 cells and demonstrate RES’ 

capability in reducing oxidative stress caused by DOX which lead us to question if RES could 

potentially protect against DOX-induced cytotoxicity by ameliorating decreases in cell viability. 

Prolonged oxidative stress and depletion of cellular antioxidant enzymes leads to 

irreparable damage and subsequent activation of pro-apoptotic pathways. Apoptosis is one of the 
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major mechanisms of cell death in response to cancer therapies (Danial & Korsmeyer, 2004). 

The major apoptotic pathway of anticancer drugs is through the loss of mitochondrial membrane 

integrity (Kaufmann & Earnshaw, 2000). The loss of mitochondrial membrane integrity causes 

the release of cytochrome c from the mitochondria, which in turn activates effector caspases. 

Loss of mitochondrial membrane integrity and the subsequent activation of apoptotic pathways 

are essential to the drug’s efficacy. However, the need for interventions to prevent DOX from 

damaging non-cancerous cells is imperative to its continued use. There have been notably fewer 

reports on the effects of DOX-toxicity on non-cancerous cell lines and we endeavored to correct 

that with this study.  

Previous findings have suggested that DOX induces apoptosis in normal cells vs. tumor 

cells by distinctively different mechanisms (Wang et al., 2015). This analysis demonstrated 

DOX-induced apoptosis in endothelial cells and cardiomyocytes was a result of a H2O2-mediated 

mechanism that was largely independent of p53 activation. However, this was not the case for 

tumor cell lines, as p53 tumor suppressor played a crucial role in inducing apoptosis in DOX-

treated cells (Wang et al., 2015). The determination that tumor cell lines and normal cell lines 

activate apoptosis differently gives us a potential conduit to treat toxicity in non-cancerous cells 

without altering the effectiveness of DOX on cancer cells. 

DOX has previously been shown to produce dose-dependent and progressive toxicity. 

Assessing HK-2 cell’s response to varying concentrations of DOX was the first phase in 

quantifying dose-dependent progression of toxicity. HK-2 cell’s mitochondrial activity is 

constant and therefore an increase or decrease in the number of viable cells is linearly related to 

mitochondrial activity (van Meerloo et al., 2011). The concentration of formazan was measured 

to determine changes in cell viability in the MTT assay. HK-2 cells exposed to DOX for 24 h 
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showed a significant decrease only at the two highest concentrations (Figure 4A). At 48 h, cell 

viability was decreased even at the lowest concentration of 0.5 µM (Figure 4B). These results 

confirmed that over time DOX, even at low concentrations, will lead to dose-dependent 

progressive toxicity confirming previous studies. We attempted to mitigate the decrease in cell 

viability through the use of RES. As discussed previously RES has the ability to upregulate 

endogenous antioxidants. The upregulation of SOD, GST, catalase and GPx1 provide a defense 

against oxidative stress (Y. Li, Cao, & Zhu, 2006). It is not known whether RES is directly 

cytoprotective but the upregulation of cellular antioxidants indirectly protects against cell 

damage and death.  

We were able to determine RES’s ability to reduce or protect against oxidative stress 

relative to cell death. Cells pretreated with 5 µM RES and 1, 2 and 4 µM DOX were not able to 

prevent a significant decline in cell viability within the 8 h time course (Figure 5A), indicating 

that a concentration of 5 µM RES is not significant enough to protect against DOX induced 

cytotoxicity. However, 1 h pretreatment with RES at the higher concentration of 7.5 µM was 

able to prevent significant reductions in cell death in DOX treatments of 1 and 4 µM but 

interestingly not at 2 µM. The results show that the 8 h exposure is not enough time for lower 

concentrations of RES to mitigate cytotoxicity and is observed by the inability of the cell to 

reduce oxidative stress and subsequent damage. Even at higher concentrations, a longer exposure 

time would be more ideal to determine protective effects of RES on DOX treated cells. Cells 

exposed to RES pretreatments (5 and 7.5 µM) for 24 hours and accompanying concentrations of 

DOX (1, 2 and 4 µM) showed no significant decline in cell viability (Figure 5B). No significant 

decline in cell viability shows RES is capable of protecting HK-2 cells against DOX-induced 

cytotoxicity. Cells treated with RES alone had higher cell viability than control cells which 
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confirms previous studies that RES itself is cytoprotective.  We can conclude that pretreatment 

with the chosen RES concentrations shows potential to decrease cytotoxicity that accompanies 

DOX administration within 24 h. RES should be assessed after longer exposure (48 h and 72h) to 

determine if it is better able to protect against DOX-induced oxidative stress and cytotoxicity and 

to confirm that it does not lose its ability to protect against cell death. There is evidence that 

RES’s ability to induce pro-oxidant effects and resist cytotoxicity is time-dependent (Martins et 

al., 2014) and should be further examined in longer experimental time courses. These initial 

results verify RES’s ability to decrease oxidative damage and subsequent cell death within a 24 h 

time period and further experiments should be performed. 

Resveratrol Protection Against Doxorubicin Induced Cytochrome C Leakage 

 The key role that mitochondria play in the regulation of apoptosis have been established 

in various studies. The release of different pro-apoptotic proteins that are normally present in the 

intermembrane space of these organelles has been observed during the early stages of apoptotic 

cell death (Cai, Yang, & Jones, 1998). Among the proteins released from the mitochondrial inner 

membrane is cyt C. Cyt C is an essential component of the electron transport chain (ETC) and a 

key regulator of apoptosis in the mitochondria. The cyt C protein functions as a single electron 

carrier in the final step of the ETC (Huttemann et al., 2011). During programmed cell death cyt C 

is released from the mitochondria into the cytosol where it binds to Apaf1 to activate a series of 

caspase cascades (Cai et al., 1998). As previously discussed, mitochondrial outer membrane 

permeabilization is a key initial step in apoptosis.  

 Mitochondrial membrane permeabilization occurs through several mechanisms and is 

also referred to as the mitochondrial permeability transition (MPT). The first pathway involves 

the induction of MPT through the opening of non-specific pores in the inner membrane leading 
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to osmotic swelling of the mitochondrial matrix, mitochondrial uncoupling, rupture of the outer 

membrane and release of proteins like cyt C (Robertson, Orrenius, & Zhivotovsky, 2000; Yang 

& Cortopassi, 1998). A second mechanism capable of inducing mitochondrial membrane 

permeabilization is through the Bcl-2 family of proteins. Bcl-2 proteins, specifically Bax, are 

capable of inducing the release of cyt C, independent of MPT, through the induction of voltage-

dependent ion channels (VDAC). VDAC is associated with most of the metabolite flux across 

the mitochondrial outer membrane (Colombini, 1983). The third pathway is also MPT-

independent and initiates cyt C release in a volume-dependent manner through mitochondrial 

swelling which leads to permeabilization of the mitochondrial outermembrane (Gogvadze, 

Orrenius, & Zhivotovsky, 2006). Last, there is recent evidence to suggest that caspase-2 is also 

capable of mediating the release of cyt C and subsequent activation of downstream caspases 

(Gogvadze et al., 2006). It is clear that mitochondrial membrane permeabilization and 

subsequent cyt C release is a key step in the initiation of apoptosis. Understanding and 

modulation of these pathways experimentally may result in new techniques to mitigate apoptosis 

and should be studied more extensively.   

Previous in vivo findings have shown DOX treatment causes cyt C release and apoptosis 

at much higher levels than untreated animals (Childs, Phaneuf, Dirks, Phillips, & Leeuwenburgh, 

2002). Green and colleagues demonstrated that DOX increased cyt C efflux indicating 

mitochondrial dysfunction which lead to a change in mitochondrial membrane permeability that 

was not observed in the mitochondria of control animals (P. S. Green & Leeuwenburgh, 2002). 

Additionally, both studies showed a marked increase in caspase-3 activity indicating apoptosis 

and the likelihood that caspase-3 is the primary effector caspase involved. In vitro studies of 

cardiac myocytes treated for 24 h with DOX showed increased leakage of cyt C into the 
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cytosolic compartment relative to untreated cells (Kotamraju, Konorev, Joseph, & 

Kalyanaraman, 2000). Once again various studies have been performed using animal cardiac 

tissue and cardiac cell lines but little information is available on DOX-induced cyt C leakage 

regarding other organs and cell lines.  

The therapeutic effects of RES as a potential anti-cancer agent as well as a 

cardioprotective agent have been studied extensively. In a study completed this year, RES was 

given prophylactically and therapeutically with DOX and results compared in rats (Shoukry et 

al., 2017). Prophylactic administration was defined as pre-treatment with RES before DOX and 

therapeutic defined as RES treatment post DOX administration. The study demonstrated that 

DOX induced cardiac fibrosis but when RES was administered therapeutically cardiac fibrosis 

was decreased. Additionally, prophylactic supplementation of RES was more effective in 

reducing fibrosis than when RES was administered therapeutically (Shoukry et al., 2017). 

Apoptosis was examined by looking at Bax, Bcl-xl and caspase 3 expression. DOX led to an 

increase in myocardial apoptosis and a significant increase in caspase 3. Therapeutic treatment 

with RES reduced myocardial apoptosis but not as significantly as when RES was administered 

prophylactically (Shoukry et al., 2017). RES, like DOX, has been studied widely in respect to its 

cardioprotective abilities but less so in other cells and tissues.  

For the first time HK-2 cells treated with DOX, RES and DOX+RES were examined to 

determine if DOX increases cyt C leakage from the mitochondrial inner membrane. The results 

indicated that HK-2 cells treated with DOX alone had no increase or decrease in cytosolic levels 

of cyt C and cells treated with RES alone or co-administered with DOX showed no significant 

increase or decrease relative to control (Figure 7). Cyt C is normally bound to the inner 

mitochondrial membrane by an association with anionic phospholipid cardiolipin, where it can 
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reversibly interact with complexes III and IV of the respiratory chain and dissociation from of 

cyt C from cardiolipin may be the critical first step in caspase activation (Petrosillo, Ruggiero, 

Pistolese, & Paradies, 2001). Previous studies done by our lab showed no discernible changes in 

cardiolipin levels within 24 h supporting our results that cyt C has not yet dissociated and 

translocated within this time period. 

Within the 24 h time course it is possible that this terminal step of the ETC is not affected 

or that DOX at concentrations of 1 and 2 µM are slower to effect apoptosis initiation and 

translocation of the protein from the inner mitochondrial membrane to the cytosol. Additionally, 

the kidneys have higher levels of detoxifying enzymes than the heart. It is possible that within 24 

h cells are able to detoxify radicals and protect against the initiation of apoptosis. Eventually 

these enzyme levels will be depleted and apoptosis initiated and a longer period of study is 

indicated to ascertain RES potential protection against apoptosis. These findings are confirmed 

by our cell viability assay that DOX administered at concentrations of 1 and 2µM are not yet 

toxic to the cell within 24 h time period (Figure 5).  

Resveratrol: A Mechanistic Approach 

 Sirtuin 1 (Sirt1) functions as a protein deacetylase to remove acetyl groups on proteins in 

a NAD-dependent manner. Sirt1 is known to modulate a number of transcription regulators, 

including PGC1a, a nuclear hormone receptor coactivator that promotes mitochondrial 

biogenesis (Koo & Montminy, 2006). PGC1a is required for mitochondrial biogenesis but 

previous assays of PGC1a activation of upstream effectors have not consistently predicted the 

subsequent biogenic process (Beeson et al., 2010). Previous studies have demonstrated that 

SIRT1 modulates the activity of a number of transcriptional regulators in mammals, most 

notably, PGC1a (Koo & Montminy, 2006). Studies have also shown that resveratrol improves 
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energy balance and increases mitochondrial function in mice by stimulating SIRT1-mediated 

deacetylation of PGC1a (Baur et al., 2006; Lagouge et al., 2006). 

We endeavored to examine the capability of RES to potentially induce PGC1a through 

SIRT1 increases and in turn promote mitochondrial biogenesis. Our results demonstrated that 

RES treated groups had a higher expression of SIRT1 than cells treated with either concentration 

of DOX (Figure 8A). RES-mediated SIRT1 increases are supported by previous studies (Baur et 

al., 2006; Koo & Montminy, 2006; Lagouge et al., 2006) and indicate that RES is capable of 

improving mitochondrial function through SIRT1 activation. However, based on our results we 

are unable to definitively determine that it is through SIRT1-mediated modulation of PGC1a. 

The increases in PGC1a (Figure 8B) observed indicate that this is a distinct possibility but 

further experiments are required to positively determine the extent to which PGC1a is involved. 

It is clear that SIRT1 induction is a probable mechanism for RES to protect against DOX-

induced toxicity.  

Resveratrol Protection Against Doxorubicin Induced Mitochondrial Damage 

 Mitochondria play a major role in Ca2+ homeostasis, ROS generation, redox balance, 

cellular proliferation and apoptosis (Whitaker et al., 2015). The kidneys are second only to the 

heart in mitochondrial abundance and oxygen consumption at rest (Pagliarini et al., 2008). The 

proximal tubules of the kidney use the majority of oxygen consumption for ATP generation and 

contain most of the mitochondria that power the active reabsorption of glucose, ions and other 

metabolites as well as synthesize protein (Forbes, 2016). Damage to the mitochondria of 

proximal tubule cells, i.e. HK-2 cells, have the potential to cause significant damage to the 

kidney. In the past mitochondrial damage has been difficult to quantify but in this novel study we 



42 

were able to compute mitochondrial changes during both oxidative phosphorylation and 

glycolysis.  

 Mitochondrial dysfunction is an early indicator of DOX-induced apoptosis and 

subsequent oxidant production (P. S. Green & Leeuwenburgh, 2002). The ability to restore 

mitochondrial function and/or to prevent initial damage would have strong clinical implications.  

RES has been shown to produce mitochondrial biogenesis. However, the ability to do so may be 

limited by the remaining mitochondrial function and ATP levels but through stimulation of 

mitochondrial biogenesis RES may promote organ recovery and return of cellular functions 

(Beeson et al., 2010). Ideally a pre-treatment with RES would protect against initial injury while 

simultaneously stimulating mitochondrial biogenesis.  

The Seahorse XFp Analyzer is a unique tool allowing the simultaneous monitoring of the 

two energy pathways of the cell. The majority of cells possess the capability to shift between the 

two pathways allowing cells to adapt to environmental changes. Previously there were only high-

throughput assays assessing changes in mitochondrial gene expression but these assays lacked 

the capability to evaluate mitochondrial biogenesis. The mitochondrial and glycolytic stress tests 

are the first high-throughput assays to examine the changes in mitochondrial respiration and an 

improved approach for examining mitochondrial toxicity (Beeson et al., 2010). This study is the 

first to look at the direct effects of DOX on mitochondria as well as the ability of RES to 

potentially mitigate mitochondrial toxicity and promote mitochondrial biogenesis.  

Primary cultured HK-2 cells are a valuable model for evaluating mitochondrial toxicity 

because they acquire their energy from oxidative phosphorylation and maintain differentiated 

functions and membrane polarization (Nowak & Schnellmann, 1996). The kidneys primarily 

undergo aerobic metabolism and mitochondrial damage leads to decreased aerobic metabolism 
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and ATP, disruption of cellular functions, cell injury and death (Beeson et al., 2010). HK-2 cells 

exhibit in vivo levels of aerobic metabolism, are not glycolytic and retain higher levels of 

differentiated functions making them an appropriate experimental model for study (Beeson et al., 

2010). Using seahorse technology and primary culture HK-2 cells we were able to examine the 

cellular targets of toxicity specific to a primary renal cell line and the potential protective effects 

of RES against DOX induced kidney damage.  

The cell mitochondrial stress test was performed and for the first time we were able to 

quantify basal OCR, ATP-linked OCR with proton leak, maximal respiration, spare capacity and 

non-mitochondrial OCR in control and treated HK-2 cells. The basal measurements established a 

baseline prior to serial injection with various inhibitors and electron transport chain uncouplers. 

The baseline readings establish the threshold below which the cells would be unable to sustain 

oxidative phosphorylation to meet energy demand. Living cells do not store ATP, they produce it 

continually and on demand. Therefore, cells constantly consume oxygen and fuel substrates and 

the demand for ATP in cells controls the rate of OCAR (Pike Winer & Wu, 2014).  

Cells treated with 7.5 µM RES tended to increase basal respiration relative to control 

(Figure 9A). Although it was not a statistically significant increase it does show RES may 

potentially increase the threshold and therefore the cell’s ability to meet an increased energy 

demand. On the other hand, baseline readings showed that cells treated with 4 µM DOX alone 

had a significantly lower threshold than control cells and there was a significant decline in basal 

respiration between cells treated with 2 µM vs. 4 µM DOX (Figure 9A). Additionally, 7.5 µM 

RES+4 µM DOX treated cells had reduced basal respiration relative to 7.5 µM RES alone as well 

as control cells. It would appear that RES is capable of protecting against a significant decline at 

2 µM DOX but the threshold is too low for it to exert protective effects at 4 µM and a higher 
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concentration of RES may be indicated to adequately protect against a decline in basal 

respiration.  

Metabolism strips electrons from fatty acids, sugars and amino acids, and they 

accumulate on the soluble electron carrier NADH and on protein-bound FADH2 (K. Green, 

Brand, & Murphy, 2004). The electrons are then passed down the mitochondrial respiratory 

chain to drive ATP synthesis through oxidative phosphorylation (K. Green et al., 2004). The first 

injection of oligomycin halts the electron passage down the chain by acting as a sort of roadblock 

against transport. The corresponding change in respiration quantifies the amount of basal 

respiration actually being used for ATP production and is expressed as ATP-linked OCR. 

Previous studies reveal that “healthy” individuals have a high ATP linked OCR or an increased 

ATP demand. A decrease would indicate low ATP demand, a lack of substrate and/or severe 

damage to oxidative phosphorylation, impeding the flow of electrons resulting in a lower ATP-

coupled OCR (Chacko et al., 2014). Chacko’s study supported our results that RES treatment 

increases ATP-linked OCR and ATP demand. RES when coupled with DOX treatment reduced 

declines in ATP-coupled OCR that were observed in cells only exposed to DOX (Figure 9C). 

The protective effects of RES against this drop indicate protection against damage to oxidative 

phosphorylation.   

The remaining basal respiration represents the “proton leak” which has two possible 

implications for the mitochondria and both will be discussed. Functional mitochondria move 

electrons down the gradient from NADH/FADH2 to O2 while conserving redox energy by 

simultaneously pumping protons across the intermembrane to build up the proton 

electrochemical potential that is used by ATP synthase to make ATP (K. Green et al., 2004). The 

above is an example of the mitochondria using protons as a regulatory mechanism for ATP 
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production. However, in some instances of mitochondrial damage, protons leak back into the 

matrix without ever forming ATP thereby reducing energy production. Higher levels of proton 

leak indicate fewer protons available to drive ATP synthase to make ATP and may correspond to 

a decrease in energy production. ATP production tended to increase in RES treated cells alone 

relative to control, although not significantly (Figure 9C). Cells treated at the higher 

concentration of DOX did show a significant decline in ATP production relative to control but 

when pre-treated with RES this decline was alleviated. Further declines were only observed in 

comparison to RES treated cells alone and confirmed that pre-treatment with RES protects 

against a decline in ATP production.  

The most interesting results were observed when quantifying proton leak. There was no 

change in proton leak in any treatment groups relative to control but RES treated cells alone had 

increased proton leak when compared to the higher concentration (4 µM) of DOX treated cells 

alone and those pre-treated with RES (Figure 9E). Previous studies have shown that increased 

calcium transport can manifest changes in proton leak (Chacko et al., 2014). It is possible that 

administration of RES may increase calcium transport and account for the increase in proton leak 

shown rather than as an indicator of damage. The lack of decline in ATP production in RES 

treated groups would support that there is another mechanism at work and should be examined in 

future studies. Additionally, diminished proton leak may be a potential compensatory mechanism 

in mitigating the decline in ATP production in response to DOX-induced stress. Maximal 

activity was examined further by uncoupling ATP production from the electron transport chain 

to examine OCR capacity.  

The electron roadblock was offset by injection of FCCP allowing us to examine the 

effects of uninhibited electron flow through loss of the proton gradient. The uncoupling of the 
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electron transport chain from ATP production enabled us to quantify its maximal activity. As 

previously mentioned, metabolism strips electrons from fatty acids, sugars and amino acids. The 

stimulation by FCCP and resultant drive to maximal capacity causes the rapid oxidation of those 

metabolic substrates to meet the increased energy demands. Interestingly, there was no effect on 

maximal OCR capacity in any treatment group when compared to control indicating that DOX 

and RES, whether co-administered or alone, do not appear to significantly affect the maximal 

activity of the electron transport chain relative to control (Figure 9B). No change in maximal 

activity would imply that maximal OCR was not yet effected by administration of DOX and/or 

RES, and that cells were able to meet the metabolic challenge within the exposure period. 

 Spare capacity was calculated to determine how closely the cell is respiring to its 

theoretical maximum. Spare capacity was calculated by subtracting maximal respiration from 

basal respiration and the difference quantified the cell’s ability to respond to an increase in 

energy demand. When damage to the mitochondria occurs, spare capacity is called upon to meet 

increased energy demand and prevent damage. Studies have shown that depletion of this reserve 

leads to excessive damage and cell death (Hill, Dranka, Zou, Chatham, & Darley-Usmar, 2009). 

Oxidative stress and formation of ROS can increase OCR and deplete reserve capacity and 

inhibit respiration (Hill et al., 2009).   

Intriguingly, spare capacity was not significantly increased or decreased in any of the 

treatment groups relative to control (Figure 9D). RES alone did not increase significantly when 

compared to control but it should be noted that there was a tendency to increase. The only 

significant decrease observed was between RES alone and the higher concentration of DOX and 

we would expect to see diminished spare capacity in these cells. These results indicate RES’s 

potential to mitigate a decline in spare capacity by improving the cells ability to respond to an 
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increased energy demand. RES appears to be protecting against a reduction in spare capacity 

allowing the cells to function closely to their theoretical maximum. Non-mitochondrial 

respiration was assessed by an injection of rotenone/antimycin A that shut down electron 

transport complexes I and III respectively. Rotenone coupled with antimycin A effectively 

turned off mitochondrial respiration and allowed us to delineate between mitochondrial 

respiration and non-mitochondrial respiration.  

The second energy pathway of the cell was assessed using the Glycolytic stress test assay 

and was performed to measure metabolic activity through ECAR. Glycolysis is the conversion of 

glucose to pyruvate and then pyruvate to lactate in the cytoplasm or CO2 and H2O in the 

mitochondria. Cells utilize glucose to produce pyruvate which in turn produces ATP, H2O, 

NADH and protons. The relationship between ECAR and glycolytic rate can be confounded by 

other acidification mechanisms, i.e. CO2 (Mookerjee, Goncalves, Gerencser, Nicholls, & Brand, 

2015). It should be noted that in this study the baseline OCR/ECAR ratio was <4 signifying that 

CO2 made a negligible contribution to ECAR and the observed results were from glycolysis 

alone. A major component or ECAR is the glycolytic production of lactate (M. Wu et al., 2007). 

Lactate increases acidification and lowers pH; therefore the media is devoid of glucose for the 

first measurements to determine accurate acidification unrelated to glycolysis (Mookerjee et al., 

2015). The saturating injection of glucose leads to the conversion of glucose to pyruvate and 

pyruvate to lactate triggering proton extrusion into the medium and acidification of the medium 

surrounding the cell. The extrusion of protons from glucose catabolism permitted ECAR to be 

measured a second time and basal level glycolysis calculated.  

Basal glycolysis was increased in RES alone treated cells, and cells treated with DOX 

alone had a severe decline in basal ECAR relative to RES treated cells at both concentrations 
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(Figure 10A). However, when the lower concentration of DOX was pre-treated with RES this 

decline was ameliorated but it was not able to prevent a significant decline when coupled to the 

higher concentration of DOX. The inability to prevent a decline in basal glycolysis was observed 

in OCR as well. A higher concentration of RES may be indicated when administered with the 

higher concentration of DOX. RES appears to be protective against a decrease in ECAR when 

co-administered with 2 µM DOX cells showing that RES is capable of protecting against 

diminished basal glycolysis at this concentration (Figure 10A).  

Oligomycin was injected to “max out” glycolysis by shutting down oxidative 

phosphorylation and forcing cells to use the glycolytic pathway to capacity. When cells 

experience loss of mitochondrial ATP production due to inhibition of oxidative phosphorylation 

or by oligomycin, they augment their glycolytic flux to make more ATP from glycolytic 

pathways in order to maintain cellular ATP homeostasis (M. Wu et al., 2007). The increased 

glycolytic flux in response to deficiency in mitochondrial ATP production is known as the 

glycolytic capacity (Pike Winer & Wu, 2014). The glycolytic capacity of cells subjected to 4 µM 

DOX was significantly decreased compared to control as were cells treated with RES plus the 

higher concentration of DOX (Figure 10B). Treatment with RES alone increased capacity and, 

although RES+ 2 µM DOX was decreased compared to RES alone, it was not decreased when 

compared to control demonstrating conceivable protection against a loss of ATP production. 

Again, we observed the inability of RES to protect against loss of ATP production. 

The glycolytic reserve was calculated to indicate how well the cell was able to respond to 

its theoretical maximum. Cells treated with RES alone functioned well above their theoretical 

max compared to control (Figure 10C). Although RES+2 µM DOX and RES+4 µM DOX 

treatment groups were decreased in comparison to RES alone, neither was decreased relative to 
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control. Furthermore, the RES+2 µM DOX treatment group was increased relative to control. 

RES appears to be better able to mitigate damage at the lower DOX concentration but still 

exhibits a partial protection between 4 µM DOX and RES+4 µM DOX.  

In order to confirm the experimental ECAR was produced by glycolysis, 2-deoxy-glucose 

(2-DG) was injected. 2-DG is a glucose analog that inhibits glycolysis via inhibition of glucose 

by competitively binding to glucose hexokinase, the first enzyme in the glycolytic pathway 

inhibitor. We observed a dramatic drop in ECAR that confirmed the experimental ECAR was 

produced by glycolysis. 

 When comparing OCR and ECAR, it appears that RES exerts a more protective effect on 

the glycolytic pathway than on oxidative phosphorylation. During oxidative phosphorylation, it 

appears that basal respiration and ATP production are so severely decreased between DOX 2 and 

4 µM that RES is not able to overcome and protect against toxicity. These decreases may be a 

direct result of the cell using proton leak pathways to regulate ATP production allowing those 

treatment groups to still function relatively close to their theoretical max. Basal ECAR was 

decreased in control vs. 2 and 4 µM DOX as well as between RES+2 µM DOX and RES+4 µM 

DOX. Just as in OCR, it appears that the damage occurs between 2 and 4 µM DOX and RES is 

not able to protect against damage. RES was better able to protect against significant decreases in 

glycolytic capacity and reserve overcoming the initial decrease of basal ECAR. The results 

suggest that RES has less of a protective effect on mitochondrial rate (OCR) than glycolytic rate 

(ECAR).  

The utilization of Seahorse technology has potential widespread clinical implications. 

The ability of RES to stimulate mitochondrial biogenesis even in the presence of cytotoxic DOX 

is a potential therapeutic option to mitigate DOX induced nephrotoxicity through recovery and 
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promotion of cellular function. The Seahorse XFp Analyzer provides us with the first tool to 

quantify bioenergetics in different cellular models. This high-throughput assay quantified 

mitochondrial function and permitted a way to predict a response to a given treatment. We 

obtained a comprehensive bioenergetics profile for HK-2 cells and their response to treatments 

with RES, DOX and RES + DOX respectively. By showing RES’s positive effect on 

mitochondrial energetics we have introduced a clinically relevant way to mitigate potential 

DOX-induced mitochondrial toxicity in the epithelium of mitochondria-rich renal proximal 

tubular cells.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 This thesis has shown the ability of RES to protect DOX-induced nephrotoxicity and may 

potentially have many clinical implications. RES has shown promise in its ability to improve 

mitochondrial function and mitigate DOX toxicity by decreasing oxidative stress, improving cell 

viability and protecting against mitochondrial damage in both oxidative phosphorylation and 

glycolytic pathways. This thesis has also proposed a potential mechanism that RES’s ability to 

induce SIRT1 is responsible for its protective abilities against DOX-induced damage.  

RES shows potential in reducing oxidative stress and cell death but the exact mechanisms 

are still unknown. Given that proteins are often the immediate targets of cellular oxidative stress, 

it is of utmost importance to determine how adductions of reactive nucleophiles irreversibly alter 

protein structure and function. I would propose to examine 4-hydroxynonenal (4-HNE) to 

examine the extent of lipid peroxidation in DOX treated cells and the capability of RES to 

protect against it. Additionally, I would like to determine if DOX induces the cleavage of 

caspases 3 and 9 to determine the exact initiation of the pro-apoptotic pathway.  

Western blotting indicated that there was no change in cyt-C leakage among any groups 

relative to control. I would propose examination of cyt C leakage after 48 and 72 h to determine 

if the 24 h time course was not enough time for the protein to translocate from the inner 

mitochondrial membrane to the cytosol. The examination of ATP synthase in mitochondrial and 

cytosolic fractions would further determine the extent to which mitochondrial membrane 

integrity is compromised and should be assessed within the same time courses as cyt C. 

Our initial study demonstrated that SIRT1 levels are higher in RES treated cells but we 

were unable to determine definitively if SIRT1 modulates increases in PGC1a. Additionally, the 
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variability within groups is a concern and should be addressed through further experimentation. 

However, the increases in PGC1a indicate that this is still a viable potential mechanism and 

longer experimental time courses may reveal statistically significant increases that would 

confirm our proposed mechanism.     

Examination of both energetic pathways gave us unique insight into DOX effects on 

oxidative phosphorylation as well as the glycolytic pathway. The observed protection of RES at 

the lower concentration of DOX supported our hypothesis, but indicated higher concentrations of 

RES may be necessary when DOX is administered at higher concentrations. Additionally, 

performing the mitochondrial stress test and the glycolytic stress test at 48 h and 72 h time 

courses would give us more definitive data on RES ability to protect against DOX-induced 

toxicity. 

Limitations  
 
 RES and its metabolites pose both physiological and pharmacokinetic problems. The 

low bioavailability of RES as well as the various routes of administration has made it difficult 

to uniformly quantify proper dose and subsequent response. Furthermore, RES is not regulated 

by the FDA because it is a natural compound. Controlled regulation and formulation of the 

compound is imperative for clinical application.  

 Time, as in most cases, has been my greatest limiting factor. The data have supported 

our hypothesis that RES is capable of preventing DOX-induced damage, but further 

experiments are required to further elucidate the mechanisms of protection.  
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APPENDIX B: LIST OF ABBREVIATIONS 

DOX...doxorubicin 

DNA…deoxyribonucleic acid 

Top2…topoisomerase II 

ROS…reactive oxygen species 

DOX-OL…doxorubicinol 

NADPH…nicotinamide adenine dinucleotide phosphate 

P450R…cytochrome P450 reductase 

Fe…iron 

H2O2…hydrogen peroxide 

OH…hydroxyl radical 

AST…aspartate aminotransferase 

ALT…alanine aminotransferase  

MDA…malondialdehyde 

Vmax…maximum velocity 

NOS…nitric oxide synthase 

NO…nitric oxide 

iNOS…inducible nitric oxide synthase 

eNOS…endothelial nitric oxide synthase 

RES…resveratrol 

HPLC…high performance liquid chromatography 

CVD…cardiovascular diseases 

ALF…acute liver failure 



64 

ATP…adenosine triphosphate 

HK-2…human noncancerous renal proximal tubular epithelial cells 

ATCC…American type culture collection 

DMSO…dimethylsulfoxide 

MTT…3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium Bromide 

HBSS…hank’s buffered saline solution 

OD…optical density 

SIRT1…sirtuin 1 

TBST…tris-buffered saline-tween 

HEK293…human embryonic kidney whole cell lysate 

PGC1a…peroxisome  

BSA…bovine serum albumin 

PBST…phosphate-buffered saline-tween 

OCR…oxygen consumption rate 

ECAR…extracellular acidification rate 

FCCP…carbonyl cyanide-4-trifluoromethoxy phenylhydrazone 

SEM…standard error of the mean 

ANOVA…analysis of variance 

Cyt C…cytochrome C 

ETC…electron transport chain 

MPT…mitochondrial permeability transition 

VDAC…voltage-dependent ion channels 

2-DG…2-deoxy-glucose 
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GSH…glutathione 

GSSG…oxidized glutathione 

SOD…superoxide dismutase 

GST…glutathione-s-transferase 

P53…tumor suppressor protein 

GPx1…glutathione peroxidase 1 

4-HNE…4-hydroxynonenal 
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