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4.  

ABSTRACT 

YouTube is currently the most popular and successful video sharing website. As YouTube has 

broad and profound social impact, YouTube analytics has become a hot research area. The 

videos on YouTube have become a treasure of data. However, getting access to the immense and 

massive YouTube data is a challenge. Previous research, studies, and analysis so far, are only 

conducted on very small volumes of YouTube video data. To date, there exists no mechanism to 

systematically and continuously collect, process and store the rich set of YouTube data. This 

thesis presents a methodology to systematically and continuously mine and store the YouTube 

data. The methodology has two modules: a video discovery and a video metadata collection. 

YouTube provides an API to conduct search requests analogous to the search performed by a 

user on the YouTube website. However, the YouTube API’s ‘search’ operation was not designed 

to return large volumes of data and only provides limited search results (metadata) that can easily 

be handled by a human. The proposed discovery process makes the search process scalable, 

robust and swift by (a) initially taking a few carefully selected video IDs (seeds) as input from 

each of the video categories in YouTube (so to get a wider coverage), and (b) later, using each of 

them to find related videos over multiple generations. The thesis employed in-memory data 

management for the discovery process to suppress redundancy explosion and rapidly find new 

videos. Further, the batch-caching mechanism is introduced to ensure that the high velocity data 

generated by the discovery process do not result in memory explosion; thereby increasing the 

reliability of the methodology. The performance of the proposed methodology is gauged over the 

period of two months. Within two months, 16,000,000 videos were discovered and complete 

metadata of more than 42,000 videos was mined. The thesis also explores serveral new possible 

dimensions that can be possible extensions to the proposed framework. The two most promiment 

dimensions are (a) channel discovery: Every YouTube user that has ever made a comment 

contributes to a channel. A channel can hold hundreds of YouTube videos and related metadata. 

Discovering channels can speed up the video discovery up to 100-fold; and (b) channel metadata 

collection: Since the volume of videos in a channel is massive, therefore, a mechanism needs to 

be developed to use multiple machines running software agents that can collaborate and 

communicate with each other to collect metadata of billions of videos in a distributed fashion. 
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1. CHAPTER 1 

INTRODUCTION 

1.1 Prior to YouTube 

 The Internet has witnessed an explosion of networked video sharing in these years.  

Among them, YouTube is one of the most successful ones [1]. Since being established by 

Google Inc. in February 2005, YouTube has become the largest video sharing site on the 

Internet. In only three years after the launch of YouTube, i.e., in 2008, it is estimated that there 

are over 45,000,000 videos in the repository and that the collection is growing at an astounding 

rate of seven hours of video being uploaded every minute [2]. To date, YouTube still maintains 

the privilege of being the largest video sharing site on the Internet [3].  

 YouTube is not the earliest online video platform. Actually, online videos existed much 

longer before YouTube entered the scene [4]. Video content in standard Video on Demand 

(VoD) systems has been historically created and supplied by a limited number of media 

producers, such as licensed broadcasters and production companies. Under this circumstance, the 

video content popularity was somewhat controllable through professional marketing campaigns 

[5]. Many of the activities such as Uploading, managing, sharing and watching videos were 

challenging due to the absence of an easy-to-use cohesive and unified platform. Also, there was 

very little in the way of content reviews or ratings [1].  

 As the technique of Internet improved, Web 2.0 became a trend in WWW technology, 

and it marked the new generation of web-based communities such as social networking sites, 

wikis, and blogs, which aimed to facilitate creativity, collaboration, and sharing among users. 

Web 2.0 changed how users contribute to the Web. Unlike the so-called Web 1.0 sites, which 

host content from established providers, users are now able to post their own content and view 
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content posted by their peers [3]. YouTube, as one of the new generation of video sharing sites, 

has overcome the problems that the traditional video platforms have, which have been discussed 

above. The new generation sites are also known as user generated content (UGC), and YouTube 

is currently the world’s largest UGC VoD system [1]. The arrival of UGC has remodeled the 

online video market. Nowadays, hundreds of millions of Internet users are self-publishing 

consumers. In addition, the scale, dynamics, and decentralization of the UGC videos make a 

traditional content popularity prediction unsuitable. UGC popularity is more ephemeral and has a 

much more unpredictable behavior as well [5].  

1.2 YouTube as Social Networking Website 

 Meanwhile, as a social network website, YouTube is designed to be, and very much is, 

two-way communication [6]. The UGC VoD systems allow content suppliers to upload videos 

effortlessly, and to tag uploaded videos with keywords. Content-creators can upload their videos 

using the simple UGC devised VoD system; an identifying code is attached to the video. The 

videos are made available to the viewers in the following two ways: the links are either mailed to 

the potential viewers or embed in the blogs for the general public. The UGC VoD system also 

enables communities and groups by strengthening the social network existing in YouTube [4]. 

 As a social networking website, YouTube also contains the characteristics that other 

social networking websites have. One of the most interesting characteristics is the small-world 

phenomenon, which indicates that people are linked to all others by short chains of 

acquaintances. On YouTube, the “related” videos could be treated as the relationship between 

people, and there are definite small-world characteristics among them [1].  
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1.3 Technologies applied in YouTube 

 YouTube uses the Sorenson Spark H.263 video codec with pixel dimensions of 320 by 

240. Its video playback technology is based on Adobe Flash Player. This technology allows 

YouTube to display videos with quality comparable to more established video playback 

technologies (i.e., Windows Media Player, QuickTime and RealPlayer). YouTube officially 

accepts uploaded videos in .WMV, .AVI, .MOV and .MPG formats, which are converted 

into .FLV (Adobe Flash Video) format after uploading. Each YouTube video contains an HTML 

markup. The Markup aids to embed the video in a page. This feature can be disabled by the 

uploader. [1]. YouTube’s .FLV videos are not streamed to the user, but are instead downloaded 

over a normal HTTP connection. They are also not rate controlled to the playback rate of the 

video, but are sent at the maximum rate that the server and user can accomplish, and there is no 

user interactivity from the server’s point of view. In order to fast forward, the user must wait for 

that part of the video to download, and pausing the playback does not pause the download [4].  

 YouTube allocated each video a unique 11-digit ID. The id is composed of a-z, 0-9, A-Z, 

and _.  Each video comprises a series of metadata. The metadata includes a video ID, publish 

date, uploader, duration, category, user rating, number of views, ratings, comments, and a list of 

“related videos” which is recommended through a specific adsorption algorithm [1]. The 

adsorption algorithm is the core of the video suggestion system of YouTube. This algorithm is 

able to create a personalized page of video recommendations that not only shows the latest and 

most popular videos, but also provides users with a recommendation video list that depends on 

their own viewing habits. By using the adsorption algorithm, the expected efficacy of 

suggestions in YouTube has been improved. Since YouTube has a large number of users who 

view multiple videos, the statistics of video co-view number become very meaningful. These 
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data give, for any pair of videos, the number of people that viewed both videos. Based on these 

data, the developers of YouTube created a video-video co-view graph, and furthermore 

developed the adsorption algorithm for the recommendation system [2]. 

 The basic interface for the users to interact with YouTube videos is “channel.” Whenever 

a user uploads a video, rates a video, or publishes a comment, these kinds of activities are 

assigned to a specific channel, which is linked either to the user’s Google account, or a Google+ 

page. If a channel is connected to a user’s Google account, both this channel and the Google 

account are uniquely managed by the Google account owner, i.e., this channel represents the 

Google account user. However, if the channel is connected to a Google+ page, the relationship 

between channels and users becomes somewhat more complicated: although one channel can 

still be connected with one single Google+ page, the relationship between Google+ page and 

Google account is “many-to-many.” In this way, multiple users can get access to one channel 

through the shared Google+ page; in contrast, one user can access multiple channels through the 

Google+ pages that he or she manages [YouTube Help  YouTube and Google+  Manage 

multiple channels]. Similarly, channels also have distinct IDs, but with a different length from 

those of the videos, which is 24 digits. Each channel contains a series of metadata as well as a 

description of the channel, publish date, the number of videos that the channel published, etc.  
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2. CHAPTER 2 

RELATED WORK 

2.1 Review of previous work 

 In past, few researchers have used YouTube data (both the videos and associated 

metadata) to conduct various analysis/study. Many of them collected the data themselves, and a 

few used the data dumps available online. However, all the studies/analysis done so far are either 

conducted on very little volume of YouTube data or on cherry picking of the YouTube metadata 

attributes, usually the ones that are easy to harvest from YouTube. To date, there is no 

mechanism to systematically and on continuous basis collect, process and store the rich set of 

YouTube data. This chapter summarizes how researchers in the past have exploited YouTube 

data.  

2.2 Summarized researches exploiting YouTube data 

2.2.1 Abhari and Soraya 

 Abhari and Soraya [7] analyzed the YouTube video statistics to make YouTube traffic 

understandable. They crawled the YouTube site for only five months to get the required video 

metadata. Based on the collected data they implemented a workload simulation. For the purpose, 

they used multiple APIs.  Abhari and Soraya periodically retrieved the data for the top 100 most 

viewed videos in a day and later in a week. Later, they expanded their video search by taking 

into account the relatively popular video for each of the 100 most viewed videos, i.e., they 

collected more video information which is “related” to the videos that have been crawled. The 

videos that are crawled by these two phases are separately treated as “popular videos” and 

“regular videos.” The collected statistics include video duration, file size, average rating, rating 
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count, and view count. After crawling for around five months in total, the information of about 

4,300 popular videos and 43,544 regular videos was successfully gathered. 

2.2.2 Yoganarasimhan 

 Yoganarasimhan [8] studied how social network structure impacts the content 

propagation. He focused on the influence of the size and structure of the local network around a 

“node” on the total diffusion of products that are linked to it. He wrote a custom script using 

‘Perl’ (a scripting language) for collecting the data from YouTube. The Perl script is an HTML 

parser that extracts the video related data. Meanwhile, Yoganarasimhan used another set of Perl 

scripts to gather the information of the uploader, i.e., the entity/person who uploaded the video to 

YouTube. The data belonging to the following attributes were collected:  views, number of 

ratings, average rating, number of comments, number of favorites, and number of honors. 

Yoganarasimhan randomly picked 1,939 videos to monitor and processed the data collection 

every 24 hours for 38 days. In total, 85% of the videos had data for 31 days or more.  

2.2.3 Gill et al. 

 Gill et al. [3] presented a YouTube traffic characterization study. The data used for 

analysis were collected by the YouTube Data API, which is provided by YouTube for the 

developers. Given a video ID, the information of the respective video was collected, which 

contains: file size, video duration, bitrate, video age, a rating of video, and video category. Gill 

also focused on the top 100 videos on YouTube every day. The monitoring of the videos started 

from Jan 14, 2007, and ended at April 8, 2007, i.e., a very short period.  

2.2.4 Santos et al. 

 Santos et al. [9] collected a representative sample data of YouTube. They analyzed the 

sample data’s structural properties and social relationships among users, videos and between 
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users and videos. To retrieve the data from YouTube, they custom built a crawler and extractor. 

By using the crawler and extractor, they indexed more than 11,000,000 videos and 620,000 

users. Nevertheless, they were only able to collect the metadata of 300,000 videos and 12,000 

users. Their extracted data set includes the following attributes: number of videos watched by a 

user, number of subscribers, number of channel views, number of video views, number of 

comments, and number of times favorited.  

2.2.5 Cheng et al. 

 Cheng et al. [1] presented a systematic and in-depth measurement study on the statistics 

of YouTube videos. The method used by them for crawling YouTube was a combination of a) 

YouTube API and b) a scraper to scrape the information from YouTube video webpages. They 

also expanded the video list by accessing the related videos of the source videos.  The video 

statistics contains video category, video age, video duration, file size and bitrate, and a number 

of views. After four months of crawling, about 3.2 million distinct videos’ information was 

collected. Cheng et al. also used the same method to collect the metadata of YouTube videos in 

their measurement study on the characteristics of YouTube videos [4].  

2.2.6 Cha et al. 

 Cha et al. [5] provided a study of YouTube in terms of a UGC system based on large 

volumes of data collected. The meta-information of YouTube videos was crawled by visiting the 

indexed pages that link all videos belonging to a category. Cha et al. limited the data collection 

to two of the categories, i.e., ‘Entertainment’ and ‘Science & Technology.’ The metadata that is 

recorded includes: (1) fixed information such as uploader, upload time, and length; (2) time-

varying information such as views, ratings, stars, and links. About 1.9 million YouTube videos 

were traced and crawled. 
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2.2.7 Chatzopoulou et al. 

 Chatzopoulou et al. [10] conducted an in-depth study of the fundamental properties of 

video popularity in YouTube. They collected the metadata of 37 million videos by using 

YouTube Data APIs. Their crawling system contains a data server and several crawlers that 

communicate with YouTube and send the collected data back to the data server. They crawled 

YouTube for more than four months and generated a huge dataset that contained twenty tables 

regarding information about various perspectives. The collected metadata attributes comprise of 

view count, number of comments, number of favorites, ratings, average ratings, etc. 

2.2.8 Figueiredo et al. 

 Figueiredo et al. [11] presented a study of characterizing the growth patterns of video 

popularity on YouTube. They used Google charts API to collect the YouTube data. In total, three 

types of dataset were created: Top, YouTomb, and Random topics. Top set contains the videos 

that are listed in various “top lists” (i.e., most viewed and most commented videos); YouTomb is 

a project commenced by MIT (Massachusetts Institute of Technology) that monitors the videos 

that had been removed from YouTube because of copyright violation and the researchers use it 

as the data source; Random topics set is generated by using YouTube search API and setting the 

randomly selected topics as the API input. The number of collected videos are: 27,212 in the Top 

set, 120,862 in the YouTomb set, and 24,484 in the Random topics set.  

2.2.9 Siersdorfer et al. 

 Siersdorfer et al. [12] presented an in-depth study of commenting and comment rating 

behavior. The study was performed on a sample of more than 6 million comments on 67,000 

YouTube videos. As mentioned in their previous work [13], they used YouTube API for 

retrieving the YouTube video information. The collected dataset had a final size of 67,290 videos 
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and about 6.1 million comments. They also collected metadata of the YouTube videos such as 

title, tags, category, description, upload date, as well as statistics such as number of comments, 

views, and star rating for video.  
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Author Date Method Data Volume Type Duration Purpose 

Abhari and Soraya 2009 API 
More than 47,000 

videos 
Video Metadata 5 months 

Analyze YouTube traffic using video 

statistics 

Yoganarasimhan 2011 Custom script 1939 videos Video Metadata 38 days 

Study the influence of the size and 

structure of the local network around a 

node on the total diffusion of products 

that are seeded by it. 

Gill et al. 2007 API 
Top 100 videos 

everyday 
Video Metadata 3 months 

Get the video file’s detail information 

for their YouTube traffic 

characterization study 

Santos et al. 2007 Custom crawler 300,000 videos Video Metadata N/A 

Analyze YouTube video structural 

properties and social relationships 

among users 

Cheng et al. 
2007, 

2008 

API and scraper 

for webpage info 
3.2 million videos Video Metadata 5 months 

Study on the statistics and 

characteristics of YouTube videos 

Cha et al. 2007 Custom crawler 1.9 million videos Video Metadata N/A 
Study of YouTube in terms of a UGC 

system 

Chatzopoulou et al. 2010 API 37 million videos Video Metadata 4 months 
Study of the fundamental properties of 

video popularity in YouTube 

Figueiredo et al. 2011 API 
More than 170,000 

videos 
Video Metadata 1 day 

Characterize the growth patterns of 

video popularity on YouTube 

Siersdorfer et al. 
2009, 

2010 
API 

67,290 videos and 6 

million comments 

Video Metadata 

and comments 
N/A 

Analyze commenting and comment 

rating behavior 

Table 1: Summarized researches exploiting YouTube data 
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3. CHAPTER 3 

METHODOLOGY 

3.1 Framework  

 To overcome the shortcomings of previous researchers and to fill in the gaps, the thesis 

proposes a methodology as a complete framework, to mine YouTube videos and related meta-

data. The proposed framework consists of two parts. 

• The video discovery, and  

• The video metadata collection. 

 Figure 1 and Figure 2 illustrate, at a high-level, what constitutes our framework and the 

interaction between two parts of the framework.  

 At an abstract level, Figure 1 shows the underlying methodology for mining the YouTube 

data. First, video IDs are discovered and collected from YouTube. Later, IDs are stored in the 

database through MySQL JDBC, a tool for connecting Java environment and MySQL database. 

For every video ID that is collected, we retrieve the metadata information from it, parse it, and 

extract the information that can be directly stored in the database.  
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Figure 1: Illustration of the dataflow and interaction 
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Figure 2: Illustration of the framework 
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 Figure 2 illustrates how the framework is structured. We first use a set of known video 

Ids as seeds. We grow each seed by discovering related videos with it.  Later, we retrieve the 

metadata of the videos and store the metadata in different relational tables in our database. In this 

chapter, we first introduce the techniques and tools used in our framework. Then we describe in 

detail each part of our mining framework.  

3.2 Tools 

 This section provides details on the tools and techniques used to construct the YouTube 

mining framework. Besides the Java development kit and environment, the two most important 

tool/techniques are:  

3.2.1 YouTube Data API 

 Google Inc. provides an official API, YouTube Data API, for the developers who are 

interested in analyzing the data of YouTube [14]. By using this API, developers are able to make 

HTTP requests directly from within their applications as if they are implemented on the web. 

In order to use this API, a Google Account is required to generate an API key and obtain an 

authorization credential, so that the API requests can be submitted successfully. According to the 

YouTube Data API documentation, a resource is an individual data entity with a unique 

identifier. In this thesis, the resources that have been used include channel, search result, video, 

video category, comment thread. Some operations, including a list (GET), insert (POST), update 

(PUT), delete (DELETE), are supported to help perform functions.  

 Google allocates each user some daily quota usage to guarantee that the developers do 

not overuse the service, which would lower the service quality for other users. Calculation of 

quota usage is based on assigning a cost to each request, though the costs differ from each other.  
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For example, a read operation that only retrieves the ID of a resource costs about 1 unit of quota; 

a video upload may cost about 1,600 units of quota. Presently, a newly registered Google 

account has a daily quota of 1,000,000 units. Old accounts that were registered before April 20th, 

2016 have 50 million units per day.  

3.2.2 MySQL Connector/J 

 MySQL Connector/J is a JDBC Type-4 driver (Database-Protocol driver) that 

implements the JDBC API, which is provided by MySQL. A Type-4 driver is a pure Java 

implementation of the MySQL protocol; thus, it doesn’t rely on the MySQL client libraries [15]. 

 MySQL is a widely used open-source relational database management system (RDBMS) 

developed by Oracle. Despite the data collected for conducting experiments in the thesis is of 

large volume, still, a relational database model was sought over other available models. The 

reason for using a relational database is that the other models, though strong in processing big 

data, lack in observing the robust relation between features. In addition, the main development 

environment of the crawler project is in Java, thus facilitates the use of MySQL Connector/J as 

the bridge between Java environment and MySQL database.  

 All types of metadata related to a YouTube video is tied to a unique identifier called 

video ID. A sample of several video IDs is listed in Table 2. YouTube does not publish the list of 

No. Name of Video Video ID 

1 Sucker for Pain - Lil Wayne, Wiz Khalifa & Imagine Dragons w/ 

Logic & Ty Dolla $ign ft X Ambassadors 

-59jGD4WrmE 

2 A Great Big World, Christina Aguilera - Say Something -2U0Ivkn2Ds 

3 Meg & Dia - Monster (DotEXE Dubstep Remix) -0oZNWif_jk 

4 BANDA MS - NO ME PIDAS PERDÓN (VIDEO OFICIAL) -7w9tdzndjc 

5 I GOT KICKED OUT?! -6dNin-p1Kg 

Table 2: Sample of YouTube video IDs and titles 
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the video IDs nor is there any collection available publicly. Every day thousands of videos are 

either added, modified or removed. The key challenge for the collection of a large volume of 

YouTube metadata on a continuous basis is to discover a large volume of video IDs. The IDs of 

the videos can be used by our framework as an input.  

3.2.3 Exploiting Search Feature 

 The YouTube Data API provides a resource called ‘Search’ in order to retrieve a search 

request analogue to the search performed by a user on the YouTube website. As shown in Figure 

3, users can not only specify the keywords, but also some other attributes such as channel ID 

(collect videos uploaded by a specific channel), video category (collect the videos only from a 

specific category), publish after/before and order the returned result by data/view count/rating. 

By using this resource, generating a few hundred unique video IDs is convenient and fast. 

However, the YouTube API’s ‘search’ operation was not designed to return large volumes of 

data. It was designed to simulate the search activity in YouTube website on behalf of the users 

and provide limited search results (metadata) that can easily be handled by a human. Thus, the 

‘Search’ resource provided by YouTube Data API is not scalable and cannot fill our requirement 

of providing access to large volumes of video IDs.
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Figure 3: A screenshot of one YouTube video 
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Figure 4: Seed cultivation for the video discovery process 
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Figure 5: Seed growth over the two Generations 
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 Nevertheless, Search resource provides another method. In this method, one can specify a 

video id. The method returns up to a few hundred videos that are related to the supplied video. 

By recursively using this method, a small size of dataset of video IDs can be used as ‘seeds.’ 

These seeds can potentially be grown exponentially. Figure 4 depicts the high-level concept of 

seed cultivation for the video discovery process. Based on the intuition, we designed the 

‘Discovery Module.’ To test the hypothesis, we did a pilot test.  

❖ We randomly collected 50 videos as seeds and stored them as comma separated (CSV) 

file. 

❖ Each seed was grown to cultivate a set of 25 related videos, as shown in Figure 5. Thus, 

in the first generation, 50 new sets containing 25 new seeds each are cultivated. Thereby, 

increasing the video id count to one thousand and fifty videos:  

50 (seed videos) × 25 (cultivated set for each seed) = 1,250 

❖ Iteratively, we cultivated each set of seeds in the second generation to produce more 

seeds. Thus, in the second generation, we were able to grow the set of videos IDs to 

thirty-one thousand and two hundred and fifty videos (31,250), i.e., 99% in volume with 

respect to the starting set containing 50 seeds. In the third generation, the set contained 

781,250 video IDs. 

 We verified the quality of the collected data set using a custom written script and found 

several problems. The first and the most important issue identified in our pilot study was that the 

final set of video IDs (i.e., in the third generation), contained lots of duplicate video IDs. We 

investigated the issue further to identify the reason for such redundant video ID despite the fact 

that ‘search’ method provided by the YouTube API returns the set of distinct video id for a given 

seed. We found that one video can be related to more than one video thus can be returned as a 
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redundant video while cultivating seeds over multiple generations. We have calculated the basic 

statistics of the duplicate video IDs in the first five generations in a single running test, and the 

result is shown in Figure 6 and Figure 7. We can clearly see that as the generation increases, the 

percentage of duplicate video IDs grows larger and larger. The amount of duplicate video IDs 

increases faster than that of the distinct ones.  

 The redundant videos act as a noise in our data set and must be removed. The heuristics 

used by the ‘Search’ method of the YouTube API, to find ‘relevant’ videos are not known, i.e., 

related videos are recommended based on the number of customers who viewed the two videos 

together, or relation is based on the recent videos in the similar category, or based on the 

publisher.  

 

Figure 6: Duplicate IDs percentage in each generation 
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Figure 7: Number of Duplicate and Distinct IDs in Each Generation 

 

3.2.4 Removing Duplicate Video IDs 

 In order to accomplish the video discovery process, a mechanism is required to avoid 

duplicates without sacrificing the performance of the video discovery process. One possible 

solution is using a relational database for data storage. As restricted by the feature of the 

relational database, if an entity is to be stored in the database, it must have a “key” value 

(primary key) so that it can be distinguished from the other entities. When storing an entity, the 

relational database system will verify whether its key already exists or not. If it does not, the new 

entity will be kept in the database; otherwise, the entity will be identified as duplicated and can 

be discarded if required.  

 For the thesis, the video IDs can be used as the key so that they can be distinctly stored. 

However, the discovery process is generating a larger and larger dataset of IDs in an extremely 

high rate (nearly exponentially), and more and more video IDs become “duplicate,” i.e., have 

already been identified as related videos of other videos before. Thus, the traffic burden of 
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sending queries and data to the database turns out to be very high, but many of them are useless 

duplicate values. In addition, sending queries to a database requires accessing hard drive, 

meaning that it costs much longer time than methods that process in the main memory, let alone 

the internet speed limit when the database is set remotely.  

 Another possible solution is to remove the duplicates in the main memory. As discussed 

above, removing duplicates in main memory is much faster than the methods that access the hard 

drive. Since the development environment is in Java, the data collections that are implemented in 

Java standard libraries become the first choices, such as HashSet, ArrayList, TreeSet, etc. In the 

thesis, HashSet is the method chosen for solving the duplicate problem. 

 HashSet is a collection that uses a hash table for storage. In Java, it extends the 

AbstractSet class and implements the Set interface [16]. An element in a HashSet is associated 

with a value called hash code which is mapped to the element value. The calculation is done 

automatically when the elements are inserted into the HashSet. Since AbstractSet only allows 

unique value stored in it, as an inheritance of AbstractSet, HashSet also has the same feature. 

Before storing an element, HashSet will first check whether the element is already stored or not: 

if not, simply puts the element into the set; otherwise makes no change. Compared with other 

kinds of collection (for example, ArrayList or TreeSet), HashSet is the fastest one for checking 

whether an element is already in the collection. Rather than calling the compare method of the 

datatype of the stored information, HashSet uses hash code as the unique identifier for each 

element in it. In case that two different elements have the same hash code, a normal comparison 

method is also integrated. If the hash code generation algorithm properly distributes the elements 

among the “buckets,” i.e., the hash codes of all the elements in HashSet are all distinct, then the 

basic operations (add, remove, contains, and size) have constant time performance O(1) [16]. For 
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comparison, ArrayList performs O(n) in the operation of “contains” which is required for 

avoiding duplicates, and TreeSet performs O(log n) in “contains.” Thus, HashSet performs 

persistently well no matter how large an increase in dataset size. Although ArrayList and TreeSet 

have some additional functions that HashSet does not have, these functions are useless in 

removing duplicate IDs, which is our main purpose. In practice, HashSet is so fast in removing 

duplicates that the time used in the phase can be nearly ignored.  

 In fact, database indexing has the similar mechanism of HashSet; however, as discussed 

earlier, passing the original data that contains a large number of duplicate elements is not 

efficient. Nevertheless, the size of the dataset is so large that if all the workload is assigned to the 

main memory of the local machine, it will break easily because of hitting the memory limit. 

Assume that we are using 50 video IDs as initial seeds and find 25 related videos for each of 

them, then in the 5th generation (expanded four times), we will get more than 200MB data in the 

memory. Then the 6th generation will break halfway since the memory limit is reached. Thus, the 

HashSet in memory cannot keep growing unlimited but has to get released regularly. The size of 

seed videos used for searching related videos is also capped with 10,000 for each “generation.” 

When gathered a set of related videos, we insert them into the database, choose 10,000 from 

them as new seed videos, and then release the set. This results in that part of the newly collected 

videos already exist in the database, but not in the current HashSet, which makes the database 

share part of the duplicate removing work. In this way, the speed of processing decreases, but 

meanwhile the free space in memory increases, which can be treated as a space-speed tradeoff 

method. 

 Another problem occurs when using the API. The video ID discovery requires YouTube 

Data API sending HTTP requests frequently to the Google server, which may occasionally get 
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“503 internal server error.” To avoid this error, an exponential backoff algorithm is applied in the 

error catching block. This algorithm ensures that the pending requests get delayed and sent; if the 

same error still occurs, the period of delay doubles and try another time. This process is 

recursively executed until the requests are successfully sent or the process exceeds a re-try time 

limit. This problem not only happens in the discovery of video IDs but also in the collection of 

video metadata. The same solution is also used in it to get rid of the internal server error.  
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3.3 Video Metadata Collection 

3.3.1 Metadata Structure 

 After gathering a large number of video IDs and storing them in the database, it was 

possible to use them for retrieving detailed information of each single video ID with the help of 

YouTube Data API. The resources of API used in this procedure include video, video category, 

channel, and comment thread.  

 Since each resource provides a big size JSON-like structured data shown in Figure 8 and 

not all of them are important or often cared, only part of each result is specified in API request. 

In addition, some kinds of metadata stay constant, such as ID, video length, video upload 

channel, comment published time, etc.; other metadata varies over time, such as video view 

count, number of channel’s comment count, and channel’s subscriber count.  
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Figure 8: Structure of video metadata which is collected by YouTube Data API 
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 In this way, the collected metadata can be separated into two types: 

1. Invariant Data and 

2. Dynamic Data 

 Below we provide what constitutes the two types of data.  

3.3.1.1 The Invariant Data  

The Invariant data include: 

a) Video:  

• Video ID: an 11-digit unique identifier of the video. The digits are composed of 0-

9, a-z, A-Z, - and _. 

• Category ID: a 2-digit unique identifier of the video category. The digits only 

contain 0-9.  

• Video publish time: the video publish time. If a video is uploaded as public, this 

value is the exact upload time of the video; however, if a video is uploaded as 

private and then made published, this value will specify the time that the video 

gets shifted to publish. The format of this value is in ISO 8601 (YYYY-MM-

DDThh:mm:ss.sZ) standard. 

• Duration: the length of the video. 

• Video title: the shown name of the video. 

• Video description: the video’s description with a maximum length of 5000 bytes. 

All UTF-8 characters are valid, except < and >.  
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b) Video Category:  

• Category ID: same as the attribute of Video. A 2-digit unique identifier of the 

video category. The digits only contain 0-9. 

• Category title: the shown name of the video category. 

c) Channel:  

• Channel ID: a 24-digit unique identifier of the channel. The digits are composed 

of 0-9, a-z, A-Z, - and _. 

• Channel publish date: the time that the channel was created. The format of this 

value is in ISO 8601 (YYYY-MM-DDThh:mm:ss.sZ) standard. 

• Channel title: the shown name of the channel. 

• Channel description: the channel’s description with a maximum length of 1000 

bytes.  
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3.3.1.2 The Dynamic Data  

 The dynamic data include: 

a) Comment Thread:  

  Comments are classified according to their position. One is called top level 

comment, which is directly shown in the video comment block; the other is called reply, 

which is commenting and replying to the top level comments or other replies under top 

level comments.  

i. Top level comment: 

• Comment ID: a unique identifier of the comment. 

• Video ID: the ID of the video which the comment belongs to. 

• Channel ID: the ID of the channel who creates the comment. In YouTube, a 

channel normally represents a user (except Google+ users), so when a user makes 

a comment, the user’s channel ID means the ID of the user.  

• Comment like count: how many people like this comment. 

• Comment published time: the time that the comment was originally created. The 

format of this value is in ISO 8601 (YYYY-MM-DDThh:mm:ss.sZ) standard. 

• Comment update at: the time that the comment was last updated. The format of 

this value is in ISO 8601 (YYYY-MM-DDThh:mm:ss.sZ) standard. 

• Comment text: the text content of the comment. 

• Total reply count: the number of replies following the comment. 
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ii. Reply: 

• Comment ID: a unique identifier of the comment. 

• Top level comment ID: the ID of the “parent” comment of a reply. No matter if a 

reply is commenting on a top level comment or other replies, this reply should be 

associated to a top level comment, which is the “parent” comment of it.  

• Channel ID: same as the one of top level comments, the ID of the channel who 

creates the comment. 

• Comment like count: how many people like this comment. 

• Comment published time: the time that the comment was originally created. The 

format of this value is in ISO 8601 (YYYY-MM-DDThh:mm:ss.sZ) standard. 

• Comment update at: the time that the comment was last updated. The format of 

this value is in ISO 8601 (YYYY-MM-DDThh:mm:ss.sZ) standard. 

• Comment text: the text content of the comment. 

b) Video Statistics:  

•  Video ID: the unique identifier of the video. 

•  Video timestamp: this parameter is not collected through the API. Actually, this is 

the local time (U.S. Eastern) when collecting the statistics of the video. Since the 

statistics of videos are always changing, it is necessary to keep tracking the 

timestamp of collected statistics information. In addition, tracking the timestamp 

allows a video owning multiple statistics information in different time, which can 

help with the analysis of statistics trend.  

• Video comments count: the number of comments of the video. 

• Video dislike count: the number of “dislikes” of the video. 
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• Video like count: the number of “likes” of the video. 

• Video view count: the number of how many times the video has been viewed. 

c) Channel Statistics:  

• Channel ID: the unique identifier of the channel. 

• Channel timestamp: the purpose of creating this attribute is similar to that of 

creating the video timestamp. This is the local time (U.S. Eastern) when 

collecting the statistics of the channel. 

• Channel comment count: the number of comments made to the channel. 

• Channel subscriber count: the number of subscribers to the channel. 

• Channel video count: the number of videos that belong to the channel. 

• Channel view count: the number of how many times the channel has been viewed. 

3.3.2 Metadata collection process 

 The initialization of the whole process was sending queries to the database that has 

already stored the “discovered” video IDs and use them to gather more of the related video IDs. 

By sending a video ID to the API, it was possible to collect the various metadata of the video, the 

video’s category, the video’s publisher (channel), and the comments of the video. Then the 

publisher’s channel ID and the commenters’ channel IDs were sent to the API as the source of 

collecting the metadata of channels.  

 According to the API documentation [14], the YouTube Data API can accept fifty 

comma-separated IDs at one time when setting video or channel IDs as the parameter. Compared 

with inputting IDs one at a time, this method significantly increases the API response speed, 

meanwhile reduces the times of sending requests to the Google YouTube server. In our metadata 

process, we retrieve twenty video IDs that have been already stored in our database and combine 
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and format them into a comma-separated value so that the API can identify and have the Google 

YouTube server accept it. The reason for sending twenty IDs each time instead of sending fifty is 

that when a video is popular, it may contain many thousands of comments and replies which will 

also generate a big size of channel IDs; for retrieving these metadata we need to send requests to 

the Google YouTube server through the API; however, if sending requests to the Google 

YouTube server too frequently, it will return a server error to temporarily interrupt the requests. 

Nevertheless, if the number of video IDs we send to the YouTube server each time is small, the 

time efficiency will decrease, especially when we send only one video ID each time. For the 

balance of the time efficiency and stability, twenty video IDs each time is a proper size to send to 

the server (this variable may differ in different running environments though).  

 The returned results from YouTube server are in JSON-like structures, which is easy to 

read and modify, but hard to insert into the database. Thus, results were converted to single sub-

layer JSON objects so that they can be stored in the database. Figure 9 shows an example of how 

video metadata format is converted.  
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Figure 9: Structure demonstration of received video metadata before and after conversion 
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3.4 Database Storage 

 Both the Video ID discovery procedure and the metadata collection procedure are using 

database storage for the purpose of keeping the information sustainable and relatively safe. Using 

database also makes it possible to distribute the workload into multiple machines so that the 

speed of information collection improves. In case of maintaining the close relationship between 

different resources of video metadata, the MySQL is used as the relational database management 

system for the project.  

3.4.1 Database in Video ID discovery phase 

 In this phase, the database table structure is simple. Since YouTube video IDs are 

distinct, they are used as the primary keys in the table of video ID. The additional information 

that stores in this table are: (1) a number that automatically increments by 1 to keep tracking the 

sequence of the video ID collection in case the discovery procedure breaks and need recovery 

from the latest point; (2) a number that counts how many times the video ID has been used for 

the next procedure metadata collection, which can help guarantee that the IDs are averagely 

referred to. The (2) part will be discussed more in the next sub-session.  

 API calling in this phase is not very fast, but it is not possible to improve this on the 

client side. For example, for each 10,000 seed videos, it will cost 60-80 seconds for calling API 

to gain the related videos of the seed videos, and less than two seconds for the duplication 

removing in HashSet (local memory). Thus, the speed bottleneck is inserting the collected IDs 

into the database. Using batch insertion can significantly increase the speed of inserting, 

compared with making queries separately.  
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3.4.2 Database in metadata collection phase 

 In this phase, the collected JSON-like metadata are inserted into the database, of which 

tables’ structures are the same as those mentioned in the section 3.4.1.  

 Unlike the first phase discussed above, during the “Database in metadata collection” 

phase, there exists a performance limit for API calls. Since one video may have thousands of 

comments or even more, the corresponding number of channels becomes large, which results in a 

slow speed in the process information retrieval of the channels. In addition, the large information 

size of channels challenges the insertion batch as well.  In YouTube, the text content (comment 

text, video description, etc.) contains abundant types of characters, such as Arabic, Chinese, 

Japanese, and a lot of emoji. To support the characters, UTF-8 is used as the encoding method. 

However, in MySQL, what’s called “UTF-8” is actually a subset of UTF-8, which does not 

support many characters that used to be supported by UTF-8. Luckily, a character set named 

utf8mb4 is created to cover the whole set of characters that are supported by UTF-8. This 

character set is very important in handling exceptions while using batch insertion because using 

batch insertion makes it impossible to track individually inserted queries and handle their 

exceptions. If an inserted entity contains characters that are not supported by the database, the 

information of that entity will be completely lost. Since many people like using special 

characters like emoji in their text, the information is unignorably lost if the character set is not set 

up properly. 
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4. CHAPTER 4 

CONCLUSION AND FUTUREWORK 

 This chapter concludes the thesis. The concepts presented throughout this thesis are 

summarized. The limitations and possible directions for future work are also presented. 

4.1 Summary 

 YouTube is the largest video sharing repository in the world. Millions of videos have 

been uploaded into the repository, and several hundreds of hours’ videos are being uploaded 

every minute. YouTube not only promotes self-publishing contents, but also provides two-way 

communications so that users are connected to the whole world, and can interact with each other 

by commenting, rating videos, subscribing channels, and so on. As a matter of fact, YouTube has 

broad and profound social impact on many areas, and became the best choice if someone is 

aiming on reaching a wider audience. Therefore, YouTube analytics has become a hot research 

area.  

 Nevertheless, quality of analytics depends on merit, volume and granularity of the data in 

hand. However, getting access to the immense and massive YouTube data is still challenging. 

For the purpose of overcoming the challenge, the thesis proposes the framework in Chapter 3. 

This framework consists of two parts: video ID discovery, which aims to discover large volumes 

of YouTube video IDs; and video metadata collection, which uses the video IDs that are 

discovered in the previous part and the video ID discovery part, to retrieve the metadata of them.  

 In the video ID discovery part, the related videos of a given video (seed) are searched to 

generate a rapid-growing dataset. In terms of storage, thesis uses HashSet technique for the data 

collection and managing duplicate video IDs efficiently. The thesis also limits the size of seed 

IDs to control the memory usage so that memory is not bottlenecked. In addition, an exponential 
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backoff algorithm is applied to avoid the “503 internal server error” which occasionally occurs 

while sending requests to YouTube at high velocity.  

 In the video metadata collection part, the metadata is split into two groups: invariant data, 

and dynamic data. Invariant data is normally collected once, and dynamic data, which is 

changing all the time, is to be collected multiple times. All the metadata received through 

YouTube Data API is in JSON structure; the metadata is preprocessed and reformed to a group 

of simple “key-value” pairs. This preprocess ensures that the metadata can be easily inserted into 

our database. 

 Over the period of two months, using our methodology, the methodology discovered 

16,000,000 videos and mined the complete metadata of more than 42,000 videos. Since this is an 

on-going work, in future, the expansion of the proposed framework and data collected is 

expected on continuous basis. 

4.2 Limitations 

 This section lists the limitations of the proposed framework. The limitations are planned 

to be addressed as future work. 

1. Since the propoed framework relies on the YouTube/Google proprietary API for mining 

the data, any change in their API will lead to modifying the code used by our framework, 

to parse the JSON Object. 

2. If YouTube decided to remove any invariant/variant data contents, then it is a must to 

alter the database schema used by our proposed frame work accordingly. 

3.  Currently, the framework is running on a dedicated machine. If the machine fails, for 

some reasons, the framework will also collapse. In future, it is aimed to scale the 
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framework by running it on multiple machines to (a) increase the reliability of the 

framework and (b) speed up the harvesting of data from YouTube. 

4.3 Future work 

While executing the data collection process, several new possible extensions were 

discovered that can be made to extend the framework. This section lists the two promising future 

avenues. 

4.3.1 Separate channel metadata collection 

 Channel metadata collection is an important but time-consuming process. 

Currently, metadata collection is implemented as a thread, of which the loop is: retrieve 

some video IDs from database  collect video metadata (also including the metadata of 

video category, statistics, and comments), meanwhile gather the channel IDs that related 

to these videos  collect channel metadata  retrieve more video IDs  …(loop). 

However, one video can be related to a large number of channels, especially when the 

video is very popular. Every YouTube user that has ever made a comment to a video will 

be counted as a channel in the channel metadata collection, and it can result in a big bang. 

For example, if one video has 1,000 comments from different YouTube users, then there 

will be 1,000 channels when collecting the metadata of channels. Thus, channel metadata 

collection would be the most time-consuming section in the thread loop.  

 On the other hand, there is duplicate work during channel metadata collection. 

One user can provide comments for multiple videos, which implies that one channel ID is 

related to multiple videos. If we collect channel metadata right after we have gathered the 

related channel IDs of a video, we may process the same channel multiple times. To 

avoid the meaningless duplicate work, the thesis used HashSet to store channel IDs 
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before proceding to the channel metadata collection process. Currently, in each loop, 20 

videos are processed. After the related channel IDs of the 20 videos are gathered, these 

channel IDs are stored in the HashSet to retrieve channel metadata. Thus, inside each 

loop, the channel ID duplicates are removed. However, this method can only guarantee a 

small coverage, i.e., the duplicates in between different thread loops cannot be 

eliminated.  

 The combination of these two problems can significantly influence the 

performance of the proposed framework in terms of time efficiency, i.e., increased 

latency. The latency is not noticed until the underlying code gets executed for a long 

period. A possible solution could be separating the processes of channel metadata 

collection as a new “channel thread,” rather than being merged with the video metadata 

collection. By separating the thread loops, we can focus on just collecting video metadata 

in a “video thread.” In addition, instead of collecting channel metadata, we only store the 

channel ID in database during the video thread. Meanwhile, we use the separated channel 

thread to crawl the channel IDs and retrieve the corresponding channel metadata, which 

is similar to what we are doing in the video thread. The channel thread can be executed in 

parallel with the video thread. The workload can be also distributed to different 

machines.  

4.3.2 Recursive ID collection of videos and channels 

 For the purpose of exploiting search videos as exhaustively as possible, a 

recursive ID collection process can be introduced. Using video IDs, it is possible to 

discover channel IDs by tracking the video uploader’s and the commenters’ channel IDs; 

and in contrast, using the channel IDs, we are able to discover video IDs by tracking the 
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videos in the channels’ playlists, subscriptions, etc. This method can help dig deeper and 

more completely in discovering video IDs as well as channel IDs.   
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APPENDIX A 

IRB LETTER 
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APPENDIX B 

SOURCE CODE 

>>>\youtube\auth\Auth.java 

 

package youtube.auth; 

 

import com.google.api.client.auth.oauth2.Credential; 

import com.google.api.client.auth.oauth2.StoredCredential; 

import com.google.api.client.extensions.java6.auth.oauth2.AuthorizationCodeInstalledApp; 

import com.google.api.client.extensions.jetty.auth.oauth2.LocalServerReceiver; 

import com.google.api.client.googleapis.auth.oauth2.GoogleAuthorizationCodeFlow; 

import com.google.api.client.googleapis.auth.oauth2.GoogleClientSecrets; 

import com.google.api.client.http.HttpTransport; 

import com.google.api.client.http.javanet.NetHttpTransport; 

import com.google.api.client.json.JsonFactory; 

import com.google.api.client.json.jackson2.JacksonFactory; 

import com.google.api.client.util.store.DataStore; 

import com.google.api.client.util.store.FileDataStoreFactory; 

 

import java.io.File; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.Reader; 

import java.util.List; 

 

/** 

 * Shared class used by every sample. Contains methods for authorizing a user and caching credentials. 

 */ 

public class Auth { 

 

    /** 

     * Define a global instance of the HTTP transport. 

     */ 

    public static final HttpTransport HTTP_TRANSPORT = new NetHttpTransport(); 

 

    /** 

     * Define a global instance of the JSON factory. 

     */ 

    public static final JsonFactory JSON_FACTORY = new JacksonFactory(); 

 

    /** 

     * This is the directory that will be used under the user's home directory where OAuth tokens will be stored. 

     */ 

    private static final String CREDENTIALS_DIRECTORY = ".oauth-credentials"; 

 

    /** 

     * Authorizes the installed application to access user's protected data. 

     * 

     * @param scopes              list of scopes needed to run youtube upload. 

     * @param credentialDatastore name of the credential datastore to cache OAuth tokens 

     */ 

    public static Credential authorize(List<String> scopes, String credentialDatastore) throws IOException { 

 

        // Load client secrets. 

        Reader clientSecretReader = new InputStreamReader(Auth.class.getResourceAsStream("/client_secrets.json")); 

        GoogleClientSecrets clientSecrets = GoogleClientSecrets.load(JSON_FACTORY, clientSecretReader); 
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        // Checks that the defaults have been replaced (Default = "Enter X here"). 

        if (clientSecrets.getDetails().getClientId().startsWith("Enter") 

                || clientSecrets.getDetails().getClientSecret().startsWith("Enter ")) { 

            System.out.println( 

                    "Enter Client ID and Secret from https://console.developers.google.com/project/_/apiui/credential " 

                            + "into src/main/resources/client_secrets.json"); 

            System.exit(1); 

        } 

 

        // This creates the credentials datastore at ~/.oauth-credentials/${credentialDatastore} 

        FileDataStoreFactory fileDataStoreFactory = new FileDataStoreFactory(new File(System.getProperty("user.home") + "/" + 

CREDENTIALS_DIRECTORY)); 

        DataStore<StoredCredential> datastore = fileDataStoreFactory.getDataStore(credentialDatastore); 

 

        GoogleAuthorizationCodeFlow flow = new GoogleAuthorizationCodeFlow.Builder( 

                HTTP_TRANSPORT, JSON_FACTORY, clientSecrets, scopes).setCredentialDataStore(datastore) 

                .build(); 

 

        // Build the local server and bind it to port 8080 

        LocalServerReceiver localReceiver = new LocalServerReceiver.Builder().setPort(8080).build(); 

 

        // Authorize. 

        return new AuthorizationCodeInstalledApp(flow, localReceiver).authorize("user"); 

    } 

} 

 

 

 

 

>>> video_category_discoveror\VideoCategoryEnumerate.java 

 

package video_category_discoveror; 

 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Iterator; 

 

import com.google.api.services.youtube.YouTube; 

import com.google.api.services.youtube.model.VideoCategory; 

import com.google.api.services.youtube.model.VideoCategoryListResponse; 

 

public class VideoCategoryEnumerate { 

 

 private YouTube youtube; 

 private String apiKey; 

 

 public VideoCategoryEnumerate(YouTube youtube, String apiKey) { 

  this.youtube = youtube; 

  this.apiKey = apiKey; 

 } 

 

 public ArrayList<String> getCategoryID() throws IOException { 

  ArrayList<String> result = new ArrayList<String>(); 

 

  YouTube.VideoCategories.List cList = youtube.videoCategories().list("snippet").setKey(apiKey); 

  int intID = 0; 

  int emptyCount = 0; 

  for (intID = 0; emptyCount < 15; intID++) { 

   String sID = String.valueOf(intID); 

   cList.setId(sID); 

   VideoCategoryListResponse cResponse = cList.execute(); 
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   if (cResponse.getItems().isEmpty()) { 

    emptyCount++; 

   } else { 

    emptyCount = 0; // Reset empty counter. 

    Iterator<VideoCategory> itor = cResponse.getItems().iterator(); 

    while (itor.hasNext()) { 

     VideoCategory vCategory = itor.next(); 

     System.out.println("Category ID: " + sID + "\tCategory Title: " + 

vCategory.getSnippet().getTitle() 

       + "\tAssignable: " + 

vCategory.getSnippet().getAssignable()); 

     result.add(vCategory.getId()); 

    } 

   } 

 

  } 

 

  // **After verifying, the categories with ID "18", "21", "38", and "42" 

  // are empty, i.e., no videos are assigned with these categories. Thus 

  // they should be removed from the set. 

  result.remove("18"); 

  result.remove("21"); 

  result.remove("38"); 

  result.remove("42"); 

 

  return result; 

 } 

 

} 

 

 

>>> video_id_generator\VideoIdCreator.java 

 

package video_id_generator; 

 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.sql.SQLException; 

import java.util.ArrayList; 

import java.util.Iterator; 

import java.util.LinkedHashSet; 

import java.util.List; 

 

import com.google.api.services.youtube.YouTube; 

import com.google.api.services.youtube.model.SearchListResponse; 

import com.google.api.services.youtube.model.SearchResult; 

 

import data_collector_ver4.MySQLAccess; 

import video_category_discoveror.VideoCategoryEnumerate; 

 

public class VideoIdCreator { 

 

 private YouTube youtube; 

 private String apiKey; 

 

 // This attribute passes the initial seed videos' size. 

 private int iniSeedSize; 

 // Set the maximum seed size for each time expanding. 

 private final int expSeedSize = 10000; 

 private String order; 
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 // Page * maximumResult = Related video size. 

 // i.e. 3 pages and 50 maximum results gives 150 result for each seed video 

 // when searching for its related videos. 

 private int page; 

 private long maximumResult; 

 

 // Set the path of where to write the result. 

 private String filepath; 

 

 /** 

  * Order can be: date, viewCount, rating, relevance, title (alphabetically) 

  * maximumResult cannot exceed 100. 

  *  

  * @param youtube 

  * @param apiKey 

  * @param order 

  * @param page 

  * @param maximumResult 

  */ 

 public VideoIdCreator(YouTube youtube, String apiKey, String order, int seedSize, int page, long maximumResult, 

   String filepath) { 

  this.youtube = youtube; 

  this.apiKey = apiKey; 

  this.order = order; 

  this.iniSeedSize = seedSize; 

  this.page = page; 

  this.maximumResult = maximumResult; 

  this.filepath = filepath; 

 } 

 

 /** 

  *  

  * @param expandTime 

  * @return 

  * @throws Exception 

  */ 

 public LinkedHashSet<String> videoIdSetCreate(int expandTime) throws Exception { 

 

  // Create two "cursors". 

  LinkedHashSet<String> currentResultSet = new LinkedHashSet<String>(); 

  LinkedHashSet<String> tempSeedSet = new LinkedHashSet<String>(); 

 

  // Initiate the start point. 

  currentResultSet = videoIdSeed(); 

  tempSeedSet = currentResultSet; 

 

  // Store the initial set of videoIDs. 

  fileWrite(currentResultSet); 

  dbWrite(currentResultSet); 

 

  // If expandTime is -1, then go infinite loops.  

  if (expandTime != -1) { 

   while (expandTime > 0) { 

    System.out.println("Current seed size: " + tempSeedSet.size()); 

    System.out.println("Maximum seed size is set to: " + expSeedSize); 

    System.out.println("--Start expanding...\n(Remaining expand time: " + expandTime + ")"); 

    expandTime--; 

    tempSeedSet = videoIdExpand(tempSeedSet, currentResultSet); 

    currentResultSet.addAll(tempSeedSet); 

    System.out.println("--current result set size: " + currentResultSet.size()); 

    System.out.println("-----------------------------------------------"); 

    // Store the expanded set of videoIDs. 
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    fileWrite(tempSeedSet); 

    dbWrite(tempSeedSet); 

   } 

  }else { 

   while (true) { 

    System.out.println("Current seed size: " + tempSeedSet.size()); 

    System.out.println("Maximum seed size is set to: " + expSeedSize); 

    System.out.println("--Start expanding...\n(Remaining expand time: " + "\u221E" + ")"); 

    tempSeedSet = videoIdExpand(tempSeedSet, currentResultSet); 

    currentResultSet.addAll(tempSeedSet); 

    System.out.println("--current result set size: " + currentResultSet.size()); 

    System.out.println("-----------------------------------------------"); 

    // Store the expanded set of videoIDs. 

    fileWrite(tempSeedSet); 

    dbWrite(tempSeedSet); 

   } 

  } 

  return currentResultSet; 

 

 } 

 

 // Use video category enumerate to ensure that the seed videos are from 

 // distinct categories. 

 private LinkedHashSet<String> videoIdSeed() throws IOException { 

 

  // Get all the categories of YouTube videos. 

  VideoCategoryEnumerate vCE = new VideoCategoryEnumerate(youtube, apiKey); 

  ArrayList<String> vCList = vCE.getCategoryID(); 

 

  // Calculate how many videos should be selected from each category. 

  int categorySize = vCList.size(); // Actually this is constant: 32 

 

  int blockVideoNum = iniSeedSize / categorySize; 

  int extraVideoNum = iniSeedSize % categorySize; 

 

  System.out.println(); 

  System.out.println("blockVideoNum: " + blockVideoNum); 

  System.out.println("extraVideoNum: " + extraVideoNum); 

  LinkedHashSet<String> videoListSet = new LinkedHashSet<String>(); 

 

  Iterator<String> vCItor = vCList.iterator(); 

  while (vCItor.hasNext()) { 

   String vCategory = vCItor.next(); 

   int nMaximumResult = blockVideoNum; 

   if (extraVideoNum > 0) { 

    nMaximumResult += 1; 

    extraVideoNum -= 1; 

   } 

   System.out.println("-------------------------"); 

   System.out.println("Current Category: " + vCategory + "\tnew maximum result: " + 

nMaximumResult); 

   YouTube.Search.List videoList = youtube.search().list("id").setKey(apiKey) 

    

 .setFields("items/id/videoId,nextPageToken,pageInfo").setOrder(order).setType("video") 

     .setMaxResults((long) nMaximumResult).setVideoCategoryId(vCategory); 

 

   SearchListResponse videoListResponse = videoList.execute(); 

   List<SearchResult> videoResultList = videoListResponse.getItems(); 

 

   // while (videoListResponse.getNextPageToken() != null) { 

   // videoListResponse = 

   // videoList.setPageToken(videoListResponse.getNextPageToken()).execute(); 
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   // videoResultList.addAll(videoListResponse.getItems()); 

   // System.out.println("Infinite loop..."); 

   // } 

 

   if (videoResultList.isEmpty()) { 

    System.out.println("Empty category in ID: " + vCategory); 

   } else { 

    Iterator<SearchResult> videoResultIter = videoResultList.iterator(); 

    while (videoResultIter.hasNext()) { 

     SearchResult video = videoResultIter.next(); 

     System.out.println(video.toString()); 

     videoListSet.add(video.getId().getVideoId()); 

    } 

   } 

  } 

  return videoListSet; 

 } 

 

 private LinkedHashSet<String> videoIdExpand(LinkedHashSet<String> seedSet, LinkedHashSet<String> 

currentResultSet) 

   throws Exception { 

 

  // Create a container that stores the result for returning. 

  LinkedHashSet<String> expandedSet = new LinkedHashSet<String>(); 

 

  int page = this.page; 

 

  YouTube.Search.List videoList = youtube.search().list("id").setKey(apiKey) 

   

 .setFields("items/id/videoId,nextPageToken,pageInfo").setType("video").setMaxResults(maximumResult); 

 

  // Iterate the seed set, and for each of them, generate its related 

  // video IDs. 

  Iterator<String> seedSetIter = seedSet.iterator(); 

 

  int cnt = 0; 

  long sleepTime = 10000; 

  // Set a size limit to the the expand seeds 

  long seedLimit = expSeedSize; 

 

  // Calculate total time usage. 

  long startTime = System.currentTimeMillis(); 

  long endTime = startTime; 

  double timeDiff = 0; 

  // Calculate API execution time usage. 

  long exeStartTime = System.currentTimeMillis(); 

  long exeEndTime = exeStartTime; 

  double exeTimeDiff = 0; 

 

  while (seedSetIter.hasNext() && (seedLimit > 0)) { 

   cnt++; 

   seedLimit--; 

   if ((cnt % 500) == 0) { 

    endTime = System.currentTimeMillis(); 

    timeDiff = ((double) endTime - startTime) / 1000; 

    System.out.println(cnt + " seeds searched,\tTime used: " + timeDiff + " sec" 

      + "\tCalling API time used: " + exeTimeDiff / 1000 + " sec."); 

    startTime = endTime; 

    exeTimeDiff = 0; 

   } 

 

   videoList.setRelatedToVideoId(seedSetIter.next()); 
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   SearchListResponse videoListResponse = new SearchListResponse(); 

 

   try { 

    exeStartTime = System.currentTimeMillis(); 

    videoListResponse = videoList.execute(); 

    exeEndTime = System.currentTimeMillis(); 

    exeTimeDiff += (exeEndTime - exeStartTime); 

   } catch (Exception e) { 

    // Retry at most 3 times to make the request. 

    int tryCount = 0; 

    int maxRetryTime = 3; 

    while (true) { 

     try { 

      System.out.print("Error occurs. Retrying..."); 

      // Wait for a few seconds and re-try. 

      Thread.sleep(sleepTime); 

      exeStartTime = System.currentTimeMillis(); 

      videoListResponse = videoList.execute(); 

      exeEndTime = System.currentTimeMillis(); 

      exeTimeDiff += (exeEndTime - exeStartTime); 

      break; 

     } catch (Exception e1) { 

      // Double the waiting time if request failed. 

      sleepTime = sleepTime * 2; 

      // Set maximum waiting time to 1 minute. 

      if (sleepTime >= 60000) { 

       sleepTime = 60000; 

      } 

      // If failed 3 times, throw the exception. 

      if (++tryCount >= maxRetryTime) { 

       throw e1; 

      } 

     } 

    } 

    System.out.println("Done."); 

   } 

 

   List<SearchResult> videoResultList = videoListResponse.getItems(); 

   page--; 

 

   // Keep fetching the next page until it's null or reaching the page 

   // limit that has been set in the attribute field. 

   while (videoListResponse.getNextPageToken() != null && page > 0) { 

    // Reset the sleep time in case that it has already grown to a 

    // big number (even 1 minute is a little bit long for the first 

    // few tries.) 

    sleepTime = 10000; 

    page--; 

    videoList.setPageToken(videoListResponse.getNextPageToken()); 

    try { 

     exeStartTime = System.currentTimeMillis(); 

     videoListResponse = videoList.execute(); 

     exeEndTime = System.currentTimeMillis(); 

     exeTimeDiff += (exeEndTime - exeStartTime); 

    } catch (Exception e) { 

     // Retry at most 3 times to make the request. 

     int tryCount = 0; 

     int maxRetryTime = 3; 

     while (true) { 

      try { 

       System.out.print("Error occurs. Retrying..."); 

       // Wait for a few seconds and re-try. 
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       Thread.sleep(sleepTime); 

       exeStartTime = System.currentTimeMillis(); 

       videoListResponse = videoList.execute(); 

       exeEndTime = System.currentTimeMillis(); 

       exeTimeDiff += (exeEndTime - exeStartTime); 

       break; 

      } catch (Exception e1) { 

       // Double the waiting time if request failed. 

       sleepTime = sleepTime * 2; 

       // Set maximum waiting time to 1 minute. 

       if (sleepTime >= 60000) { 

        sleepTime = 60000; 

       } 

       // If failed 3 times, throw the exception. 

       if (++tryCount >= maxRetryTime) { 

        throw e1; 

       } 

      } 

     } 

     System.out.println("Done."); 

    } 

    videoResultList.addAll(videoListResponse.getItems()); 

   } 

 

   // Add the result to the container set. 

   Iterator<SearchResult> videoResultIter = videoResultList.iterator(); 

   while (videoResultIter.hasNext()) { 

    expandedSet.add(videoResultIter.next().getId().getVideoId()); 

   } 

  } 

 

  // Remove the IDs that already exist in the result set. 

  System.out.println("--Before removing duplicate size: " + expandedSet.size()); 

  expandedSet.removeAll(currentResultSet); 

  System.out.println("--After removing duplicate size:  " + expandedSet.size()); 

  return expandedSet; 

 } 

 

 // A short method that writes the result into a file. 

 private void fileWrite(LinkedHashSet<String> result) throws IOException { 

 

  try { 

   File file = new File(filepath); 

 

   BufferedWriter bWriter = new BufferedWriter(new FileWriter(file, true)); 

 

   Iterator<String> resultItor = result.iterator(); 

   while (resultItor.hasNext()) { 

    bWriter.write(resultItor.next() + ","); 

   } 

 

   bWriter.close(); 

  } catch (IOException e) { 

   throw e; 

  } 

 } 

 

 private void dbWrite(LinkedHashSet<String> result) throws SQLException { 

 

  MySQLAccess dbAccess = new MySQLAccess(); 

  dbAccess.videoIDListCreator(result); 
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 } 

} 

 

 

 

>>>data_collector_ver4\YouTubeAPIProcess.java 

 

package data_collector_ver4; 

 

import java.io.IOException; 

import java.text.SimpleDateFormat; 

import java.util.ArrayList; 

import java.util.Date; 

import java.util.Iterator; 

import java.util.LinkedHashSet; 

import java.util.List; 

 

import org.json.JSONObject; 

 

import com.google.api.services.youtube.YouTube; 

import com.google.api.services.youtube.model.Channel; 

import com.google.api.services.youtube.model.ChannelListResponse; 

import com.google.api.services.youtube.model.Comment; 

import com.google.api.services.youtube.model.CommentThread; 

import com.google.api.services.youtube.model.CommentThreadListResponse; 

import com.google.api.services.youtube.model.Video; 

import com.google.api.services.youtube.model.VideoCategory; 

import com.google.api.services.youtube.model.VideoCategoryListResponse; 

import com.google.api.services.youtube.model.VideoListResponse; 

 

/** 

 * Designed to combine the multiple processes into one single block. Input 

 * should be a set of video, and then generate a plenty of information of 

 * YouTube videos. <b> 

 *  

 * @author Tian 

 * 

 */ 

public class YouTubeAPIProcess { 

 

 // Initiate the attributes that are required in the information retrieving 

 // process. 

 private YouTube youtube; 

 private String apiKey; 

 

 private LinkedHashSet<String> videoIdSet = new LinkedHashSet<String>(); 

 private LinkedHashSet<String> channelIdSet = new LinkedHashSet<String>(); 

 private LinkedHashSet<String> categoryIdSet = new LinkedHashSet<String>(); 

 

 // Initiate the storages of entities that will be inserted to database. 

 private ArrayList<JSONObject> videoTableList = new ArrayList<JSONObject>(); 

 private ArrayList<JSONObject> videoStatisticTableList = new ArrayList<JSONObject>(); 

 private ArrayList<JSONObject> videoCategoryTableList = new ArrayList<JSONObject>(); 

 @SuppressWarnings("unchecked") 

 // Comments have two type: top level comment, and reply. However, they are 

 // retrieved at the same time: when gathering a video's comments, both top 

 // level comments and replies are collected at one request. Thus, I used an 

 // array to store them. (A better solution can be: create a new class that 

 // stores the 2 JSONObject, and return the new class type other than return 

 // an array.) 

 private ArrayList<JSONObject>[] videoCommentTableList = (ArrayList<JSONObject>[]) new ArrayList[2]; 

 private ArrayList<JSONObject> channelTableList = new ArrayList<JSONObject>(); 
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 private ArrayList<JSONObject> channelStatisticTableList = new ArrayList<JSONObject>(); 

 

 // A test attribute for counting users that don't have channel IDs. 

 private static long noChannelUserCount = 0; 

 

 // Basic properties for setting and retrieving attributes. 

 // ------------------------------------------------------------- 

 protected YouTubeAPIProcess(YouTube youtube, String apiKey, LinkedHashSet<String> videoIdSet) { 

  this.youtube = youtube; 

  this.apiKey = apiKey; 

  this.videoIdSet = videoIdSet; 

 } 

 

 public void setVideoIdSet(LinkedHashSet<String> videoIdSet) { 

  this.videoIdSet = videoIdSet; 

 } 

 

 // public void setChannelIdSet(LinkedHashSet<String> channelIdSet) { 

 // this.channelIdSet = channelIdSet; 

 // } 

 // 

 // public void setCategoryIdSet(LinkedHashSet<String> categoryIdSet) { 

 // this.categoryIdSet = categoryIdSet; 

 // } 

 

 public LinkedHashSet<String> getCategoryIdSet() { 

  return categoryIdSet; 

 } 

 

 public LinkedHashSet<String> getVideoIdSet() { 

  return videoIdSet; 

 } 

 

 public LinkedHashSet<String> getChannelIdSet() { 

  return channelIdSet; 

 } 

 

 public ArrayList<JSONObject> getVideoTableList() { 

  return videoTableList; 

 } 

 

 public ArrayList<JSONObject> getVideoStatisticTableList() { 

  return videoStatisticTableList; 

 } 

 

 public ArrayList<JSONObject> getVideoCategoryTableList() { 

  return videoCategoryTableList; 

 } 

 

 public ArrayList<JSONObject>[] getVideoCommentTableList() { 

  return videoCommentTableList; 

 } 

 

 public ArrayList<JSONObject> getChannelTableList() { 

  return channelTableList; 

 } 

 

 public ArrayList<JSONObject> getChannelStatisticTableList() { 

  return channelStatisticTableList; 

 } 

 // ------------------------------------------------------------- 
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 // Execution method handles the basic process unit, and each one unit 

 // contains multiple API calls. 

 public YouTubeAPIProcessResult execute() throws Exception { 

  generateVideoTableList(); 

  System.out.println("--Video info retrieved."); 

  generateVideoStatisticTableList(); 

  System.out.println("--Video Statistic info retrieved."); 

  generateVideoCategoryTableList(); 

  System.out.println("--Category info retrieved."); 

  generateVideoCommentTableList(); 

  System.out.println("--Comment info retrieved."); 

  generateChannelTableList(); 

  System.out.println("--Channel info retrieved."); 

  generateChannelStatisticTableList(); 

  System.out.println("--Channel Statistic info retrieved."); 

  YouTubeAPIProcessResult processResult = new YouTubeAPIProcessResult(videoTableList, 

videoStatisticTableList, 

    videoCategoryTableList, videoCommentTableList, channelTableList, 

channelStatisticTableList); 

  return processResult; 

 } 

 

 private void generateVideoTableList() throws IOException { 

  videoTableList = new ArrayList<JSONObject>(); 

 

  YouTube.Videos.List videoList = youtube.videos().list("id,snippet,contentDetails").setKey(apiKey).setFields( 

   

 "items(id,contentDetails/duration,snippet(categoryId,channelId,description,publishedAt,title))"); 

 

  // pre-process the video IDs to make it acceptable by the API. 

  String videoIdListCSV = hashSetToCSV(videoIdSet); 

  ArrayList<String> splittedVideoIdListCSV = csvSplitter(videoIdListCSV); 

  // Each instance contains 50 video IDs separated by commas. 

  Iterator<String> videoIdIterator = splittedVideoIdListCSV.iterator(); 

 

  while (videoIdIterator.hasNext()) { 

 

   videoList.setId(videoIdIterator.next()); 

   VideoListResponse videoListResponse = videoList.execute(); 

 

   java.util.List<Video> videos = videoListResponse.getItems(); 

   Iterator<Video> videoIterator = videos.iterator(); 

 

   // Create a JSONObject that has the same structure as the MySQL 

   // database table. Use the JSONObject to save each entities' values. 

   while (videoIterator.hasNext()) { 

    Video video = videoIterator.next(); 

    JSONObject videoInfoTable = new JSONObject().put("VideoId", video.getId()) 

      .put("CategoryId", video.getSnippet().getCategoryId()) 

      .put("ChannelId", video.getSnippet().getChannelId()) 

      .put("VideoPublishedAt", 

video.getSnippet().getPublishedAt().toString()) 

      .put("Duration", video.getContentDetails().getDuration()) 

      .put("VideoTitle", video.getSnippet().getTitle()) 

      .put("VideoDescription", video.getSnippet().getDescription()); 

    videoTableList.add(videoInfoTable); 

 

    // channel and category IDs that related to a particular video 

    // should be recorded. 

    channelIdSet.add(video.getSnippet().getChannelId()); 

    categoryIdSet.add(video.getSnippet().getCategoryId()); 

   } 
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  } 

 } 

 

 private void generateVideoStatisticTableList() throws IOException { 

  // The process is similar to the method above :) 

  videoStatisticTableList = new ArrayList<JSONObject>(); 

 

  YouTube.Videos.List videoList = youtube.videos().list("id,statistics").setKey(apiKey) 

    .setFields("items(id,statistics)"); 

 

  String videoIdListCSV = hashSetToCSV(videoIdSet); 

  ArrayList<String> splittedVideoIdListCSV = csvSplitter(videoIdListCSV); 

  Iterator<String> videoIdIterator = splittedVideoIdListCSV.iterator(); 

 

  while (videoIdIterator.hasNext()) { 

 

   videoList.setId(videoIdIterator.next()); 

   VideoListResponse videoListResponse = videoList.execute(); 

 

   java.util.List<Video> videos = videoListResponse.getItems(); 

   Iterator<Video> videoIterator = videos.iterator(); 

 

   while (videoIterator.hasNext()) { 

    Video video = videoIterator.next(); 

    JSONObject videoStatisticTable = new JSONObject().put("VideoId", video.getId()) 

      .put("VideoTimeStamp", new SimpleDateFormat("yyyy-MM-dd 

HH:mm:ss").format(new Date())) 

      .put("VideoCommentsCount", 

video.getStatistics().getCommentCount()) 

      .put("VideoDislikeCount", video.getStatistics().getDislikeCount()) 

      .put("VideoLikeCount", video.getStatistics().getLikeCount()) 

      .put("VideoFavoriteCount", video.getStatistics().getFavoriteCount()) 

      .put("VideoViewCount", video.getStatistics().getViewCount()); 

 

    videoStatisticTableList.add(videoStatisticTable); 

   } 

  } 

 } 

 

 private void generateVideoCategoryTableList() throws IOException { 

 

  StringBuilder categoryIdBuilder = new StringBuilder(); 

  videoCategoryTableList = new ArrayList<JSONObject>(); 

 

  YouTube.VideoCategories.List videoCategories = youtube.videoCategories().list("snippet").setKey(apiKey) 

    .setFields("items(id,snippet/title)"); 

 

  Iterator<String> categoryIdSetIterator = categoryIdSet.iterator(); 

  while (categoryIdSetIterator.hasNext()) { 

   categoryIdBuilder.append(categoryIdSetIterator.next() + ","); 

  } 

  String categoryIdCSV = categoryIdBuilder.toString().replaceAll(",$", ""); 

 

  ArrayList<String> splittedCategoryIdCSV = csvSplitter(categoryIdCSV); 

  Iterator<String> categoryIdIterator = splittedCategoryIdCSV.iterator(); 

 

  while (categoryIdIterator.hasNext()) { 

   videoCategories.setId(categoryIdIterator.next()); 

   VideoCategoryListResponse videoCategoryListResponse = videoCategories.execute(); 

 

   List<VideoCategory> videoCategoryList = videoCategoryListResponse.getItems(); 

   Iterator<VideoCategory> videoCategoryIterator = videoCategoryList.iterator(); 
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   while (videoCategoryIterator.hasNext()) { 

    VideoCategory videoCategory = videoCategoryIterator.next(); 

    JSONObject videoCategoryTable = new JSONObject().put("CategoryId", 

videoCategory.getId()) 

      .put("CategoryTitle", videoCategory.getSnippet().getTitle()); 

    videoCategoryTableList.add(videoCategoryTable); 

   } 

  } 

 } 

 

 @SuppressWarnings("unchecked") 

 private void generateVideoCommentTableList() throws Exception { 

  String videoIdListCSV = hashSetToCSV(videoIdSet); 

  String[] videoIdList = videoIdListCSV.split(","); 

  // Create a 

  // 0: top level comment; 1: reply. 

  videoCommentTableList = (ArrayList<JSONObject>[]) new ArrayList[2]; 

  for (int i = 0; i < videoCommentTableList.length; i++) { 

   videoCommentTableList[i] = new ArrayList<JSONObject>(); 

  } 

  for (String videoId : videoIdList) { 

   String curVideoId = videoId; 

   Comment curComment = new Comment(); 

 

   try { 

    YouTube.CommentThreads.List videoCommentsList = 

youtube.commentThreads().list("snippet,replies") 

     

 .setKey(apiKey).setVideoId(videoId).setTextFormat("plainText").setMaxResults((long) 100) 

      .setFields( 

       

 "items(replies(comments(id,snippet(authorChannelId,likeCount,parentId,publishedAt,textDisplay,updatedAt)))," 

          + 

"snippet(topLevelComment(id,snippet(authorChannelId,likeCount,publishedAt,textDisplay,updatedAt))," 

          + 

"totalReplyCount,videoId)),nextPageToken"); 

    CommentThreadListResponse videoCommentsListResponse = 

videoCommentsList.execute(); 

    List<CommentThread> commentThreadList = videoCommentsListResponse.getItems(); 

    // Collect every pages. 

    // Set the upper bound of comments to 1000 for now. 

    while (videoCommentsListResponse.getNextPageToken() != null) { 

     videoCommentsList = 

videoCommentsList.setPageToken(videoCommentsListResponse.getNextPageToken()); 

 

     // Set the initial waiting time for waiting for next try. 

     long sleepTime = 5000; 

     try { 

      videoCommentsListResponse = videoCommentsList.execute(); 

     } catch (Exception e) { 

      // retry max 3 times. 

      int tryCount = 0; 

      int maxRetryTime = 3; 

      while (true) { 

       try { 

        tryCount++; 

        System.out.println("**Error occurs, retry time: " + 

tryCount + "..."); 

        Thread.sleep(sleepTime); 

        videoCommentsListResponse = 

videoCommentsList.execute(); 

       } catch (Exception e1) { 
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        // Double the waiting time if request failed. 

        sleepTime = sleepTime * 2; 

        // Set maximum waiting time to 1 minute. 

        if (sleepTime >= 60000) { 

         sleepTime = 60000; 

        } 

        // If failed 3 times, throw the exception. 

        if (tryCount >= maxRetryTime) { 

         throw e1; 

        } 

       } 

      } 

     } 

     commentThreadList.addAll(videoCommentsListResponse.getItems()); 

     // Upper bound implementation. 

     if (commentThreadList.size() >= 1000) { 

      break; 

     } 

    } 

 

    // Start iterator. 

    Iterator<CommentThread> iterComment = commentThreadList.iterator(); 

    while (iterComment.hasNext()) { 

     CommentThread videoComment = iterComment.next(); 

     Comment topLevelComment = 

videoComment.getSnippet().getTopLevelComment(); 

     curComment = topLevelComment; 

 

     // avoid null author IDs. 

     if (!topLevelComment.getSnippet().getAuthorChannelId().toString().isEmpty()) 

{ 

      JSONObject topLevelCommentTable = new 

JSONObject().put("TLCommentId", topLevelComment.getId()) 

        .put("VideoId", 

videoComment.getSnippet().getVideoId()) 

        .put("ChannelId", 

          authorChannelIdFormat( 

           

 topLevelComment.getSnippet().getAuthorChannelId().toString())) 

        .put("TLCommentLikeCount", 

topLevelComment.getSnippet().getLikeCount()) 

        .put("TLCommentPublishedAt", 

topLevelComment.getSnippet().getPublishedAt().toString()) 

        .put("TLCommentUpdatedAt", 

topLevelComment.getSnippet().getUpdatedAt().toString()) 

        .put("TLCommentTextDisplay", 

topLevelComment.getSnippet().getTextDisplay()) 

        .put("TotalReplyCount", 

videoComment.getSnippet().getTotalReplyCount()); 

 

      videoCommentTableList[0].add(topLevelCommentTable); 

 

      channelIdSet.add( 

       

 authorChannelIdFormat(topLevelComment.getSnippet().getAuthorChannelId().toString())); 

 

      // If reply exists, add them as well. 

      if (videoComment.getSnippet().getTotalReplyCount() != 0) { 

       List<Comment> replies = 

videoComment.getReplies().getComments(); 

       Iterator<Comment> iterReply = replies.iterator(); 

       while (iterReply.hasNext()) { 
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        Comment reply = iterReply.next(); 

        if 

(!reply.getSnippet().getAuthorChannelId().toString().isEmpty()) { 

         JSONObject replyTable = new 

JSONObject().put("ReplyId", reply.getId()) 

          

 .put("TLCommentId", reply.getSnippet().getParentId()) 

           .put("ChannelId", 

            

 authorChannelIdFormat( 

             

  reply.getSnippet().getAuthorChannelId().toString())) 

          

 .put("ReplyLikeCount", reply.getSnippet().getLikeCount()) 

          

 .put("ReplyPublishedAt", reply.getSnippet().getPublishedAt().toString()) 

          

 .put("ReplyUpdatedAt", reply.getSnippet().getUpdatedAt().toString()) 

          

 .put("ReplyTextDisplay", reply.getSnippet().getTextDisplay()); 

 

        

 videoCommentTableList[1].add(replyTable); 

 

         // Save the author's channel id to 

         // channelIdList. 

         channelIdSet.add( 

          

 authorChannelIdFormat(reply.getSnippet().getAuthorChannelId().toString())); 

        } 

       } 

      } 

 

     } else { 

      // Sometimes a user may not have a channel ID. Instead, 

      // they are using google+ account to making comments. In 

      // this case, although I'm not storing the google+ 

      // information yet, it can be separately stored in a new 

      // table. However, since the number of google+ user is 

      // far too small, it's not sure yet whether it deserves 

      // a new table to store the information. 

      String str = topLevelComment.getSnippet().getAuthorDisplayName(); 

      String googleplus = 

topLevelComment.getSnippet().getAuthorGoogleplusProfileUrl(); 

      System.out.println("--The author \"" + str + "\"'s channel ID not 

found." 

        + "\n\tThe google+ url is: " + googleplus); 

     } 

    } 

   } catch (com.google.api.client.googleapis.json.GoogleJsonResponseException e) { 

    if (e.getStatusCode() != 403) { 

     if (e.getStatusCode() == 404) { 

      System.out.println("**No video specified.**"); 

     } else if (e.getStatusCode() == 400) { 

      System.out.println("Problem exists in video: " + curVideoId); 

      Thread.sleep(5000); 

     } else if (e.getStatusCode() == 500 || e.getStatusCode() == 503) { 

      Thread.sleep(5000); 

     } else { 

      throw e; 

     } 

    } 
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   } catch (NullPointerException e) { 

    // TODO: handle exception 

    if (!curComment.containsKey("authorChannelId")) { 

     // This happens when a user is using google+ account other 

     // than the youtube account. 

     System.out.println("--Author doesn't have channel ID." + "==> Total: " + 

++noChannelUserCount); 

    } else { 

     throw e; 

    } 

   } 

  } 

 } 

 

 private void generateChannelTableList() throws Exception { 

  channelTableList = new ArrayList<JSONObject>(); 

  StringBuilder channelIdBuilder = new StringBuilder(); 

 

  // Channel ID set grows when other method are executing and getting new 

  // channel 

  Iterator<String> channelSetIterator = channelIdSet.iterator(); 

  while (channelSetIterator.hasNext()) { 

   channelIdBuilder.append(channelSetIterator.next() + ","); 

  } 

 

  String channelIdCSV = channelIdBuilder.toString().replaceAll(",$", ""); 

 

  YouTube.Channels.List channels = youtube.channels().list("id,snippet").setKey(apiKey) 

    .setFields("items(id,snippet(country,description,publishedAt,title))"); 

 

  ArrayList<String> splittedChannelIdCSV = csvSplitter(channelIdCSV); 

  Iterator<String> channelIdIterator = splittedChannelIdCSV.iterator(); 

 

  int chanCount = 0; 

  while (channelIdIterator.hasNext()) { 

   channels.setId(channelIdIterator.next()); 

   ChannelListResponse channelListResponse = null; 

   long sleepTime = 5000; 

   try { 

    channelListResponse = channels.execute(); 

   } catch (Exception e) { 

    // retry max 3 times. 

    int tryCount = 0; 

    int maxRetryTime = 3; 

    while (true) { 

     try { 

      tryCount++; 

      System.out.println("**Error occurs, retry time: " + tryCount + "..."); 

      Thread.sleep(sleepTime); 

      channelListResponse = channels.execute(); 

     } catch (Exception e1) { 

      // Double the waiting time if request failed. 

      sleepTime = sleepTime * 2; 

      // Set maximum waiting time to 1 minute. 

      if (sleepTime >= 60000) { 

       sleepTime = 60000; 

      } 

      // If failed 3 times, throw the exception. 

      if (tryCount >= maxRetryTime) { 

       throw e1; 

      } 

     } 
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    } 

   } 

 

   List<Channel> channelList = channelListResponse.getItems(); 

   Iterator<Channel> channelIterator = channelList.iterator(); 

   while (channelIterator.hasNext()) { 

    chanCount++; 

    Channel channel = channelIterator.next(); 

    JSONObject channelTable = new JSONObject().put("ChannelId", channel.getId()) 

      .put("ChannelPublishedAt", 

channel.getSnippet().getPublishedAt().toString()) 

      .put("ChannelTitle", channel.getSnippet().getTitle()) 

      .put("ChannelDescription", channel.getSnippet().getDescription()); 

    channelTableList.add(channelTable); 

   } 

  } 

  System.out.println("# of channels: " + chanCount); 

 } 

 

 private void generateChannelStatisticTableList() throws Exception { 

  channelStatisticTableList = new ArrayList<JSONObject>(); 

  StringBuilder channelIdBuilder = new StringBuilder(); 

 

  Iterator<String> channelSetIterator = channelIdSet.iterator(); 

  while (channelSetIterator.hasNext()) { 

   channelIdBuilder.append(channelSetIterator.next() + ","); 

  } 

 

  String channelIdCSV = channelIdBuilder.toString().replaceAll(",$", ""); 

 

  YouTube.Channels.List channels = youtube.channels().list("id,statistics").setKey(apiKey) 

    .setFields("items(id,statistics)"); 

 

  ArrayList<String> splittedChannelIdCSV = csvSplitter(channelIdCSV); 

  Iterator<String> channelIdIterator = splittedChannelIdCSV.iterator(); 

 

  while (channelIdIterator.hasNext()) { 

   channels.setId(channelIdIterator.next()); 

   ChannelListResponse channelListResponse = null; 

   long sleepTime = 5000; 

   try{ 

   channelListResponse = channels.execute(); 

   }catch (Exception e) { 

    // retry max 3 times. 

    int tryCount = 0; 

    int maxRetryTime = 3; 

    while (true) { 

     try { 

      tryCount++; 

      System.out.println("**Error occurs, retry time: " + tryCount + "..."); 

      Thread.sleep(sleepTime); 

      channelListResponse = channels.execute(); 

     } catch (Exception e1) { 

      // Double the waiting time if request failed. 

      sleepTime = sleepTime * 2; 

      // Set maximum waiting time to 1 minute. 

      if (sleepTime >= 60000) { 

       sleepTime = 60000; 

      } 

      // If failed 3 times, throw the exception. 

      if (tryCount >= maxRetryTime) { 

       throw e1; 
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      } 

     } 

    } 

   } 

   List<Channel> channelList = channelListResponse.getItems(); 

   Iterator<Channel> channelIterator = channelList.iterator(); 

   while (channelIterator.hasNext()) { 

    Channel channel = channelIterator.next(); 

    JSONObject channelStatisticTable = new JSONObject().put("ChannelId", channel.getId()) 

      .put("ChannelTimeStamp", new SimpleDateFormat("yyyy-MM-dd 

HH:mm:ss").format(new Date())) 

      .put("ChannelCommentCount", 

channel.getStatistics().getCommentCount()) 

      .put("ChannelSubscriberCount", 

channel.getStatistics().getSubscriberCount()) 

      .put("ChannelVideoCount", channel.getStatistics().getVideoCount()) 

      .put("ChannelViewCount", channel.getStatistics().getViewCount()); 

    channelStatisticTableList.add(channelStatisticTable); 

   } 

  } 

 } 

 

 private String authorChannelIdFormat(String originalString) { 

  return originalString.split("=")[1].replace("}", ""); 

 } 

 

 // YouTube data API only accept less than 50 length's CSV string, so a 

 // splitter is needed. 

 private ArrayList<String> csvSplitter(String csvString) { 

  ArrayList<String> splittedCSVString = new ArrayList<String>(); 

  int numberPerChunk = 50; // Split by 50. 

  String str = new String(); 

  // get the index of #50 comma. 

  int position = ordinalIndexOf(csvString, ",", numberPerChunk - 1); 

  while (position != -1) { 

   str = csvString.substring(0, position); 

   csvString = csvString.substring(position + 1); 

   splittedCSVString.add(str); 

   position = ordinalIndexOf(csvString, ",", numberPerChunk - 1); 

  } 

  splittedCSVString.add(csvString); 

  // The returned value includes a series of string, and each of them 

  // contains no more than 50 IDs (or more often, contains exactly 50 

  // IDs). 

  return splittedCSVString; 

 } 

 

 // Assistance subroutine for helping the splitter above. 

 private int ordinalIndexOf(String string, String subString, int index) { 

  int position = string.indexOf(subString, 0); 

  while (index-- > 0 && position != -1) { 

   position = string.indexOf(subString, position + 1); 

  } 

  return position; 

 } 

 

 // This is a transfer function that making a hashSet to a CSV formatted 

 // string, which can be used as inputs for the YouTube Data API. 

 private String hashSetToCSV(LinkedHashSet<String> idSet) { 

  StringBuilder idStringBuilder = new StringBuilder(); 

  Iterator<String> setIterator = idSet.iterator(); 

  while (setIterator.hasNext()) { 
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   idStringBuilder.append(setIterator.next() + ","); 

  } 

  // Dollar is the symbol of the end of a string. The last time the string 

  // builder append a value, there is an extra comma at the end of the 

  // string, which should be removed. 

  return idStringBuilder.toString().replaceAll(",$", ""); 

 } 

 

} 

 

 

 

>>>data_collector_ver4\YouTubeAPIProcessResult.java 

 

package data_collector_ver4; 

 

import java.util.ArrayList; 

import org.json.JSONObject; 

 

/** 

 * A structure that stores the result of API process. 

 *  

 * @author tian 

 * 

 */ 

public class YouTubeAPIProcessResult { 

 

 // Initiate the attributes of tables that will be inserted to database. 

 private ArrayList<JSONObject> videoTableList = new ArrayList<JSONObject>(); 

 private ArrayList<JSONObject> videoStatisticTableList = new ArrayList<JSONObject>(); 

 private ArrayList<JSONObject> videoCategoryTableList = new ArrayList<JSONObject>(); 

 @SuppressWarnings("unchecked") 

 private ArrayList<JSONObject>[] videoCommentTableList = (ArrayList<JSONObject>[]) new ArrayList[2]; 

 private ArrayList<JSONObject> channelTableList = new ArrayList<JSONObject>(); 

 private ArrayList<JSONObject> channelStatisticTableList = new ArrayList<JSONObject>(); 

 

 @SuppressWarnings("unchecked") 

 public YouTubeAPIProcessResult() { 

  videoTableList = new ArrayList<JSONObject>(); 

  videoStatisticTableList = new ArrayList<JSONObject>(); 

  videoCategoryTableList = new ArrayList<JSONObject>(); 

  videoCommentTableList = (ArrayList<JSONObject>[]) new ArrayList[2]; 

  channelTableList = new ArrayList<JSONObject>(); 

  channelStatisticTableList = new ArrayList<JSONObject>(); 

 } 

 

 public YouTubeAPIProcessResult(ArrayList<JSONObject> videoTableList, ArrayList<JSONObject> 

videoStatisticTableList, 

   ArrayList<JSONObject> videoCategoryTableList, ArrayList<JSONObject>[] 

videoCommentTableList, 

   ArrayList<JSONObject> channelTableList, ArrayList<JSONObject> channelStatisticTableList) { 

  this.videoTableList = videoTableList; 

  this.videoStatisticTableList = videoStatisticTableList; 

  this.videoCategoryTableList = videoCategoryTableList; 

  this.videoCommentTableList = videoCommentTableList; 

  this.channelTableList = channelTableList; 

  this.channelStatisticTableList = channelStatisticTableList; 

 } 

 

 public ArrayList<JSONObject> getVideoTableList() { 

  return videoTableList; 

 } 
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 public void setVideoTableList(ArrayList<JSONObject> videoTableList) { 

  this.videoTableList = videoTableList; 

 } 

 

 public ArrayList<JSONObject> getVideoStatisticTableList() { 

  return videoStatisticTableList; 

 } 

 

 public void setVideoStatisticTableList(ArrayList<JSONObject> videoStatisticTableList) { 

  this.videoStatisticTableList = videoStatisticTableList; 

 } 

 

 public ArrayList<JSONObject> getVideoCategoryTableList() { 

  return videoCategoryTableList; 

 } 

 

 public void setVideoCategoryTableList(ArrayList<JSONObject> videoCategoryTableList) { 

  this.videoCategoryTableList = videoCategoryTableList; 

 } 

 

 public ArrayList<JSONObject>[] getVideoCommentTableList() { 

  return videoCommentTableList; 

 } 

 

 public void setVideoCommentTableList(ArrayList<JSONObject>[] videoCommentTableList) { 

  this.videoCommentTableList = videoCommentTableList; 

 } 

 

 public ArrayList<JSONObject> getChannelTableList() { 

  return channelTableList; 

 } 

 

 public void setChannelTableList(ArrayList<JSONObject> channelTableList) { 

  this.channelTableList = channelTableList; 

 } 

 

 public ArrayList<JSONObject> getChannelStatisticTableList() { 

  return channelStatisticTableList; 

 } 

 

 public void setChannelStatisticTableList(ArrayList<JSONObject> channelStatisticTableList) { 

  this.channelStatisticTableList = channelStatisticTableList; 

 } 

 

} 

 

 

 

>>>data_collector_ver4\YouTubeAPIProcessThread.java 

 

package data_collector_ver4; 

 

import java.util.LinkedHashSet; 

 

import com.google.api.services.youtube.YouTube; 

 

public class YouTubeAPIProcessThread extends Thread { 

 

 private YouTube youtube; 

 private String apiKey; 

 private LinkedHashSet<String> videoIdSet; 
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 public YouTubeAPIProcessThread(YouTube youtube, String apiKey, LinkedHashSet<String> videoIdSet) { 

  this.youtube = youtube; 

  this.apiKey = apiKey; 

  this.videoIdSet = videoIdSet; 

 } 

 

 @Override 

 public void run() { 

 

  try { 

   // Execute the API process to collect the result. 

   YouTubeAPIProcess aProcess = new YouTubeAPIProcess(youtube, apiKey, videoIdSet); 

   YouTubeAPIProcessResult processResult = aProcess.execute(); 

 

   MySQLAccess insertionToDatabase = new MySQLAccess(); 

   insertionToDatabase.writeToDatabase(processResult.getChannelTableList(), 

     processResult.getChannelStatisticTableList(), 

processResult.getVideoCategoryTableList(), 

     processResult.getVideoTableList(), processResult.getVideoStatisticTableList(), 

     processResult.getVideoCommentTableList()[0], 

processResult.getVideoCommentTableList()[1]); 

 

  } catch (Exception e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } 

 

 } 

 

} 

 

 

 

>>> data_collector_ver4\ArrayListSplit.java 

 

package data_collector_ver4; 

 

import java.util.ArrayList; 

import java.util.Iterator; 

import java.util.LinkedHashSet; 

 

/** 

 * This class is a tool to split a LinkedHashSet into smaller blocks by a given 

 * block size. The result sets are stored in an arrayList. 

 *  

 * @author tian 

 * 

 * @param <T> 

 */ 

public class ArrayListSplit<T> { 

 

 private LinkedHashSet<String> originSet; 

 private int blockSize; 

 

 // Constructor receives the set that requires to be split, and the block 

 // size for each split block. 

 public ArrayListSplit(LinkedHashSet<String> originSet, int blockSize) { 

  this.originSet = originSet; 

  this.blockSize = blockSize; 

 } 
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 // This method executes the split function. 

 public ArrayList<LinkedHashSet<String>> split() { 

 

  // Calculate the total number of blocks. If the set size is divisible by 

  // the block size then add 0, otherwise add an additional 1. 

  int count = originSet.size() / blockSize + (originSet.size() % blockSize == 0 ? 0 : 1); 

  // Create the storage for the split sets. 

  ArrayList<LinkedHashSet<String>> result = new ArrayList<LinkedHashSet<String>>(count); 

 

  Iterator<String> iter = originSet.iterator(); 

  for (int i = 0; i < count; i++) { 

   // Create a temporary set that stores the elements from the origin 

   // set. This set has a fixed size which is set up through the 

   // blockSize parameter. 

   LinkedHashSet<String> set = new LinkedHashSet<String>(blockSize); 

   // Put the elements into the temporary set using a iterator of the 

   // original set. 

   for (int j = 0; j < blockSize && iter.hasNext(); j++) { 

    set.add(iter.next()); 

   } 

   // Add the temporary set into the result arrayList. 

   result.add(set); 

  } 

 

  return result; 

 } 

} 

 

 

 

>>> data_collector_ver4\MySQLAcess.java 

 

package data_collector_ver4; 

 

import java.io.IOException; 

import java.io.InputStream; 

import java.sql.BatchUpdateException; 

import java.sql.Connection; 

import java.sql.DriverManager; 

import java.sql.PreparedStatement; 

import java.sql.ResultSet; 

import java.sql.SQLException; 

import java.sql.Statement; 

import java.sql.Timestamp; 

import java.text.DateFormat; 

import java.text.ParseException; 

import java.text.SimpleDateFormat; 

import java.util.ArrayList; 

import java.util.Date; 

import java.util.Iterator; 

import java.util.LinkedHashSet; 

import java.util.Properties; 

 

import org.json.JSONException; 

import org.json.JSONObject; 

 

import com.google.api.services.youtube.YouTube.Search; 

 

public class MySQLAccess { 

 protected Connection connect = null; 

 private Statement statement = null; 

 protected ResultSet resultSet = null; 
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 private String host; 

 private String port; 

 private String dbname; 

 private String user; 

 private String passwd; 

 

 private final String PROPERTIES_FILENAME = "MySQL.properties"; 

 private Properties properties = new Properties(); 

 

 public MySQLAccess() { 

  // In the constructor, load the properties of the server setting. 

  try { 

   InputStream in = Search.class.getResourceAsStream("/" + PROPERTIES_FILENAME); 

   properties.load(in); 

  } catch (IOException e) { 

   System.err.println( 

     "There was an error reading " + PROPERTIES_FILENAME + ": " + e.getCause() 

+ " : " + e.getMessage()); 

   System.exit(1); 

  } 

  host = properties.getProperty("host"); 

  port = properties.getProperty("port"); 

  dbname = properties.getProperty("dbname"); 

  user = properties.getProperty("user"); 

  passwd = properties.getProperty("passwd"); 

 } 

 

 protected void establishConnection() throws SQLException { 

  // This will load the MySQL driver, each DB has its own driver 

  try { 

   Class.forName("com.mysql.jdbc.Driver"); 

  } catch (ClassNotFoundException e) { 

   e.printStackTrace(); 

  } 

 

  // Setup the connection with the DB 

  connect = DriverManager.getConnection("jdbc:mysql://" + host + ":" + port + "/" + dbname + "?" + "user=" + 

user 

    + "&password=" + passwd + "&character_set_server=utf8mb4" + 

"&rewriteBatchedStatements=true"); 

 

 } 

 

 // channel table insertion. 

 private void writeChannelToDataBase(ArrayList<JSONObject> channelTableList) throws Exception { 

 

  // The table list contains many entities of channels. They need to be 

  // inserted one by one. 

  String query = "INSERT INTO Channel (ChannelId, ChannelPublishedAt, ChannelTitle, ChannelDescription) 

" 

    + "VALUE (?, ?, ?, ?) ON DUPLICATE KEY UPDATE ChannelId=ChannelId"; 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject channelTable : channelTableList) { 

   // Scratch the information from stored JSON object. 

   String channelId = channelTable.getString("ChannelId"); 

   Timestamp channelPublishedAt = 

stringToTimestamp(channelTable.getString("ChannelPublishedAt")); 

   String channelTitle = channelTable.getString("ChannelTitle"); 

   String channelDescription = channelTable.getString("ChannelDescription"); 
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   // Setup the query string. 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, channelId); 

    preparedStatement.setTimestamp(2, channelPublishedAt); 

    preparedStatement.setString(3, channelTitle); 

    preparedStatement.setString(4, channelDescription); 

 

    preparedStatement.addBatch(); 

   } catch (java.sql.SQLException e) { 

    // // The most common error that occurs is caused by the 

    // encoding 

    // // format. There're Emojis and some languages that cannot be 

    // // accepted by the database, which are mostly contained in 

    // the 

    // // channel title or the channel description. When this error 

    // // happens, locate where it comes from (title or 

    // description), 

    // // and try to avoid updating that column (or both) 

    // information. 

    // if (e.getMessage().contains("ChannelTitle") && 

    // !e.getMessage().contains("ChannelDescription")) { 

    // preparedStatement.setString(1, channelId); 

    // preparedStatement.setTimestamp(2, channelPublishedAt); 

    // preparedStatement.setString(3, ""); 

    // preparedStatement.setString(4, channelDescription); 

    // } else if (!e.getMessage().contains("ChannelTitle") && 

    // e.getMessage().contains("ChannelDescription")) { 

    // preparedStatement.setString(1, channelId); 

    // preparedStatement.setTimestamp(2, channelPublishedAt); 

    // preparedStatement.setString(3, channelTitle); 

    // preparedStatement.setString(4, ""); 

    // } else if (e.getMessage().contains("ChannelTitle") && 

    // e.getMessage().contains("ChannelDescription")) { 

    // preparedStatement.setString(1, channelId); 

    // preparedStatement.setTimestamp(2, channelPublishedAt); 

    // preparedStatement.setString(3, ""); 

    // preparedStatement.setString(4, ""); 

    // } else { 

    // System.out.println(e.getMessage()); 

    // } 

    // try { 

    // preparedStatement.executeUpdate(); 

    // } catch (SQLException e1) { 

    // System.out.println(e1.getMessage()); 

    // } 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 
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    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Channel---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 // video category insertion. 

 private void writeVideoCategoryToDatabase(ArrayList<JSONObject> videoCategoryTableList) 

   throws SQLException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO VideoCategory (CategoryId, CategoryTitle) " 

    + "VALUE (?, ?) ON DUPLICATE KEY UPDATE CategoryId=CategoryId"; 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject videoCategoryTable : videoCategoryTableList) { 

   // Scratch the information from stored JSON object. 

   String categoryId = videoCategoryTable.getString("CategoryId"); 

   String CategoryTitle = videoCategoryTable.getString("CategoryTitle"); 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, categoryId); 

    preparedStatement.setString(2, CategoryTitle); 

 

    preparedStatement.addBatch(); 

   } catch (SQLException e) { 

    // Do nothing. 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Video category---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 
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 } 

 

 // video table insertion. 

 private void writeVideoToDatabase(ArrayList<JSONObject> videoTableList) 

   throws SQLException, JSONException, ParseException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO Video (VideoId, CategoryId, ChannelId, VideoPublishedAt, Duration, 

VideoTitle, VideoDescription) " 

    + "VALUE (?, ?, ?, ?, ?, ?, ?) ON DUPLICATE KEY UPDATE VideoId=VideoId"; 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject videoTable : videoTableList) { 

   // Scratch the information from stored JSON object. 

   String videoId = videoTable.getString("VideoId"); 

   String CategoryId = videoTable.getString("CategoryId"); 

   String ChannelId = videoTable.getString("ChannelId"); 

   Timestamp VideoPublishedAt = stringToTimestamp(videoTable.getString("VideoPublishedAt")); 

   String Duration = videoTable.getString("Duration"); 

   String VideoTitle = videoTable.getString("VideoTitle"); 

   String VideoDescription = videoTable.getString("VideoDescription"); 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, videoId); 

    preparedStatement.setString(2, CategoryId); 

    preparedStatement.setString(3, ChannelId); 

    preparedStatement.setTimestamp(4, VideoPublishedAt); 

    preparedStatement.setString(5, Duration); 

    preparedStatement.setString(6, VideoTitle); 

    preparedStatement.setString(7, VideoDescription); 

 

    preparedStatement.addBatch(); 

 

   } catch (SQLException e) { 

    // // In the video info insertion step, the most common error is 

    // // caused by the video description. If it happens, identify 

    // it 

    // // and avoid inserting that column. 

    // if (e.getMessage().contains("VideoDescription")) { 

    // preparedStatement.setString(1, videoId); 

    // preparedStatement.setString(2, CategoryId); 

    // preparedStatement.setString(3, ChannelId); 

    // preparedStatement.setTimestamp(4, VideoPublishedAt); 

    // preparedStatement.setString(5, Duration); 

    // preparedStatement.setString(6, VideoTitle); 

    // preparedStatement.setString(7, ""); 

    // 

    // preparedStatement.addBatch(); 

    // } else { 

    // // Do nothing. 

    // } 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 
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   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Video---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 // video statistic insertion. 

 private void writeVideoStatisticToDatabase(ArrayList<JSONObject> videoStatisticTableList) 

   throws SQLException, JSONException, ParseException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO VideoStatistic (VideoId, VideoTimeStamp, VideoCommentsCount, 

VideoDislikeCount, VideoFavoriteCount, VideoLikeCount, VideoViewCount) " 

    + "VALUE (?, ?, ?, ?, ?, ?, ?) ON DUPLICATE KEY UPDATE VideoId=VideoId"; 

 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject videoStatisticTable : videoStatisticTableList) { 

   // Scratch the information from stored JSON object. 

   String videoId = videoStatisticTable.getString("VideoId"); 

   Date date = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") 

     .parse(videoStatisticTable.getString("VideoTimeStamp")); 

   Timestamp videoTimeStamp = new java.sql.Timestamp(date.getTime()); 

   long videoFavoriteCount = videoStatisticTable.getLong("VideoFavoriteCount"); 

   long videoViewCount = videoStatisticTable.getLong("VideoViewCount"); 

   // Some videos may not allow these information. By default, set them 

   // to 0. 

   long videoLikeCount = 0; 

   long videoDislikeCount = 0; 

   long videoCommentsCount = 0; 

   // If there's no information in such videos, there will be an JSON 

   // exception when I call the non-exist key. 

   try { 

    videoLikeCount = videoStatisticTable.getLong("VideoLikeCount"); 

    videoDislikeCount = videoStatisticTable.getLong("VideoDislikeCount"); 

    videoCommentsCount = videoStatisticTable.getLong("VideoCommentsCount"); 

   } catch (Exception e) { 

    // The variables remain the default values which are all 0. 

   } 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, videoId); 

    preparedStatement.setTimestamp(2, videoTimeStamp); 

    preparedStatement.setLong(3, videoCommentsCount); 

    preparedStatement.setLong(4, videoDislikeCount); 

    preparedStatement.setLong(5, videoFavoriteCount); 

    preparedStatement.setLong(6, videoLikeCount); 

    preparedStatement.setLong(7, videoViewCount); 
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    preparedStatement.addBatch(); 

   } catch (SQLException e) { 

    // Do nothing. 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Video statistics---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 // channel statistic insertion. 

 private void writeChannelStatisticToDatebase(ArrayList<JSONObject> channelStatisticTableList) 

   throws SQLException, JSONException, ParseException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO ChannelStatistic (ChannelId, ChannelTimeStamp, ChannelCommentCount, 

ChannelSubscriberCount, ChannelVideoCount, ChannelViewCount) " 

    + "VALUE (?, ?, ?, ?, ?, ?) ON DUPLICATE KEY UPDATE ChannelId=ChannelId"; 

 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject channelStatisticTable : channelStatisticTableList) { 

   // Scratch the information from stored JSON object. 

   String channelId = channelStatisticTable.getString("ChannelId"); 

   Date date = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") 

     .parse(channelStatisticTable.getString("ChannelTimeStamp")); 

   Timestamp channelTimeStamp = new java.sql.Timestamp(date.getTime()); 

   long channelCommentCount = channelStatisticTable.getLong("ChannelCommentCount"); 

   long channelSubscriberCount = channelStatisticTable.getLong("ChannelSubscriberCount"); 

   long channelVideoCount = channelStatisticTable.getLong("ChannelVideoCount"); 

   long channelViewCount = channelStatisticTable.getLong("ChannelViewCount"); 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, channelId); 

    preparedStatement.setTimestamp(2, channelTimeStamp); 

    preparedStatement.setLong(3, channelCommentCount); 

    preparedStatement.setLong(4, channelSubscriberCount); 

    preparedStatement.setLong(5, channelVideoCount); 

    preparedStatement.setLong(6, channelViewCount); 
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    preparedStatement.addBatch(); 

   } catch (SQLException e) { 

    // Do nothing. 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Channel statistics---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 // top level comment insertion. 

 private void writeTopLevelCommentToDatebase(ArrayList<JSONObject> topLevelCommentTableList) 

   throws SQLException, JSONException, ParseException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO TopLevelComment (TLCommentId, VideoId, ChannelId, 

TLCommentLikeCount, TLCommentPublishedAt, TLCommentUpdatedAt, TLCommentTextDisplay, TotalReplyCount) " 

    + "VALUE (?, ?, ?, ?, ?, ?, ?, ?) ON DUPLICATE KEY UPDATE 

TLCOmmentId=TLCOmmentId"; 

 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject topLevelCommentTable : topLevelCommentTableList) { 

   // Scratch the information from stored JSON object. 

   String tlcommentId = topLevelCommentTable.getString("TLCommentId"); 

   String videoId = topLevelCommentTable.getString("VideoId"); 

   String channelId = topLevelCommentTable.getString("ChannelId"); 

   long tlcommentLikeCount = topLevelCommentTable.getLong("TLCommentLikeCount"); 

   Timestamp TLCommentPublishedAt = 

stringToTimestamp(topLevelCommentTable.getString("TLCommentPublishedAt")); 

   Timestamp TLCommentUpdatedAt = 

stringToTimestamp(topLevelCommentTable.getString("TLCommentUpdatedAt")); 

   String TLCommentTextDisplay = topLevelCommentTable.getString("TLCommentTextDisplay"); 

   long TotalReplyCount = topLevelCommentTable.getLong("TotalReplyCount"); 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, tlcommentId); 

    preparedStatement.setString(2, videoId); 

    preparedStatement.setString(3, channelId); 

    preparedStatement.setLong(4, tlcommentLikeCount); 
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    preparedStatement.setTimestamp(5, TLCommentPublishedAt); 

    preparedStatement.setTimestamp(6, TLCommentUpdatedAt); 

    preparedStatement.setString(7, TLCommentTextDisplay); 

    preparedStatement.setLong(8, TotalReplyCount); 

 

    preparedStatement.addBatch(); 

   } catch (SQLException e) { 

    // // As before, the encoding incompatible may cause errors. If 

    // it 

    // // occurs, avoid updating the column that possibly causes the 

    // // error (here the column is TLCommentTextDisplay). 

    // if (e.getMessage().contains("TLCommentTextDisplay")) { 

    // preparedStatement.setString(1, tlcommentId); 

    // preparedStatement.setString(2, videoId); 

    // preparedStatement.setString(3, channelId); 

    // preparedStatement.setInt(4, tlcommentLikeCount); 

    // preparedStatement.setTimestamp(5, TLCommentPublishedAt); 

    // preparedStatement.setTimestamp(6, TLCommentUpdatedAt); 

    // preparedStatement.setString(7, ""); 

    // preparedStatement.setInt(8, TotalReplyCount); 

    // 

    // preparedStatement.addBatch(); 

    // } else { 

    // // Do not add this comment. 

    // } 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Top level comment---"); 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 private void writeReplyToDatabase(ArrayList<JSONObject> replyTableList) 

   throws SQLException, JSONException, ParseException, IOException { 

 

  // Setup the query string. 

  String query = "INSERT INTO Reply (ReplyId, TLCOmmentId, ChannelId, ReplyLikeCount, 

ReplyPublishedAt, ReplyUpdatedAt, ReplyTextDisplay) " 

    + "VALUE (?, ?, ?, ?, ?, ?, ?) ON DUPLICATE KEY UPDATE 

TLCOmmentId=TLCOmmentId"; 
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  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  for (JSONObject replyTable : replyTableList) { 

   // Scratch the information from stored JSON object. 

   String replyId = replyTable.getString("ReplyId"); 

   String tlcommentId = replyTable.getString("TLCommentId"); 

   String channelId = replyTable.getString("ChannelId"); 

   long replyLikeCount = replyTable.getLong("ReplyLikeCount"); 

   Timestamp replyPublishedAt = stringToTimestamp(replyTable.getString("ReplyPublishedAt")); 

   Timestamp replyUpdatedAt = stringToTimestamp(replyTable.getString("ReplyUpdatedAt")); 

   String replyTextDisplay = replyTable.getString("ReplyTextDisplay"); 

 

   try { 

    // Pass the values into the statement. 

    preparedStatement.setString(1, replyId); 

    preparedStatement.setString(2, tlcommentId); 

    preparedStatement.setString(3, channelId); 

    preparedStatement.setLong(4, replyLikeCount); 

    preparedStatement.setTimestamp(5, replyPublishedAt); 

    preparedStatement.setTimestamp(6, replyUpdatedAt); 

    preparedStatement.setString(7, replyTextDisplay); 

 

    preparedStatement.addBatch(); 

   } catch (SQLException e) { 

    // // Similarly, avoid updating column "ReplyTextDisplay" if it 

    // // results in an encoding incompatible error. 

    // if (e.getMessage().contains("ReplyTextDisplay")) { 

    // preparedStatement.setString(1, replyId); 

    // preparedStatement.setString(2, tlcommentId); 

    // preparedStatement.setString(3, channelId); 

    // preparedStatement.setInt(4, replyLikeCount); 

    // preparedStatement.setTimestamp(5, replyPublishedAt); 

    // preparedStatement.setTimestamp(6, replyUpdatedAt); 

    // preparedStatement.setString(7, ""); 

    // 

    // preparedStatement.addBatch(); 

    // } else { 

    // System.out.println(e.toString()); 

    // } 

   } 

  } 

 

  try { 

   preparedStatement.executeBatch(); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("---Reply---"); 

   System.out.println("Number of affected rows: " + successCount); 
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   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } 

 } 

 

 // A method that combine and organize the insertions. 

 public void writeToDatabase(ArrayList<JSONObject> channelTableList, ArrayList<JSONObject> 

channelStatisticTableList, 

   ArrayList<JSONObject> videoCategoryTableList, ArrayList<JSONObject> videoTableList, 

   ArrayList<JSONObject> videoStatisticTableList, ArrayList<JSONObject> 

topLevelCommentTableList, 

   ArrayList<JSONObject> replyTableList) throws Exception { 

 

  establishConnection(); 

  System.out.println("-------------------------------------------------"); 

  System.out.println("----------------DATABASE INSERTING---------------"); 

  writeChannelToDataBase(channelTableList); 

  System.out.println("--Channel updated."); 

  writeChannelStatisticToDatebase(channelStatisticTableList); 

  System.out.println("--Channel Statistic updated."); 

  writeVideoCategoryToDatabase(videoCategoryTableList); 

  System.out.println("--Category updated."); 

  writeVideoToDatabase(videoTableList); 

  System.out.println("--Video updated."); 

  writeVideoStatisticToDatabase(videoStatisticTableList); 

  System.out.println("--Video Statistic updated."); 

  writeTopLevelCommentToDatebase(topLevelCommentTableList); 

  System.out.println("--TLComment updated."); 

  writeReplyToDatabase(replyTableList); 

  System.out.println("--Reply updated."); 

  System.out.println("----------------INSERTION COMPLETE---------------"); 

  System.out.println("-------------------------------------------------"); 

  close(); 

 

  Thread.sleep(2000); 

 

 } 

 

 // You need to close the resultSet 

 protected void close() { 

  try { 

   if (resultSet != null) { 

    resultSet.close(); 

   } 

 

   if (statement != null) { 

    statement.close(); 

   } 

 

   if (connect != null) { 

    connect.close(); 

   } 

  } catch (SQLException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 private Timestamp stringToTimestamp(String timeString) throws ParseException { 

  DateFormat df1 = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS"); 

  Date result = df1.parse(timeString.replace("Z", "")); 

  java.sql.Timestamp ts = new java.sql.Timestamp(result.getTime()); 

  return ts; 
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 } 

 

 // This method gets a set of video IDs by accessing the database. 

 public LinkedHashSet<String> readVideoIdList(int limit) throws Exception { 

 

  establishConnection(); 

 

  LinkedHashSet<String> retrievedVideoId = new LinkedHashSet<String>(); 

 

  // Query strings: 

  String selectQuery = "select VideoId " + "from VideoIdRecord " + "order by CrawledTime asc " + "limit ?"; 

  String updateQuery = "update VideoIdRecord " + "set CrawledTime = CrawledTime + 1 " + "where VideoId 

= ?"; 

 

  PreparedStatement selectStatement = connect.prepareStatement(selectQuery); 

  PreparedStatement updateStatement = connect.prepareStatement(updateQuery); 

  try { 

   selectStatement.setInt(1, limit); 

 

   resultSet = selectStatement.executeQuery(); 

 

   while (resultSet.next()) { 

    String videoId = resultSet.getString("VideoId"); 

    retrievedVideoId.add(videoId); 

 

    updateStatement.setString(1, videoId); 

    updateStatement.executeUpdate(); 

   } 

  } catch (Exception e) { 

   // TODO: handle exception 

   throw e; 

  } finally { 

   close(); 

  } 

  return retrievedVideoId; 

 } 

 

 // This method is used for creating a big video ID base list, which will be 

 // used for further crawling. 

 public void videoIDListCreator(LinkedHashSet<String> videoIdSet) throws SQLException { 

 

  establishConnection(); 

  // ** probably can be done with LOAD DATA INFILE, which is much faster 

  // than insertion. 

 

  // ** currently using plain INSERT 

  Iterator<String> videoIdItor = videoIdSet.iterator(); 

  // 

  String query = "INSERT INTO VideoIdRecord (VideoId, CrawledTime)" + "VALUE (?, ?)" 

    + "ON DUPLICATE KEY UPDATE VideoId=VideoId"; 

 

  PreparedStatement preparedStatement = connect.prepareStatement(query); 

 

  int count = 0; 

  // Use a timer to count the batch initialization time. 

  long startTime = System.currentTimeMillis(); 

  while (videoIdItor.hasNext()) { 

   String videoId = videoIdItor.next(); 

   count++; 

   if (count % 1000 == 0) { 

    System.out.println(String.format("%d", (count / 1000)) + " thousand collected."); 

   } 



 

79 
 

 

   try { 

    preparedStatement.setString(1, videoId); 

    preparedStatement.setInt(2, 0); 

    preparedStatement.addBatch(); 

 

   } catch (SQLException e) { 

    // TODO: handle exception 

    e.printStackTrace(); 

   } 

  } 

  long endTime = System.currentTimeMillis(); 

  System.out.println("Batch initialization time: " + ((double) endTime - startTime) / 1000 + " sec"); 

 

  try { 

   System.out.print(count + " INSERT queries are added to the batch. \nNow inserting to the 

database..."); 

   long batchStartTime = System.currentTimeMillis(); 

   int[] updateCount = preparedStatement.executeBatch(); 

   long batchEndTime = System.currentTimeMillis(); 

   System.out.println("Done.\nBatch run time: " + ((double) batchEndTime - batchStartTime) / 1000 + 

" sec"); 

   System.out.println("Total inserted: " + updateCount.length); 

  } catch (BatchUpdateException e) { 

   // TODO: handle exception 

   System.out.println(e.getMessage()); 

   int[] counts = e.getUpdateCounts(); 

   int successCount = 0; 

   int notAvaliable = 0; 

   int failCount = 0; 

   for (int i = 0; i < counts.length; i++) { 

    if (counts[i] >= 0) { 

     successCount++; 

    } else if (counts[i] == Statement.SUCCESS_NO_INFO) { 

     notAvaliable++; 

    } else if (counts[i] == Statement.EXECUTE_FAILED) { 

     failCount++; 

    } 

   } 

   System.out.println("Number of affected rows: " + successCount); 

   System.out.println("Number of affected rows (not avaliable): " + notAvaliable); 

   System.out.println("Failed count in batch: " + failCount); 

  } catch (SQLException e1) { 

   // TODO: handle exception 

   e1.printStackTrace(); 

  } finally { 

   preparedStatement.close(); 

   close(); 

  } 

 

  System.out.print("\nID record updated."); 

 

 } 

 

} 

 

 

 

>>>data_collector_ver4\DBAccessUpdating.java 

 

package data_collector_ver4; 
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import java.sql.PreparedStatement; 

import java.sql.SQLException; 

 

public class DBAccessUpdating extends MySQLAccess { 

 

 public void updateRecordID() throws SQLException { 

 

  super.establishConnection(); 

  String query = "SELECT COUNT(*) FROM videoidrecord"; 

  PreparedStatement pStatement = super.connect.prepareStatement(query); 

  super.resultSet = pStatement.executeQuery(); 

 

  long ID = 0; 

  while (super.resultSet.next()) { 

   ID = resultSet.getLong("COUNT(*)"); 

   System.out.println(ID); 

  } 

 

  String query2 = "UPDATE videoidrecord SET ID=? WHERE ID=NULL"; 

  PreparedStatement pStatement2 = super.connect.prepareStatement(query2); 

  for (long l = 1; l < ID; l++) { 

   pStatement2.setString(1, String.valueOf(l)); 

   pStatement2.executeUpdate(); 

  } 

 

  super.close(); 

 } 

 

} 

 

 

 

>>> data_collector_ver4\Main.java 

 

package data_collector_ver4; 

 

import java.io.File; 

import java.io.IOException; 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import java.util.LinkedHashSet; 

import java.util.Scanner; 

 

import com.google.api.services.youtube.YouTube; 

 

import video_id_generator.VideoIdCreator; 

 

public class Main { 

 

 /** 

  * main class that handles the whole process: 

  * <q>1. Select whether or not update new video IDs to the database; 

  * <q>2. Retrieve a subset of video IDs from database.videoIdRecord; 

  * <q>3. Process the API to get the information of the retrieved videos; 

  * <q>4. Insert the informations, and mark the successfully crawled videos 

  * as "crawled". 

  * <q>5. Re-do from step2. 

  *  

  * @param args 

  * @throws Exception 

  */ 

 public static void main(String args[]) throws Exception { 
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  String mode = args[0]; 

  YouTubeAuth yAuth = new YouTubeAuth(); 

  YouTube youtube = yAuth.getYouTube(); 

  String apiKey = yAuth.getApiKey(); 

  MySQLAccess dbAccess = new MySQLAccess(); 

 

  // Whether or not importing new IDs to the DB. 

  if (mode.equals("0")) { 

   System.out.println("Mode: 0"); 

   // skip generation of new video IDs 

   // Loop of main process block: 

   int count = 1000; 

   while (count-- > 0) { 

    System.out.println("Process remain: " + count + " times."); 

    // Each block read 20 videos: 

    LinkedHashSet<String> videoIdSet = dbAccess.readVideoIdList(20); 

    System.out.println("--VideoId read."); 

    YouTubeAPIProcessThread apiProcessThread = new 

YouTubeAPIProcessThread(youtube, apiKey, videoIdSet); 

    apiProcessThread.run(); 

    apiProcessThread.join(); 

   } 

 

  } else if (mode.equals("1")) { 

   System.out.println("Mode: 1"); 

   // upload a list of video IDs to the database. 

   // input the size of the video ID. 

   int seedSize = 0; 

   int pageNum = 0; 

   long resultPerPage = 0; 

   Scanner input = new Scanner(System.in); 

   System.out.println( 

     "----------------------------------------------------------------------------------------------

"); 

   System.out.println( 

     "Ready to generate a video ID list. At first, a given number of seed videos are 

collected from \ndifferent categories of YouTube." 

       + "\nThen from each seed video, retrieve its \"related 

videos\" and treat them as new \"seed videos\"." 

       + "\nWhen retrieving related videos, the API generates a few 

pages of videos of which maximum \nresult is limited by 100."); 

   System.out.println( 

     "----------------------------------------------------------------------------------------------

"); 

   String[] inputString; 

   // Read values from input. 

   do { 

    System.out.print( 

      "Please input the seed size of videos, total page number, and maximum 

result per page (separated by comma): "); 

    inputString = input.nextLine().split(","); 

   } while (inputString.length != 3); 

   seedSize = Integer.valueOf(inputString[0].trim()); 

   pageNum = Integer.valueOf(inputString[1].trim()); 

   resultPerPage = Integer.valueOf(inputString[2].trim()); 

   VideoIdCreator vIdCreator = new VideoIdCreator(youtube, apiKey, "date", seedSize, pageNum, 

     resultPerPage, makeFilePath(input)); 

   // Also input the expanding (i.e., get access to the related videos) 

   // times. 

   System.out.println(System.in.available()); 

   System.out.println("Please input the expand time of the seed videos: "); 
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   int expandTime = input.nextInt(); 

   System.out.println("Input completed. \n**Notice: Current maximum seed videos are set to 10000"); 

   LinkedHashSet<String> videoIdSet = vIdCreator.videoIdSetCreate(expandTime); 

   input.close(); 

   System.out.println("In total " + videoIdSet.size() + " IDs are created."); 

   System.out.println("Insertion finished."); 

  } else { 

   System.out.println( 

     "Invalid argument. " + "\nValid argument options: \n 0 - Skip the generation of 

new video IDs" 

       + "\n 1 - Start generating new video IDs and upload them to 

the DB"); 

   System.exit(0); 

  } 

 

 } 

 

 private static String makeFilePath(Scanner input) throws IOException { 

  String dateStr = new SimpleDateFormat("yyyyMMdd").format(new Date()); 

  String pathname = "videoId" + File.separator + dateStr + "_videoId.txt"; 

  try { 

   File file = new File(pathname); 

   if (!file.exists()) { 

    System.out.println("filepath: " + pathname); 

    file.getParentFile().mkdirs(); 

    file.createNewFile(); 

    if (file.exists()) { 

     System.out.println("->file created."); 

    } 

   } else { 

    System.out.println("File already exist. Rename(1) or replace(2)?"); 

    String mode = new String(); 

    do { 

     mode = input.nextLine(); 

    } while (!(mode.equals("1") || mode.equals("2"))); 

    if (mode.equals("1")) { 

     String time = new SimpleDateFormat("HHmmss").format(new Date()); 

     pathname = pathname.split("\\.")[0] + "_" + time + ".txt"; 

     System.out.println("filepath: " + pathname); 

     file.getParentFile().mkdirs(); 

     file.createNewFile(); 

     if (file.exists()) { 

      System.out.println("->file created."); 

     } 

    } else if (mode.equals("2")) { 

     System.out.println("File is deleted: " + file.delete()); 

     System.out.println("filepath: " + pathname); 

     file.getParentFile().mkdirs(); 

     file.createNewFile(); 

     if (file.exists()) { 

      System.out.println("->file created."); 

     } 

    } else { 

     System.out.println("Should never reach this point."); 

    } 

   } 

 

  } catch (IOException e) { 

   throw e; 

  } 

 

  return pathname; 
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 } 

 

} 
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